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Abstract Swarms of flying robots are a promising alternative to ground-based robots for
search in indoor environments with advantages such as increased speed and the ability to
fly above obstacles. However, there are numerous problems that must be surmounted in-
cluding limitations in available sensory and on-board processing capabilities, and low flight
endurance. This paper introduces a novel strategy to coordinate a swarm of flying robots for
indoor exploration that significantly increases energy efficiency. The presented algorithm is
fully distributed and scalable. It relies solely on local sensing and low-bandwidth commu-
nication, and does not require absolute positioning, localisation, or explicit world-models.
It assumes that flying robots can temporarily attach to the ceiling, or land on the ground for
efficient surveillance over extended periods of time. To further reduce energy consumption,
the swarm is incrementally deployed by launching one robot at a time. Extensive simula-
tion experiments demonstrate that increasing the time between consecutive robot launches
significantly lowers energy consumption by reducing total swarm flight time, while also
decreasing collision probability. As a trade-off, however, the search time increases with in-
creased inter-launch periods. These effects are stronger in more complex environments. The
proposed localisation-free strategy provides an energy efficient search behaviour adaptable
to different environments or timing constraints.

Keywords Flying robots - Swarm search - Localisation-free search - Energy-efficiency -
Mobile robot sensor network deployment

1 Introduction

Swarms of flying robots are promising for search in indoor environments where the ability
to move above debris or obstacles such as furniture is advantageous (Nardi et al 2006, Oh
et al 2005, Rudol et al 2008, Hoffmann et al 2004, Melhuish and Welsby 2002). Such a
swarm can establish a robot sensor and communication network that can impart navigation
aid to other robots or humans, e.g. guiding paramedics to injured victims, (O’Hara and Balch
2004, Li et al 2003, Batalin et al 2004, Corke et al 2005, Nouyan et al 2008; 2009).
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There are many challenges that must be surmounted in order to achieve swarm search
with flying robots indoors. First, robotic search often relies either on absolute positioning
(Burgard et al 2005, York and Pack 2008) or localisation (Meyer and Filliat 2003, Stipes et al
2006, Durrant-Whyte and Bailey 2006). Absolute positioning is often achieved with GPS,
but this is usually unfeasible indoors due to attenuated signals (Zeimpekis et al 2003, Sieg-
wart and Nourbakhsh 2004). Robot localisation commonly requires environment maps and
odometry sensing (Filliat and Meyer 2003). Environment maps may be unknown a priori
and the online creation of maps requires powerful processing that may not be available on
small flying robots (Grzonka et al 2009). Also, such approaches do not scale appropriately
with large swarms (Burgard et al 2005). Unlike ground-based robots with wheel encoders,
odometry sensing is challenging with flying robots (Iida 2003).

An additional challenge is that flying robots usually suffer from drift due to aerodynamic
imbalance and turbulence (Hoffmann et al 2007). This is commonly compensated with GPS
outdoors (e.g., York and Pack 2008, Hoffmann et al 2007) or pre-installed 3-D tracking
sensors indoors (e.g., Valenti et al 2007). To date, on-board approaches normally involve
visual motion-tracking of environmental features, which requires powerful processors or
specialised hardware (Fowers et al 2007). Further challenges are limited flight autonomy
(usually only 10-15 minutes, Roberts et al 2008), and an increased risk of collisions due to
multiple robots flying in proximity (Sharma and Ghose 2007).

In order to overcome the challenge of localisation and positioning without global in-
formation, we employ concepts from mobile sensor networks. Sensor networks perform
completely distributed processing of local information through a wireless communication
network (Howard et al 2002a), thus allowing simple navigation and efficient exploration
without requiring absolute positioning or localisation (e.g., O’Hara and Balch 2004, Batalin
and Sukhatme 2002, Batalin et al 2004). Most sensor networks are predeployed into the
operating environment (e.g., Li et al 2003, Corke et al 2005), which is unfeasible during
disaster situations. Alternatively, mobile robot sensor networks can autonomously deploy
into unknown environments and spread out to increase the area covered by all the robot
sensors (referred to as sensor coverage), (e.g., Batalin and Sukhatme 2002). Most work in
mobile sensor network deployment (e.g., Howard et al 2002a, Zou and Chakrabarty 2003,
Batalin and Sukhatme 2002) aims at achieving only a static arrangement of robots for sensor
coverage, termed blanket coverage (Gage 1992). Here, we demonstrate how to dynamically
redeploy robots and increase the coverage area, referred to as sweep coverage (Gage 1992,
Liu et al 2005). Various approaches to deploying robot sensor networks exist (discussed in
Sect. 2), but are not applicable to swarms of flying robots.

To tackle the challenge of increasing the energy autonomy, we assume that the flying
robots can land or attach to some structure of the environment and power down rotors while
maintaining communication with neighbouring robots. The work in this paper is based on
a hovering robot capable of attaching to ceilings (Roberts et al 2008). Besides minimising
energy consumption, this allows the formation of a robot sensor network for efficient long
term monitoring. Furthermore, we present an incremental deployment scheme which con-
trols the launching of robots and gradually expands the robot sensor network. This gradual
deployment exploits information acquired from the sensor network to guide robots more ef-
ficiently and, therefore, reduces unnecessary flight time. Additionally, this reduces the num-
ber of concurrent flying robots, thus reducing collision risk. We show how the time between
consecutive robot launches can be tuned to balance coverage time and energy efficiency.

Lastly, to achieve autonomous flight and control platform drift we propose that flying
robots use spatial information from robots attached to the ceiling using on-board relative-
positioning sensors (Roberts et al 2009).



This paper is organised as follows. First, we introduce related work and its limitations.
Then we present our robotic and environmental assumptions and an overview of our strategy.
We then discuss algorithmic details and experimental set-up. We then present our results
from extensive simulation analysis. Finally, we discuss limitations and future work.

2 Related Work

Various authors have proposed search and exploration strategies without absolute position-
ing or localisation via deployment of a network of sensor nodes or radio beacons. For ex-
ample, Li et al (2003) use distributed algorithms for guiding robots across a sensor network
and Corke et al (2005) use a pre-deployed sensor network to guide flying robots in unknown
environments. Both of these approaches require the prior deployment of the sensor network,
which would be unlikely in distaster situations or unknown environments. Alternatively,
Batalin and Sukhatme (2004) use the robots to deploy a network of radio beacons at runtime
to aid efficient exploration and search. Similarly, Pezeshkian et al (2007) deploy a network
of static radio beacons forming a long range communication network that could aid robot
exploration. However, both these approaches require the inefficient transportation of sepa-
rate beacon hardware, which is not feasible for flying robots with small payload. Ziparo et al
(2007) and Mamei and Zambonelli (2005) use micro-sized Radio-Frequency Identification
chips (RFIDs) to act as markers. These have the benefits of low cost, very small size and
passive power. Unfortunately RFIDs can only be read from distances too short for flying
robots. Our proposed strategy does not rely upon a priori deployment of sensors or beacons,
or inefficient transportation and retrieval of dedicated hardware, and avoids using RFIDs or
other passive short-range devices. Instead, our strategy uses the robots themselves to form
beacons within a mobile robotic sensor network to facilitate navigation. This is similar to the
approach of Nouyan et al (2008; 2009), although in their paper they use terrestrial robots.
As an alternative to the costly transportation of separate beacons, some authors (Pay-
ton et al 2001, Howard et al 2002a, Reif and Wang 1999, Baxter et al 2007, Batalin and
Sukhatme 2002) propose to use the robots themselves as sensor nodes that can autonomously
deploy into unknown environments. The most common approaches to mobile robotic sen-
sor network deployment are based on virtual forces between robots, termed Social Potential
Fields. Attraction and repulsion forces between robots are defined to create a self-organising
group behaviour (Reif and Wang 1999). The concept of Social Potential Fields has been ap-
plied to disperse robot swarms for sensor coverage tasks while maintaining properties such
as line-of-sight connectivity and maximum inter-robot distances (Zavlanos and Pappas 2007,
Reif and Wang 1999, Howard et al 2002b, Baxter et al 2007, Zou and Chakrabarty 2003,
Poduri and Sukhatme 2004, Batalin and Sukhatme 2002). These basic dispersion strategies
have been adapted or extended in several ways to increase the total sensor coverage area
or to reduce deployment time. For example, Zou and Chakrabarty (2003) combined po-
tential fields with disc-packing algorithms used for optimal sensor placement to improve
coverage from an initially random dispersion, but relied on a centralised and computation-
ally expensive algorithm. Social Potential Fields are promising but have several undesirable
limitations. Firstly, they require complex tuning of the force laws. For each field there are
usually four parameters (the coefficients and power exponents for attraction and repulsion)
and multiple fields are required for task oriented behaviour. Determining the dynamics of
such a system is polynomial-space hard, so determining the set of required force law pa-
rameters for a desired group behaviour is likely to be computationally unfeasible (Reif and
Wang 1999). This means the equilibrium steady-state cannot always be predicted, or the



system may converge to local-minima (Reif and Wang 1999). In comparison, our approach
does not require any complex parameter optimisation for functional operation. Additionally,
with Social Potential Fields, all robots remain in constant motion and slowly converge to
a steady-state. This is not the case with our approach, where most robots are in an effi-
cient static state passively attached to ceilings (see Sect. 3) rather than undergoing continual
costly motion. Finally, Social Potential Fields usually only achieve a static formation with
coverage area limited to the number of robots. Conversely, our proposed strategy dynami-
cally redeploys the robotic sensor network once an area is searched, thereby increasing the
coverage area (e.g., Liu et al 2005).

In another approach, Payton et al (2001; 2004) utilise digitally transmitted ‘“virtual
pheromone” messages to create gradients across the robot swarm, facilitating movement
coordination away from obstacles and into empty spaces. Virtual pheromones are a Swarm
Intelligence (Swa 1999, Dorigo and Birattari 2007) approach to multi-robotic coordination
inspired by ant foraging. Payton et al (2001) achieve local dispersion with attraction and
repulsion forces, but use pheromones to guide exploration over longer distances. The ad-
vantage of virtual pheromones is the potential to adapt to dynamic environments since the
pheromone gradients naturally adjust to disturbances. However, the approach has been crit-
icised for slow deployment (Howard et al 2002a). Pheromone robotics is promising but so
far no quantitative results have been published. Additionally, all robots undergo continuous
motion, not desireable with the limited autonomy of flying robots.

A different swarm search approach is presented by Nouyan et al (2008; 2009), which
deploys chains of visually connected robots into unknown environments. The robots form
a path connecting a ‘nest’ to a ‘prey’ object, facilitating simple navigation by embedding
robots in the environment, which is similar to our proposed approach. A limitation of Nouyan
et al’s approach is that it requires tuning several parameters which affect the probabilis-
tic behaviour of the system. These parameters require extensive environment- and robot
group size-dependent optimisation to attain best results. Furthermore, their approach uses a
stochastic search behaviour that may duplicate the searched area. The probabilistic genera-
tion of chains can also lead to unnecessary locomotion as chains randomly grow or shrink.
Because of the challenge of energy autonomy with aerial robots, we propose an efficient
systematic search strategy which also does not require parameter optimisation.

An efficient systematic incremental deployment algorithm is presented by Howard et al
(2002a). Robot sensor nodes are deployed strictly one at a time, making use of previously
acquired information from the sensor network to efficiently guide the subsequent robot to
an optimal location. This approach requires all sensor nodes to produce a map of free-space
which is shared, combined, and later processed into a map of reachable locations from which
an optimum can be selected. Howard’s incremental deployment scheme allows most robots
to remain static with only a single robot moving at a time into desired positions at optimal
speeds. The main disadvantages of this approach are that it is computationally expensive,
the deployment is slow and the nodes require accurate global positioning. Conversely, our
strategy has low computational complexity that is constant with respect to the environment
size and number of robots. It is entirely decentralised, does not require the exchange of large
amounts of data such as maps, and only relative-positioning sensors are required rather than
GPS. Furthermore, restricting deployment to a single robot at a time and waiting for it to ar-
rive at the desired location before deploying the next robot leads to slow group deployment.
We propose a compromise solution by continuously deploying a single robot at set time in-
tervals (inter-launch periods), which we refer to as temporal incremental deployment. This
temporal incremental deployment can be adjusted to find the optimal trade-off between cov-
erage time and energy efficiency for specific environments and task requirements.



Finally, most previous research involving flying robots in search tasks usually use GPS
in obstacle-free outdoor environments (e.g., York and Pack 2008, Hoffmann et al 2007, Ah-
madzadeh et al 2006, Flint et al 2002). Indoor flying robots usually use pre-installed 3-D
tracking cameras, such as the Vicon' system (e.g., Valenti et al 2007). Our approach utilises
an on-board relative-positioning sensor (Roberts et al 2009) to compensate for the lack of
global absolute positioning. Much research in controlling multiple flying robots often de-
pends on either centralised planners, global communication, or a priori information of the
environment or target distributions (e.g., Ahmadzadeh et al 2006, Flint et al 2002, Bryson
and Sukkarieh 2007). Our algorithm requires only local communication, decentralised pro-
cessing and does not require a priori environment or target information

3 Methods

In this section we first present robotic and environment assumptions. We then present an
overview of the algorithm, details of the search behaviour and finally the experiment set-up.

3.1 Assumptions

Robotic System: Realistic assumptions are made with respect to the limited sensing capa-
bilities, communication range and bandwidth, processing power and memory based on the
flying robots and sensors we are developing in our lab (Roberts et al 2007; 2008; 2009).
We assume the robots are equipped with short range distance sensors, e.g. infrared sensors,
in at least the cardinal directions (e.g., Roberts et al 2007). These sensors have a maxi-
mum sensing range S,; for our sensors S, = 3.5 m. The robots require relative-positioning
sensors providing the range and bearing between proximal neighbours as well as local low
bandwidth line-of-sight communication (e.g., Roberts et al 2009, Payton et al 2001, Pugh
et al 2009, Melhuish and Welsby 2002, McLurkin and Smith 2007). Communication band-
width requirements are minimal, with communication packets typically only 3 bytes giving
a maximum robot bandwidth of 240 bit/s with controllers running at 10 Hz. Communication
is assumed to be reliable within a certain range C, and nonexistent beyond, for our system
C, = 4.0 m. All actuation and sensing is subject to noise, which is modelled from character-
isation experiments (see Appendix B). Our flying robots have been developed to passively
attach to ceilings and power down their rotors, allowing a bird’s-eye view for extended pe-
riods (Roberts et al 2008). Alternatively, flying robots could merely land to conserve power.
We assume that all the robots can maintain a similar heading using compass and/or gy-
roscopic data, which is feasible with hovering robots that do not require yaw control for
directed flight. However, to date this has not been shown in hardware. Alternatively, robots
could simply utilise relative headings, calculated by robots sharing bearing information as
done by Pugh et al (2009).

Operating Environment: We focus on built environments characterised by straight branch-
ing corridors connecting rooms, an assumption true of most indoor environments. We define
corridors to consist of two approximately parallel walls separated by less than the maximum
distance sensor range S,. Hence, robots in such a closed space can perceive both opposing
walls. Conversely, all other areas such as rooms or wide hallways where robots cannot per-
ceive opposing walls are termed open space. Importantly, corridors contain junctions where

I www.vicon.com



the corridor branches into separate corridors that lead to environment subareas. Environment
cycles (loops) in corridors are handled automatically by our algorithm. As a simplification
we assume environments that are aligned in the cardinal compass directions, but the algo-
rithm is readily generalisable to more complex environments, as discussed in Sect. 5. Fig. 5
shows example environments.

3.2 High-level Description of the Swarm Search Strategy

All robots operate in one of two control states: “beacons” and “explorers”. Beacons are
static robots passively attached to the ceiling to conserve energy and form the robotic sensor
network. Explorers are actively flying, deploying into the environment being guided by the
beacons. Beacons sense their local environment and communicate with neighbouring bea-
cons to derive a “desired direction” signal to guide nearby explorers. Initially there is only
a pre-deployed base beacon. Explorers start clustered on the ground below the base beacon
and deploy consecutively, ascending to a designated altitude before following the desired
direction signal of the nearest beacon, and then flying from beacon to beacon across the
network. Beacons on the edge of the network next to unexplored space indicate adjacent
locations where a new beacon is required to expand the network. Explorers that arrive at
these locations can ascend to the ceiling, attach, and become beacons themselves. Thereby,
explorers disperse out and expand the network. In this manner, explorers can focus on the
complex task of flying while the beacons with their stable sensing can calculate the naviga-
tion required for efficient search. Beacons can revert back to explorers once a subarea has
been searched and can redeploy to unexplored areas, increasing the search area. Explorers
utilise their relative-positioning sensor with reference to the static beacons to stabilise flight.
The beacon network can compensate for the robots’ limited sensing and communication
capabilities, overcoming the lack of GPS or localisation ability and extending the commu-
nication range of the swarm. Since explorers merely follow the navigation signal of beacons
and beacons only process their local environment, computational requirements are low. In
the following we give a detailed description of the behaviours of beacons and explorers.

3.3 Beacon Behaviour

Here we describe properties of the beacon network topology, how communication routing
information is used for simple navigation, and summarise the search algorithm.

Beacon Network Topology: 1t is important that the robots form a network of beacons with a
topology that fulfils certain requirements. We wish to maximise the beacon sensor coverage
and reduce the number of robots required to sense an area. Importantly, beacons must leave
no gaps in their sensor coverage and maintain communication with neighbours given the
limited reliable sensing and communication ranges (S, = 3.5 m and C, = 4.0 m). Therefore,
we aim to separate beacons by an interspace distance 7, ~ 3.0 m, less than the sensing and
communication ranges (I, < S, < C,), and form a regular square lattice with each beacon
maintaining communication with up to 4 neighbours in the cardinal directions (see Fig. 1).
This regular topology requires fewer beacons to cover an area compared to a random dis-
tribution and maintains a high degree of uniformity in inter-node distances. This uniformity
reduces interference between beacons allowing a reduction in communication power and,
therefore, ensures a longer system lifetime (Heo and Varshney 2005). Beacons that detect
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Fig. 1 Beacons are spaced to minimise sensor overlap and maintain communication with neighbours given
the limited sensing and communication ranges. Frontier beacons are shown on the network edge next to empty
space, while propagating beacons are located in the network interior. Forwards (F) and reverse (R) hop-counts
are shown. Following the gradient of increasing reverse hop-counts leads to an empty space where a beacon
is required, while following decreasing forwards hop-counts leads to the base

two opposing walls with their distance sensors closer than 3.0 m form “corridor beacons”,
otherwise they are “open space beacons” (as opposed to the closed space that exists in cor-
ridors), see Fig. 1. When beacons are located along corridors their sensory range S, ensures
that only a single chain of beacons is required to span the corridor. Beacons on the edge of
the network are called “frontier beacons”, while beacons surrounded by neighbours or walls
are called “propagating beacons” (see Fig. 1).

Hop-count Gradients: An important mechanism for our robot deployment strategy depends
on the hop-counts of messages propagated through the robot beacon network. Hop-counts
are integers that indicate the number of nodes through which a communication packet has
been routed in a network (Perkins and Royer 1999). The hop-count of a communication
packet indicates the distance from the robot node that sent the message, if the robots are ap-
proximately uniformly spaced as with our beacon network. This is useful to find the shortest
path across the network for navigation and exploration purposes (Li et al 2003, Payton et al
2004) and is equivalent to a distributed Dijkstra’s algorithm (Dijkstra 1959), which provides
the shortest path between two nodes in an undirected graph. The hop-counts create a gradient
across the network which can be followed forwards or backwards. We create two different
hop-count gradients with different properties. The first, termed “forwards” gradient, is cre-



ated by messages continually emitted from the base beacon, starting with a hop-count of
1. These messages are received by neighbouring beacons and the hop-count is incremented
and propagated outwards away from the base towards the network edge (see Fig. 1). This
gradient provides a direction leading away from the base if followed in increasing order,
or towards the base if followed in decreasing order. The second hop gradient we refer to
as a “reverse” gradient since this emanates from frontier beacons on the network edge with
surrounding empty space and decrement, arbitrarily from 127, backwards (see Fig. 1). Con-
versely to the forwards gradient, the reverse gradient always provides the shortest path to
the nearest empty space in unexplored areas of the environment, but not necessarily to the
base. Further details of the calculation of hop-counts are given in Appendix A.

Search Algorithm: Beacons are tasked with signalling a desired direction such that nearby
explorers are guided to empty space in unexplored areas of the environment (discussed later
in Sect. 3.4). The desired direction signal is one of (North,East,South,West) and points
either towards a neighbouring beacon, or an empty space where a new beacon is required.
Beacons use their relative-positioning and distance sensors for local sensing combined with
simple information such as hop-counts of neighbouring beacons from the communication
network to select the desired direction. In this way, the local sensing of the beacon is com-
bined with information distributed through the network.

We propose an efficient systematic search that exhaustively searches a subarea of the
environment before searching other areas by applying depth-first search (DFS) (Cormen
et al 1990). DFS is a graph-traversal algorithm which explores as far as possible along each
branch before backtracking and searching other branches. For robotic search, this entails
deploying robots serially down a single corridor branch, instead of deploying across mul-
tiple corridor branches in parallel, as would be the case with breadth-first search. Corridor
branches are searched in clockwise order. DFS is utilised because it has minimal space com-
plexity (Cormen et al 1990), so it maximises the branch depth that can be searched with a
chain of robot beacons, thereby maximising search area. DFS can search cyclic graphs (and
corridor environments) as long as a memory of visited branches is maintained. The beacons
in corridor junctions act as an embedded memory ensuring no infinite loops are possible.
Informed search techniques are not possible without heuristics based on a priori informa-
tion on the target distribution. However, the proposed algorithm could be extended to select
corridors that have a higher probability of leading to a target if such information is known.

In open spaces, we want to ensure all of the space is completely covered by the bea-
con’s sensors as quickly as possible. This is achieved with a uniform dispersion behaviour
where explorers are directed to the nearest empty space. This outward expansion of the
network in corridors and open space is referred to as the deployment phase. Once an area
has been completely searched, the beacons detach and redeploy as explorers to search other
unexplored areas, the redeployment phase. The beacons utilise the forwards and reverse hop-
count gradients to select appropriate desired directions and achieve efficient deployment and
redeployment across the beacon network, as explained below:

Deployment phase:
— In corridors, the increasing forwards hop-count gradient is used to find the direction
away from the base to guide explorers to the edge of the network.
— In open spaces, the increasing reverse hop-count gradient is used to guide explorers
to the nearest empty space.
Redeployment phase:
— In corridors, the decreasing forwards hop-count gradient is used to guide explorers
backwards to the previous junction, or towards the base beacon.
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are labelled as either obstacle, empty space or beacon. If a direction has an obstacle, it is labelled as blocked,
else unblocked. Since the beacon labelled n, with hop-count 5 north of beacon b with hop-count 4, has an
opposed desired direction D pointing south (desired direction D opposes relative vector N, D ~ —N) and has
a higher forwards hop-count (5 > 4), beacon b stores the north direction as searched. All searched directions
in memory are labelled as blocked. Redeployment: The beacon with forwards hop-count 8 is in a dead-end
and has the highest forwards hop-count, therefore it signals a desired direction pointing backwards to the
neighbour with the lowest forwards hop-count. It can then detach and become an explorer, ready to deploy to
unexplored areas. The rest of the beacons in this corridor branch will detach recursively

— In open spaces, the decreasing forwards hop-count gradient is also used, guiding
explorers to the exit of the open space, or towards the base beacon.

3.3.1 Beacon Controller

Here we describe the beacon controller from sensing to actuation as shown in Fig. 2.

Sensing: Beacons continuously monitor for neighbouring beacons or obstacles such as
walls in the four cardinal directions using relative-positioning and distance sensors. A sim-
ple mapping function then labels each direction as either: 1) beacon, 2) obstacle, or 3) empty
space. In corridors, beacons record whether a direction has been previously searched to pre-
vent search duplication. A beacon b in a corridor considers a direction as searched when
a neighbour beacon n, with a forwards hop-count higher than its own forwards hop-count,
signals a desired direction D pointing backwards towards beacon b: D >~ —N, where N is the
relative-position vector pointing from beacon b to beacon n (see Fig. 3). All searched direc-
tions are stored in memory. All searched directions and those with an obstacle are labelled
as blocked, otherwise as unblocked. Beacons in open space label all cardinal directions as
unblocked. An example labelling is depicted in Fig. 3.
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Deployment Phase Selection: The deployment or redeployment phase of beacons is selected
in the Behaviours stage (see Fig. 2). Beacons in corridors determine the deployment phase
by checking whether all neighbour beacons with a higher forwards hop-count are labelled as
blocked. If this is true then there are no more unexplored directions and this beacon enters
the redeployment phase, otherwise it continues in the deployment phase. The redeployment
phase will start when a beacon detects it is in a dead-end, which is when an enclosed space
is sensed with the distance sensors and all neighbouring beacons have a lower forwards hop-
count (see Fig. 3). Beacons in open space determine the deployment phase by checking if
their reverse hop-count equals 0. A reverse hop-count of 0 indicates that there is no frontier
beacon (see Fig. 1) present emitting a reverse hop-count of 127, since without this signal
the reverse hop-counts will automatically reduce to 0, and therefore no more beacons are
required in this open space. Thereby, a reverse hop-count of 0 indicates the beacon is in the
redeployment phase. Otherwise, it is in the deployment phase.

Deployment Phase: In the deployment phase, if an unblocked empty space direction ex-
ists then the first such direction in clockwise order from North is selected as the desired
direction. Nearby explorers will perceive the desired direction signal and, using the explorer
behaviour described in Sect. 3.4, will travel to the neighbouring empty space and become a
beacon. This results in a local expansion of the network at the frontier beacons. Propagating
beacons signal a desired direction pointing to neighbouring beacons guiding explorers to the
network edge. This is achieved by assigning the desired direction to point to the neighbour
with the highest hop-count that is unblocked; forwards hop-counts are used in corridors and
reverse in open spaces (see Fig. 2).

Redeployment Phase: In the redeployment phase, dead-end beacons (see Fig. 3) signal
a desired direction pointing backwards towards the neighbour with the lowest forwards
hop-count. This indicates to the preceding beacon that this direction has been completely
searched. The direction is stored in memory and labeled as blocked, as described earlier.
This information is propagated backwards recursively to preceding beacons which will en-
ter the redeployment phase and also signal a desired direction pointing backwards to their
lowest forwards hop-count neighbour. These backwards desired directions also guide any
nearby explorers to the previous corridor junction where they can then be guided to new un-
explored locations. Open space beacons act similarly and signal a desired direction pointing
to the neighbour with the lowest forwards hop-count. Beacons in the redeployment phase
can revert back to explorers and detach from the ceiling to redeploy to unexplored envi-
ronment areas. This occurs only when all neighbours have a lower or equal forwards hop-
count, thereby preventing breaking communication links with neighbours (see Fig. 3). All
beacons wait the designated inter-launch period before detaching to gain the same benefits
as the incremental deployment (described in Section 3.4) and additionally ensure there are
no proximal explorers in order to avoid potential collisions. Once the environment is fully
searched, robots can incrementally return to the base area and land if required.

3.4 Explorer Behaviour

Explorers start clustered on the ground below the base beacon. They take-off one at a time
every t seconds, where ¢ is an adjustable inter-launch period, typically in the range 3-24 s.
We call this behaviour temporal incremental deployment. Longer inter-launch periods slow
deployment but importantly decrease the density of flying robots reducing collision risks and
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increasing search efficiency by exploiting more information from the deployed sensor net-
work. This is because, as the beacon network expands, it senses more of the environment.
Once a subarea has been completely searched, this is detected and the beacons redeploy
to new unexplored areas (see Sect. 3.3.1: Redeployment). Before this redeployment com-
mences there may be multiple explorers flying into this subarea where they are not required,
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resulting in unnecessary flight. Increasing the inter-launch period decreases the number of
concurrent flying explorers, thus reducing unnecessary flight (see results in Sect. 4).

3.4.1 Explorer Controller

To implement the incremental deployment, explorers wait for the elapsed time since the start
of deployment to surpass their ID (an integer 1...N) times the inter-launch period. They
take-off and ascend to a designated altitude where they then follow the desired direction
signal of the nearest beacon, which is initially the base beacon. As explorers fly towards a
neighbouring beacon, this neighbour will become the nearest, and so on.

Fig. 4 top shows the flowchart of the explorer controller. The relative-positioning sensor
is used to determine the vector N pointing towards the nearest beacon. Explorers implicitly
know the desired interspace distance I, therefore vector D is created pointing from the
nearest beacon in the desired direction with length /.. Vectors N and D combine to form
the desired relative location vector: L = N + D (see Fig. 4 bottom). Explorers continuously
compute the vector L for each control time step. Explorers follow the desired directions
and use their distance sensing for local collision avoidance. Collision avoidance is achieved
with a potential field behaviour (Khatib 1985) that creates a vector C pointing away from
the closest detected obstacle with magnitude inversely proportional to the obstacle distance,
similar to what we have previously implemented with our robot prototype (Roberts et al
2007). The magnitude of the collision vector was empirically tuned to minimise collisions
without adversely effecting the algorithm’s performance. When the explorer is at the mid-
point between obstacles, the collision avoidance vector reduces to zero magnitude within
the local-minima of the potential field. The desired relative location vector L is linearly
added with the weighted collision avoidance vector C to create the desired translation vector
T: T = L+ C. The translation vector T is then sent to the flight computer which performs
altitude and attitude stability control and then provides desired pitch and roll forces to a
motor controller. However, when the magnitude of the translation vector T is lower than
a threshold, |T'| < &, the explorer ascends to the ceiling, attaches and becomes a beacon.
This occurs when the nearest beacon’s desired direction vector D approximately opposes
the nearest beacon vector N and there is no collision response: D ~ —N and |C| — 0.

3.5 Experimental Methodology

To verify the proposed algorithm and to explore the effects of different inter-launch periods
we have conducted extensive simulation analysis. Here we describe the simulator, generation
of test environments, and performance metrics.

Dynamics Simulation: Experimental analysis has been conducted with results from a 3-D
dynamics simulator with a simple model that applies appropriate forces to the robot body
with Gaussian noise. The resultant behaviour includes momentum and drag effects. Details
are described in Appendix B.

Test Environments: Because of the hybrid nature of our strategy, we individually tested the
performance in corridors, in open spaces with obstacles and in combination (see examples
in Fig. 5). Open space environments were randomly generated 5x 5 cellular grids with each
cell being 3 m x 3 m. Low, medium and high obstacle densities were generated with 5, 7 or
10 obstacles, respectively. Obstacles were randomly placed on the grid while ensuring that
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all free-space was accessable and no corridors were inadvertently generated. Corridor envi-
ronments were similarly generated from a larger grid with 40 connected 3 m x 3 m corridor
cells, creating 120 m of corridor. The amount of corridor branching was adjusted proba-
bilistically, creating 3 levels of environment complexity termed low, medium and high. The
mean branch count (and std. dev.) was empirically measured at 3.56 (1.23), 5.82 (1.07), and
9.5 (1.63), respectively for low, medium and high complexity environments. Environments
with a greater branching naturally have shorter corridors on average since the total corridor
length was kept constant. The mixed environments with both corridors and open spaces were
generated with a combination of these methods and consisted of two rooms of 3 x 3 cells
(9 m x 9 m) and 22 corridor cells, so approximately half the environment being corridor and
half open space. Medium complexity corridor branching was used to generate the corridors.

20 robots were available to deploy in corridor and mixed environments, clustered in a
random location. Beacons were separated by the interspace distance . of 3.0 m. Therefore,
in mixed and corridor environments with a static deployment of beacons, only approximately
50% of the area could be covered with 20 robots (201x2(3).0 ). However, due to redeployment, the
possible coverage was greater. In low, medium and high obstacle density open environments,
15, 18 and 20 robots, respectively, were available, sufficient for complete coverage.

Performance Metrics: We measured coverage time and area, collisions and total swarm
energy consumption. Coverage time is the time taken to complete the search of the envi-
ronment or for completion of the algorithm. Coverage area is defined as the percentage of
the environment that is covered by the sensors of all beacons at least once. We assume a
fictitious sensor such as a camera is used to detect targets, which has a field-of-view cover-
ing a circular area with radius equal to the defined sensor radius S,. Collisions is the total
sum of collisions both between robots and with obstacles, calculated using the simulator
physics engine (see Appendix B). A collision between 2 robots is counted as 2 collisions.
Total swarm energy consumption is the sum of the energy used by each robot calculated
using the energy model described in Appendix C. We measure the total energy each robot
spends flying as an explorer, attached to the ceiling as a beacon or resting on the ground
before launching. We compared different inter-launch periods (Sect. 3.4) to understand the
effect on mean coverage time, collisions and energy efficiency. 100 trials were repeated for
each condition with random environments and starting locations.

4 Results

Corridor Environments: Due to our strategy’s redeployment mechanism, the mean coverage
area is significantly higher than the approximately 50% expected for static deployment; also,
it increased with increasing environment complexity (79.4%, 90.1%, and 94.0%, averaged
across all inter-launch periods). This increase is due to shorter average corridor lengths with
increased branching as the corridor complexity is increased. With shorter corridor lengths,
the robot swarm is more likely to reach the end of more corridors before redeployment is
required. The percentage of trials achieving complete coverage at low, medium and high
corridor complexity was 38.5%, 64.2% and 74.3%, respectively.

We compared the mean coverage time, coverage area, total swarm energy and collisions
for 6 different inter-launch periods (6, 8, 10, 12, 18 and 24 seconds, selected from prior
data-exploration experiments) and the 3 corridor complexity levels (low, middle and high)
using multiple 6 x 3 2-way Analysis-of-Variance (ANOVA) tests. As expected, increasing the
inter-launch period increases the coverage time (F =510.11, df =5, p < 0.001), as shown in
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Fig. 5 Examples of randomly generated test environments. Top Left: High complexity corridor environment.
Top Right: Medium complexity corridor environment. Middle Left: Low complexity corridor environment.
Middle Right: Open Space environment with medium obstacle density Bottom Left & Right: Mixed environ-
ments
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Fig. 6, but has no significant effect on the mean coverage area (F = 1.61, df =5, p > 0.15).
Importantly, increasing the inter-launch period significantly reduces the total flight time of
the swarm (F = 67.29, df = 5, p < 0.001), and the number of collisions (F = 8.47, df =
5, p < 0.001), both shown in Fig. 6. The increase in inter-launch periods results in larger
distances between flying explorers, reducing inter-robot collisions. The slower deployment
also results in increased exploitation of the sensed environment through the beacon sensor
network reducing the total swarm flight time. This has important effects on the swarm energy
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consumption which significantly decreases with increased inter-launch periods (F = 33.28,
df =5, p < 0.001). Fig. 7 shows the different components of the energy model (see Appendix
C) and the corresponding reduction in swarm energy consumption due to the reduction in
flight energy, despite the increase in energy cost of beacons and robots on the ground. The
mean total swarm flight time is a strong predictor of the mean swarm energy consumption
with a Pearson’s correlation coefficient of r = 0.974 (df = 16, p < 0.001).

We additionally examined environmental complexity effects with varying amounts of
corridor branches. Decreased corridor complexity significantly increased coverage time (F
=20.47, df =2, p < 0.001) and total swarm energy consumption (F = 25.29, df =2, p <
0.001), but decreased mean collisions (F = 9.01, df =2, p < 0.001) and mean coverage area
(F=160.48, df =2, p < 0.001). Lower corridor complexity results in an increase of average
corridor length. Long corridors are less likely to be covered than short corridors because
of the maximum length that can be spanned by a given number of connected robots. Thus,
coverage area decreases with reduced corridor complexity. Similarly, the increased average
corridor length in less complex environments requires longer to traverse. This increases the
mean coverage time and mean total flight time, thus increasing the swarm energy consump-
tion. Simpler environments with fewer junctions reduced collisions with the environment.
All interactions between corridor complexity and launch periods on mean coverage time, to-
tal flight time, energy and collisions were comparatively minor but statistically significant.

Fig. 6 shows the time required to achieve complete coverage (to ensure constant cov-
erage area), total swarm flight time and mean collisions, against the 6 inter-launch periods
(6-24 s) for the 3 different corridor complexities (low to high). Comparing inter-launch pe-
riods of 24 and 6 s within the high complexity corridor environment the total swarm flight
time was reduced by 41.5% and the mean collisions reduced by 93.9%, while the mean cov-
erage time increased by 90.5%. Fig. 7 shows that increasing the time between consecutive
robot launches significantly reduces the swarm energy consumption by 30.8%. This implies
the swarm could search a significantly larger environment before running out of energy, or
prolong the time the beacon network could perform monitoring tasks. The other corridor
complexity environments show similar patterns but with decreased magnitude.

Open Space Environments: We compared 5 different inter-launch periods (3, 4, 5, 6 and
12 s) with 3 amounts of obstacles (5,7,10). Mean coverage area across all conditions was
99.7% with no significant variance across different test conditions. Similar to the corridor
environments, increasing the inter-launch periods significantly increased the coverage time
(F =9528.5, df =4, p < 0.001), but decreased total flight time (F = 262.38, df =4, p <
0.001) and collisions (F = 23.5, df =4, p < 0.001), when normalised for the varying swarm
size (15, 18 and 20 robots) with different obstacle densities. The reduction in total swarm
flight time with increased inter-launch periods also significantly reduced the swarm energy
consumption (F = 83.65, df = 4, p < 0.001). Obstacle density significantly effected the
normalised total flight time (F = 61.23, df =4, p < 0.001) and swarm energy (F = 115.07,
df =4, p < 0.001) but not collisions (F =0.17, df =4, p > 0.8).

Fig. 8 shows the mean time required to achieve complete coverage, mean total swarm
flight time and mean collisions against the 5 inter-launch periods for the 3 obstacle densi-
ties. Comparing the inter-launch period of 12 s with 3 s within the high obstacle density
environment, mean total swarm flight time is reduced by 29.9% and correspondingly the
mean swarm energy consumption reduced by 16.4%, the mean collisions reduced from 0.32
to 0.02, while the mean coverage time increased by 149.7%. This is a significant increase
in mean coverage time. However, the asymptotic nature of the trend shown in Fig. 8 indi-
cates that the greatest decrease in total flight time, for all obstacle densities, occurs when
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effect of reduced flight energy. However, the increase in ground and beacon energies at larger inter-launch
periods can reduce the efficiency gain and can eventually reverse any energy savings, as can be seen in the
medium obstacle density case

increasing the inter-launch period from 3 s to 6 s and not from 6 s to 12 s. When comparing
the 3 s to 6 s launch periods, the mean total flight time is still reduced by 15.0% while the
total coverage time increases by only 44.9%. Moreover, the increased energy cost of the
ground and beacon energies with increased inter-launch periods can result in an increase in
swarm energy consumption when the launch period increases from 6 s to 12 s, creating a
convex function, as shown in Fig. 9 with the medium obstacle density environment. This
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mean total energy consumption and the constituent mean flight, ground and beacon energies of the swarm;
against 6 inter-launch periods in mixed environments. Standard error bars shown. Increasing the inter-launch
period significantly reduces the mean total energy cost of the swarm search

indicates the existence of an optimal inter-launch period which minimises the swarm energy
consumption. However, such an optimum is dependent on the environment.

Mixed Environments: We compared 6 different inter-launch periods (6, 8, 10, 12, 18 and
24 seconds). Mean coverage area did not vary significantly (F = 1.59, df = 5, p = 0.16). In-
creasing the inter-launch periods significantly increased the mean coverage time (F = 99.85,
df =5, p < 0.001) as expected, and significantly decreased mean total swarm flight time (F
=28.75,df =5, p < 0.001) and mean collisions (F = 22.34, df =5, p < 0.001). The reduc-
tion in mean total swarm flight time with increased inter-launch periods also significantly
reduced the mean swarm energy consumption (F = 16.52, df = 5, p < 0.001).

Fig. 10(a) shows the mean total swarm flight time, mean collisions and the mean cov-
erage time for the 6 launch periods. Comparing the inter-launch period of 24 s with 6 s,
the mean total swarm flight time was reduced by 34.0% and the mean collisions reduced by
86.4%, while the coverage time increased by 70.5%. Fig. 10(b) shows the mean total swarm
energy consumption and the corresponding flight, beacon and ground energies. As with the
other environment types, the increase in inter-launch period from 6 s to 24 s significantly
reduced the energy consumption by 25.3% due to the reduction in energy spent in flight.

Theoretical Results: We have also derived some basic theoretical results to analyse scalabil-
ity effects of the swarm algorithm. The worst-case coverage area A, is linearly proportional
to the beacon separation distance I and the swarm size n: A, o< nl,.. For example, in long cor-
ridors without any junctions the robot beacons can at worst cover a corridor length of n/,.
However, in the best-case the length of corridor that is searchable increases quadratically
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with the number of robots in corridors with numerous junctions, A o< (nI,)z. This can be in-
tuitively derived from the area which can be covered by a linear chain of robots separated by
I that rotates around the first robot in the chain, resulting in a circular coverage area given by
n(nl,)z. This result is constrained by the possible architecture of indoor environments but
indicates the beneficial scaling properties of the proposed algorithm, considering that the
processing and memory costs are constant and independent of environment or swarm sizes.
With respect to coverage time and energy efficiency, there is a complex interaction between
environment structure, inter-launch period and robot velocity precluding simple predictions,
but this is a focus of future work.

With respect to the energy efficiency of ceiling attachment, if the robot beacons had to
hover in position rather than attach to the ceiling, the swarm search would have required
3.6x more energy, based on the results for mixed environments with a 6 s launch period.
Different environment types and complexities exhibit similar efficiency gains. This high-
lights the importance of ceiling attachment for search or surveillance with aerial robotics.

5 Discussion

The presented algorithm is limited to regular environments aligned in the cardinal compass
directions as a simplification. However, this simple approach can be generalised to more
complex environments. For example, if the robots can measure distances in a higher angular
resolution than just the 4 cardinal directions, such as with a rotating distance scanner, then a
more detailed analysis of the beacon’s local environment is possible, allowing the perception
of oblique corridors and irregularly shaped environments. This can still be achieved with the
direction labelling scheme described in Sect. 3.3. The desired direction signal must increase
angular resolution and perhaps be generalised into an appropriate coarsely encoded 2-D vec-
tor. Importantly, such a vector is still communicable with low-bandwidth communication,
and computation and memory utilisation remain minimal.

As well as generalising to more complex environments, the proposed approach is suit-
able for most hover-capable flying robots. The main specialised feature of our robots is their
ability to attach to ceilings (Roberts et al 2008). However, various perching mechanisms are
being researched (e.g., Desbiens et al 2009) using technologies such as gecko-inspired elas-
tomer adhesives (Unver et al 2006). However, flying robots could simply land on the ground
to become a beacon, but loosing the advantage of maintaining a bird’s-eye view.

The proposed algorithm requires standard sensory and processing systems that are typi-
cal for small mobile robots. However, the proposed approach also depends on an appropriate
relative-positioning sensor. Many similar sensors exist (e.g., Payton et al 2001, Pugh et al
2009, Melhuish and Welsby 2002, McLurkin and Smith 2007) and alternative technologies
are possible using ultrasound (Bisson et al 2003) or computer vision (Nakamura et al 2003),
etc. In nature, birds often use visual processing in order to perceive the position of neigh-
bours during tasks like flocking, achieving high precision spatial coordination even under
highly dynamic flight (Ballerini et al 2008). Our proposed infrared relative-positioning sen-
sor (Roberts et al 2009) provides a simple robust solution with low processing requirements.

So far we have not examined the effects of robot failure. Explorer failure should merely
reduce the searchable area with an effect proportional to the swarm size (see Sect. 4: The-
oretical Results). However, beacon failure may result in disruption to the communication
network. There should be little effect in open spaces where multiple communication path-
ways are available and sensor and communication ranges overlap sufficiently. However, in
corridors with only a single chain of beacons, beacon failure could lead to failure of the
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whole communication network. The effect of this would be to disrupt communication links
to the base robot, breaking navigation paths to or from the base. To mediate this, the failure
should be detected via an unexpected break in communication with a neighbour. The failed
beacon can then be replaced by either a nearby explorer, or a beacon from the edge of the
robot network, which could be guided by an additional hop-count gradient signal emanat-
ing from the neighbour of the failed beacon. Efficiently replacing failed nodes in a sensor
network has been extensively examined by Wang et al (2005). With regards to errors in
the desired direction signals of beacons, currently no explicit checks are made in order to
prevent deadlocks or local cycles (where following the path of desired directions returns an
explorer to the starting beacon). However, these could be detected by either explorers having
a memory of visited beacons and associated desired directions, or communication packets
could be routed following the desired directions and the communication path logged in the
packet. If the explorer or communication packet continuously reaches the same beacons via
the same path then a cycle exists, which can then be corrected. Importantly, environment
cycles in corridors are handled automatically, see Appendix A.

We have shown the effects of varying the inter-launch period on coverage time, colli-
sions and swarm energy cost. From the results (Figs. 6 to 10(b)), the general trend clearly
shows that increased inter-launch periods reduce collisions and swarm energy cost but with
a trade-off with increased coverage time. Interestingly, the effects are more pronounced in
more complex environments since the swarm will redeploy to new environment subareas
more frequently. There exists an optimal inter-launch period that minimises swarm energy
cost since the asymptotic reduction of energetic flight quickly levels off, while the increase
in coverage time increases the energy robots use as beacons. This optimal inter-launch pe-
riod is dependent on the environment type and complexity. Furthermore, the optimum will
be application dependent with a specific trade-off in coverage time for reduced collisions
and energy cost. For a specific environment the optimal inter-launch period can be easily
calculated given the relative weightings for coverage time, collisions and energy. Cubic in-
terpolations of the mean coverage time, collisions and energy for the specified environment
can be generated to create high resolution smooth respresentations. These interpolations
can be normalised to [0, 1] and the linear weighted sum computed with the specified rela-
tive weightings. The location of the minimum of this weighted sum provides the optimal
inter-launch period.

Finally, ongoing work aims to further improve energy efficiency using different deploy-
ment schemes, flight-path optimisation and heterogeneous sensing. One possibility for in-
creasing efficiency is an adaptive group-size mechanism that automatically adjusts the num-
ber of deployed explorers based on implicit social cues such as perceived robot density. Such
a mechanism may better adapt to different environments and continuously adapt at runtime,
compared with the temporal incremental deployment proposed in this paper.

With the promising results obtained in simulation, we aim at transferring the algorithm
to real robots. So far we have demonstrated autonomous indoor operation of a single quadro-
tor flying robot including much of the important low-level control required to realise the pro-
posed algorithm. Roberts et al (2007) presented a prototype robot performing autonomous
stability control, take-off, landing, and altitude control with a mean absolute error of under
27 mm. A collision avoidance behaviour similar to what is used in the proposed algorithm
has also been successfully demonstrated as well as a method for controlling platform drift
by centering in a room using the distance sensors (Roberts et al 2007). Furthermore, we
have developed reliable autonomous ceiling attachment and detachment control (Roberts
et al 2008), as used by the explorers becoming beacons. The energy efficiency of attachment
to the ceiling and the accuracy of the energy model of the motor system have been quanti-
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tatively tested, with a predicted flight endurance error of less than 1% (Roberts et al 2008).
The communication protocol and control and processing of the distance scanner have been
successfully demonstrated. In addition to the above work we have developed a custom-made
infrared relative-positioning sensor suitable for flying robots (Roberts et al 2009), based on
the technology presented by Pugh et al (2009). This sensor is important for the spatial co-
ordination used in the proposed algorithm and to control the platform drift associated with
hovering robots (Hoffmann et al 2007). This is part of current research, so far we have proto-
typed the anti-drift controller within simulation and are awaiting new flying robot hardware
before commencing testing. Once this has been achieved, all important low-level flight con-
trol will be complete and we then aim to develop the proposed algorithm on the novel flying
robots we are developing. Further details, photos and videos of the progress in hardware
development can be found on our website?.

6 Conclusions

We presented a novel method to realise indoor search by swarms of flying robots. Utilising
flying robots offers the advantage of easily overcoming obstacles and, therefore, it allows
fast terrain coverage. However, GPS, as commonly used with outdoor flying robots, cannot
be used indoors. In this paper we presented an algorithm that solely relies on local sensing
and local communication. We proposed the self-deployment of a network of robot beacons
which facilitates simple search and navigation without the need for high-bandwidth global
communication, a priori world models, synchronisation, absolute positioning, or odometry
sensing. Long range communication is provided using the robots’ short range communica-
tion by deploying a communication and sensor network of locally connected robot relays.
To achieve autonomous indoor aerial robotic control, we avoided utilising the commonly
used methods of absolute positioning with external 3-D tracking sensors (which requires
prior deployment) or complex visual processing (not available on-board and which would
require appropriate illumination). Instead, we proposed to use the local on-board relative-
positioning sensors of nearby “beacon” robots to directly control flight.

To establish a sensor network with flying robots, we proposed that robots can switch
from active flying to a passive surveillance mode. In our case robots could attach to the
ceiling and power down their rotors. This increases operational endurance, which is usually
constrained by the limited flight time of flying robots. To further reduce energy consumption,
we introduced an incremental deployment scheme. Robots are launched consecutively, sep-
arated by an adjustable inter-launch period. We have shown that the algorithm can success-
fully search indoor environments and that increasing the inter-launch period significantly
reduces the swarm energy consumption by up to 30.8% in our simulations. Furthermore,
incremental deployment reduces robotic density and hence the risk of collisions.

Our results indicate that there may be a trade-off between energy efficiency and search
time. However, this can be optimised with the relative importance of each variable being
application specific. In some time-critical scenarios the importance of energy efficiency may
be small relative to coverage time, but it is clear that if the robots do not have sufficient
energy to complete the task then energy efficiency becomes paramount.

2 http://lis.epfl.ch/research/projects/Eyebot
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Appendix

A Hop-Counts
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Fig. 11 Forwards hop-counts in cyclic environments. Top: If the cycle is shorter than the length coverable by
the swarm then the network self-connects and correct hop-counts are propagated back. Bottom: If the cycle is
longer than can be covered by the swarm then the network will redploy and search from the other direction

Hop-counts are calculated using small communication packets sent through the relative-positioning sen-
sor. This is used to ensure neighbouring beacons have numerically adjacent hop-counts (i.e.£ 1). From a
graph-theoretic point of view, if each beacon is considered a vertex in a graph representing the beacon sensor
network, then the forwards hop-counts are simply the minimum number of edges between each beacon and
the base beacon. Conversely with reverse hop-counts and frontier beacons. Hop-counts are continuously up-
dated to ensure the shortest path is discovered. This is important in open space areas where the shortest path
to the nearest frontier beacon constantly changes as the network expands. In cyclic corridor environments,
if the beacon network self-connects, the terminal beacons may initially have disjoint hop-counts (see Fig.
11 top). However, due to the dynamic hop-count updates, the correct values are quickly propagated through
the network (see Fig. 11 top). If the cycle is shorter than the length coverable by the swarm, the network
self-connects, the correct hop-counts are propagated back and the shortest path to the base is ensured (Fig.
11 Top). Cycles longer than can be covered by the swarm will result in the beacon network redeploying and
searching from the opposite direction. If the corridor length is less than twice the distance coverable by the
swarm the complete cycle is searched (Fig. 11 Bottom); however, the shortest path from a target to the base
may not be guaranteed. Cycles too long to be fully searched when searched from both directions can be sim-
ply considered as two separate corridors that are both too long to cover. These results hold even if the cycle
connection occurs in a corridor junction.

B Flight Dynamics

A custom made 3-D dynamics simulator was developed in order to conduct experimental analysis. Appropri-
ate forces are applied to a rigid robotic body. An input force vector F of the robot is calculated and applied to
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the underlying dynamics simulator, for which we use the Open Dynamics Engine? (ODE). ODE is also used
to detect and measure the number of collisions, as well as to provide the rigid-body collision response. The
collisions are direct point-point collisions. Attitude and yaw-rate are assumed to be stabilised by a low-level
stability controller such as presented by Gurdan et al (2007). Gaussian noise was applied to the body state to
simulate imprecise dynamics and platform drift, with std. dev. set empirically (2.5 cm) as the platform has
not yet been characterised. However, the altitude control precision was modeled from previous work (Roberts
et al 2007). The input vector is given by:

F=F,+F+F+& , (1)

where €y is a Gaussian noise vector for the roll, pitch and thrust standard deviations: ey ~ .#7(0, ). Platform
weight Fg, desired control force F. and air-drag Fy vectors are calculated as follows. The platform weight
vector is simply given by F, = m- g. The control force vector is formed from the desired pitch f, and roll f,
forces, calculated from the explorer algorithm (see Sect. 3.4), combined with the altitude control thrust f;,
from a proportional-differential controller with an a priori command to compensate the platform weight:

fp
Fe= (ﬁ») . 2
fa

The air-drag force vector is calculated using the standard quadratic equation suitable for flying systems
with a relatively high Reynolds number:

1
Fy= —EpvaCdO , 3)

where p is the specific air mass-density, v is the scalar translational air-speed of the platform, A denotes the
estimated frontal reference area, Cy is the estimated drag coefficient and ¥ is the normalised velocity vector.
Sensor noise was modeled as Gaussian noise with std. dev. measured from characterisation experiments:
2.5 cm for the ultrasound altitude sensor and 5 cm for infrared distance sensors. The relative-positioning
sensor uses values from (Pugh et al 2009): at 3.0 m the range std. dev. is 17 cm and bearing std. dev. is 6.1°.

C Energy Model

In order to measure the swarm energy consumption, a simple energy model suitable for flying robots was
developed. Various energy models have been proposed for terrestrial robots (e.g., Mei et al 2005). However,
due to the substantial differences in dynamics, a new model was developed based on our previous work
(Roberts et al 2008), which showed a mean error of only 0.97% in predicting flight endurance. We categorise
the robot power consumption into two parts: the electrical motor power E,, required for flight, and the elec-
tronic power E, required to power sensors, processors and communication. From (Roberts et al 2008), we
assume a nominal hovering motor power consumption of E,, = 110 W. To formulate the electronics power
model, many components have been characterised (relative positioning sensor, CPU, flight computer) and
manufacturer data-sheets used elsewhere (infrared distance and ultrasound altitude sensors). We have gener-
alised the electronics power model to have 3 energy rates: low, medium and high. High power mode is used
by flying robots which require all sensors to be operating continuously at high refresh rates, including the
flight computer, ultrasound altitude sensor and infrared distance sensors. Medium power mode is used by
beacons since only some sensors are required and they can operate under efficient lower refresh rates (Mei
et al 2005). Low power mode is used exclusively by robots that are waiting on the ground before launching
when only infrequent communication is required. The corresponding power consumption for low, medium
and high power modes are E,, = 0.5 W, E,,, =5 W and E,,, = 10 W, respectively. Importantly, this gives a
total power consumption for flying robots of E,, + E,,, = 120 W, compared to the relative low power of static
beacons and robots on the ground of only E,,, =5 and E., = 0.5 W.
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