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Abstract We have modelled the within-patient evolutionary process during HIV
infection using different methodologies. New viral strains arise during the course of
HIV infection. These multiple strains of the virus are able to use different corecep-
tors, in particular the CCR5 and the CXCR4 (R5 and X4 phenotypes, respectively)
influence the progression of the disease to the AIDS phase. We present a model
of HIV early infection and CTLs response which describes the dynamics of R5
quasispecies, specifying the R5 to X4 switch and effects of immune response. We
illustrate dynamics of HIV multiple strains in the presence of multidrug HAART
therapy. The HAART combined with X4 strain blocker drugs might help to re-
duce infectivity and lead to slower progression of disease. On the methodology side,
our model represents a paradigm of integrating formal methods and mathemati-
cal models as a general framework to study HIV multiple strains during disease
progression, and will inch towards providing help in selecting among vaccines and
drug therapies. The results presented here are one of the rare cases of methodolog-
ical cross comparison (stochastic and deterministic) and a novel implementation
of model checking in therapy validation.
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1 Introduction

The study of infectious diseases which underlie the immune system response to
pathogens, at both levels of cellular response (where parameters include genomic
and metabolic factors) and population of individuals (where parameters include
age, structure and social networks), has received a major impetus from the recent
development of high-throughput genomic techniques. The use of computational
system biology models in immunology has been very successful and has represented
an insightful and essential complement to in-vivo and in-vitro experimental design
and interpretation. Indeed computational system biology models of HIV dynamics
have proven valuable in understanding the mechanisms of many of the observed
features of the progression of the HIV infection, see for example (Celada and
Seiden, 1996; Chao et al., 2004; De Boer and Perelson, 1995; Ho et al., 1995;
Perelson et al., 1996; Wei et al., 1995; Wiegel and Perelson, 2004; Wodarz and
Nowak, 2002).

Here, we address the issue of formally modelling and studying the dynamics
of HIV infection with the long term goal of engineering treatments that may
sustain the immune response to the disease. We present a model of HIV early
infection which describes the dynamics of R5 quasispecies, specifying the R5 to
X4 switch and effect of the immune response. Furthermore, HAART therapy has
been embedded in the model, and its effects analysed on the progression of the
disease. For clarity, a summary of the most relevant aspects in this scenario is
given next, separately.

Importantly, we illustrate an approach consisting of the integration of diverse
methodologies from deterministic models traditionally employed, to stochastic de-
scriptions of such a dynamics, whose application to this context is quite novel (So-
rathiya et al., 2010). Furthermore, we illustrate the use of stochastic model checking,
a relevant formal reasoning technique developed in computer science, on the results
obtained from the simulation of such stochastic models.

Model checking consists in specifying a property of interest, such as the average
reduction of infected cells or pathogen density in the blood as consequence of the
(regular or salutary) assumption of a given drug, and then verifying whether this
property holds for the system at hand. The property is expressed in a formal
language, typically a formula of a suitable logic, and its verification is carried out
by a fully automated procedure that returns either a positive response or a counter
example, such as a working hypotheses that is able to annul the effects of the drug
under investigation. Given that viral infections and the functioning of therapies
often present stochastic aspects, we have introduced a succinct but descriptive
stochastic model of HIV infection and then extended it by modelling (the effects
of) anti-HIV therapies. The model has been implemented in PRISM, a state of
the art probabilistic model checker, supporting a logical language.

The aim of this paper is to illustrate how the use of quantitative models of in-
fectious processes can further be enhanced by the contribution of formal methods
originally developed for verifying properties of computational systems. In partic-
ular, we illustrate how model checking techniques (Clarke et al., 1999) can con-
tribute to the interpretation of the in-silico results obtained from the quantitative
models. We envisage that this will provide a valuable methodology potentially scal-
ing up to assess and develop therapies for infectious disease treatments, helping
in bridging the gap between theoretical and experimental investigation and the
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medical practice (i.e. translational medicine). The results and the methodology
discussed here suggest the importance of devising formal analysis and assessment
techniques from the integration, and extension, of modelling and reasoning tech-
niques developed in different contexts.

Next Section 2 gives an account of a general scenario of HIV infection. A de-
terministic model based on ODEs and a stochastic one based on a framework from
theoretical computer science are described in Section 3. In Section 4 we discuss
therapies which might be helpful in medication of HIV-1 infected patients. In addi-
tion, immune response models may help in designing vaccines. Most importantly,
we report on in-silico results from different techniques, as an example of integrated
framework suitable for modelling and reasoning about infection dynamics and im-
mune response.

2 Biological context

HIV-1 infection is characterised by the progressive loss of CD4+ T cells. Infection
by most strains of HIV-1 requires interaction with CD4+ T cell and a chemokine
receptor, either CXCR4 or CCR5. Switching of CCR5 (R5) to CXCR4 (X4) has
been linked to an increased virulence and with progression to AIDS, probably
through the formation of cell syncytia and killing the T cell precursors. CXCR4
is expressed on a majority of CD4+ T cells and thymocytes, whereas only about
5 to 25% of mature T cells and 1 to 5% of thymocytes express detectable levels
of CCR5 on the cell surface (Gray et al., 2005). It is noteworthy that X4 HIV-
1 strains stimulate the production of the cellular factor called Tumor Necrosis
Factor (TNF), which is associated with immune hyperstimulation, a state often
implicated in T-cell depletion (Herbeuval et al., 2005). TNF seems to be able to
both inhibit the replication of R5 HIV strains while having no effect on X4 HIV
and down regulate the number of CCR5 co-receptors that appear on the surface
of T-cells (PY2).

Cytotoxic T Lymphocytes (CTLs) play a vital role in controlling infection and
variability of HIV-1. The pressure on HIV-1 progression is the existence of either
weak CTL selection pressure or viral mutations (Carrington and OBrien, 2003). A
recent study shows that higher degree of immunodominance leads to more frequent
escape with a reduced control of viral replication but a substantially impaired
replicative capacity of the virus (Althaus and Boer, 2008). We aim at modelling
viral multi-strain short and long term evolutionary dynamics especially transition
of R5 to X4 phenotype switch and CTLs response.

In the next section we introduce a multiple strains model focusing on the R5 to
X4 shift, the hyperstimulation of T cell precursors through TNF (Sguanci et al.,
2007) and the CTLs response. We describe the decreasing dynamics of CD4+ T
cells after the appearance of X4 strains and make predictions on the results of

HAART.

3 Models

We have developed a multi-strain computational model of HIV-1 viral dynamics
including a cellular response of CTLs. Infected T cells mutate from one type of
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Fig. 1 Schematic representation of R5 to X4 phenotype mutation. R5 strain mutates and
proliferates into other R5 strains, and in the later stage of disease, R5 mutation leads to
X4 strains. Each stage of mutation of R5 or X4 has the possibility to generate another R5
strain/X4 strain.

proliferate

Fig. 2 Schematic description of interaction among the cells and viruses. Circle () represents
population of cells/virons, — abundance of cells/viral particles from one type to the other,
either directly from single cell population or through interaction of two different type of cell
populations. The interaction among Naive T cells (U), uninfected mature T cells (T), infected
cells (I), viral strains (V), TNF (cytokine - F), and CTL response (Z) is translated in the
ordinary differential equations in the Models section.

strain (R5) to another type of strain (X4) at the rate pu. Mutation parameter pu
generates additional strains of virus from existing phenotype strains. The graphical
representation of this process is given in Figure 1. For sake of clarity, we have
provided a schematic description of the interaction occurring between various kind
of cells (see Figure 2). Here, we have considered k different strains of CTLs, Viral
particles and Infected cells. Naive T cells are continuously produced from the
thymus. The mature T cells and CTLs cells proliferate from naive T cells, in which
CD4+ T cells are infected by viral particles. Mutation of viruses inside infected
cells produces different strains of viral particles. Viral particles mutate from R5
strains to X4 strains by mutation rate u. We have included TNF cytokine which
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induces “bystander death” of both naive and mature cells. Detailed description of
each type of cell and viral particles has been described in section 3.1.

3.1 The deterministic model

Our work is based on the evolution of a multi-strain model of HIV-1 dynamics,
first appearing in (Sguanci et al., 2007), which takes into account the models
developed by Perelson and his followers (Chao et al., 2004; Ho et al., 1995; Perelson
et al., 1996; Wiegel and Perelson, 2004). These models are well presented and take
specific biological reality into account. The studies have shown that the equilibrium
abundance of the infected cells depends on the immune response (Cannon et al.,
1988; Riddell et al., 1992). Therefore, our initial model has been extended here by
adding the response of Cytotoxic T Lymphocytes (CTLs) cells.

As shown in several studies, CTLs play an important role in controlling HIV
infection especially at the initial stage (Kaslow et al., 1996; Schmitz et al., 1999).
However, there are many challenges to model immune response because HIV is
difficult to diagnose in the early stage. Additionally, to acquire data on CTLs
escape is difficult since the virus diversity within a host has to be followed over
a long time. It is also difficult to analyse the intersection in viral replication, the
selection and the mutation by different CTLs response (Fryer et al., 2009; Ganusov
and De Boer, 2005). To better understand these processes, we present the multi-
strain deterministic model and the extensions regarding therapies.

Model description The interactions among the immature T cells (U), uninfected
mature T cells (T), CTL response (Z), infected cells (I), viral strains (V), and TNF
(F) are translated into ordinary differential equations (ODEs). The changes in the
population over time can be described by following ordinary differential equations:

du

o =Ata <Xk:.rkzk> — 0utU — 8y jUF — §uzU (1)
T
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v
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a
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Equation (1) describes the constant production of immature T cells by the
thymus at rate A and their transformation into mature T cells and CTLs cells at
rate d,¢ and &y, respectively. If X4 viruses are present, upon the interaction with
TNF, immature T-cells are cleared at fixed rate d, ;. Moreover, immature T cells
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proliferate, due to CTLs via dendritic cells signaling, at fixed rate o1. To simplify
model, we have modelled direct effect of CTLs on the immature T cells instead
of adding one more equation of dendritic cells signal to naive T cells for optimal
activation (Guermonprez et al., 2002).

Equation (2) describes how uninfected mature T cells are produced at fixed
rate d,¢ by the pool of immature T cells. These cells interact with any strain of the
virus, V;, and become infected at rate 8, = 8 Vk. The infectiousness parameter,
B, is not constant over time, but depends on the interplay between R5 and X4
viruses. In particular, due to the presence of TNF, the infectivity of the R5 strains
reduces (Bgrs(t) = B — krsF(t), with constraint Sgs > 0), while infectivity of the
X4 strains increases (Bx4(t) = 8+ kx4 F(1)).

Equation (3), models CTLs strains which are produced at fix rate dy. from
pool of immature T cells. In addition, these cells proliferate due to infectivity at
rate o0o. CTLs cells are cleared out at fixed rate §,.

Equation (4) describes the infection of mature CD4+ T cells. Infected cells of
strain k arise upon the interaction of a virus of strain k with any of the mature
T-cell strains. The infected cells, in turn, are cleared out at rate §;. In addition,
the infected cells are cleared out by CTLs response at fixed rate ¢;,.

Equation (5) describes the production of viral strains from infected cells at
fixed rate m, viruses are cleared out at fixed rate d,.

Equation (6) models the dynamics of accumulation of TNF by assuming the
increase in TNF level to be proportional, via the constant o3, to the total concen-
tration of X4 viruses present.

All the parameters have been referred from literatures. The detailed description
and references of each parameters are given in the Table 3.2.

Highly Active Antiretroviral Therapy (HAART) HAART is a cocktail of drugs
prescribed to many HIV-positive patients. HAART is one of the ways of suppress-
ing viral replication in the blood while attempting to prevent the virus rapidly
developing resistance to the individual drug. The therapy is composed of usu-
ally three combinations of drugs; one nucleoside analog (DNA chain terminator),
one protease inhibitor and either a second nucleoside analog (“nuke”) or a non-
nucleoside reverse transcription inhibitor (NNRTI) (Dybul et al., 2002). Here, we
have developed a model for non-nucleoside reverse transcription inhibitor (also
known as RT inhibitor) and protease inhibitor drugs in the HAART therapy.
According to guidelines, it is important to take every dose of medication as pre-
scribed. Poor adherence to HAART has been shown to result in treatment failure,
and faster disease progression. If doses are left out, the virus can replicate faster
and the risk of developing drug resistance rises. We have observed this phenomenon
in the previous work (Sguanci et al., 2007).

RT Inhibitor: An RT inhibitor drug is usually prescribed to block infection there-
fore CD4+ T cells do not get infected by viruses. This drug can be modelled by
reducing 8. In 100% working condition of RT inhibitor, 3 = 0 means viruses do
not infect T cells. But, RT inhibitors are not perfect like other drugs. Thus, a more
realistic model for the effectiveness of an RT inhibitor is described by multiplying
(1 — ngr) with 8 parameter, where ngr is the “effectiveness” of the reverse tran-
scription inhibitor (value: 0 < nrr < 1). The effectiveness of the RT inhibitor can
be modelled by changing equation 2 into equation 8. Similarly, equation 4 changes
into equation 10.
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Protease Inhibitors (PIs) and Nucleoside Analog (DNA chain terminator):
Protease inhibitors are a class of drugs used to prevent viral replication by in-
hibiting the activity of HIV-1 protease. HIV-1 uses their protease as an enzyme
to cleave nascent proteins so that new viruses can be produced. The drug, Pls, is
used to block the cleave nascent proteins of HIV-1. Similarly, the nucleoside analog
acts to prevent production of new viruses by blocking the viral DNA chain during
infection of a new cell by HIV-1. The effectiveness of PIs and nucleoside analog
can be modelled similarly by reducing the = parameter value. The following model
describes the effect of Pls, nucleoside analog and RT inhibitors, where np; is the
“effectiveness” of the protease inhibitors (value: 0 < npr < 1). The effectiveness of
PIs and nucleoside analog can be adapted by changing equation 5 into equation 11.
We have simulated drug therapies and drug resistance in the results section.

dU
E = A+o1 (zk:[kzk> —5utU—6ufUF—6uzU (7)
dr
= = SutU — < Z (1 = np7)Brs Vi + Z (1- 77RT)/Bk4Vk> T
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— 6y TF —6:T (8)
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d_tk = (%:,Ukk’(l_nRT)ﬁk’Vk’> T_5iZIka —(51.[]¢ (10)
dv;
d—tk = (1—77PI)7T[k—61)Vk (11)
L (12
keX4

3.2 The stochastic model

Deterministic models based on differential equation, like the one previously in-
troduced, have long been used for immune system and viral infection modelling.
They focus on the average behavior of large populations of perfectly mixed, iden-
tical individuals. An improved realism is provided by more complicated models
such as adding time delays or age-structured partial differential equations. The
role of stochastic fluctuations has recently received a renewed interest (Agrawal
et al., 2009; Weinberger and Shenk, 2007), since the focus has moved to mesoscopic
scales in which the number of interacting elements are quite small, the noise fea-
tures are not so trivial (i.e. gaussian) and can drive the system towards unexpected
behaviour. In particular, agent-based simulation considers the actions of a large
number of simple entities, or agents (viruses and cells), in order to observe their
aggregate behaviour (Chao et al., 2004). Each agent consists of state variables and
a set of rules that governs its behaviour. These rules cause state transitions and
have associated a stochastic rate, representing the probability of the interaction
causing the transition to occur. The natural semantics of this model is given in
terms of Continuous Time Markov Chains (CTMC), in which the stochastic rates



8 Anil Sorathiya et al.

associated with each transition can be derived from the kinetic rates of the reac-
tions (Kwiatkowska et al., 2009). We employ a population-based approach where
the number of each type of species or cells are modelled, rather than the state
of each individual component. Agents can interact either directly with each other
or indirectly through the environment. The combined behaviour of these agents
is observed in a discrete-time or event-driven simulation. Simulations may require
long time and great computational power in order to correctly evaluate parame-
ter averages and fluctuation behaviors of the system. Therefore the two types of
approach, differential equations and the stochastic one, have substantial pros and
cons and a good degree of complementarity. The availability of both approaches,
although time and resources expensive, could result in a versatile, compound anal-
ysis technique. Furthermore, in our case the definition of a stochastic model allows
the interpretation of the simulation results to be carried out from a model checking
perspective.

Model description. The stochastic model we present has been derived from the
deterministic one, and it models the same dynamics discussed for that model.
On top of these working hypotheses two simplifications have been made: i) We
group the behaviour of the viral strains into two classes of individuals: one rep-
resenting the R5 viral strain (V5) and the other one representing the X4 viral
strain (V4), which are the strains we focus on when observing the time course
of infections. Henceforth, multi-strain dynamics revert to individuals of the V5
strains that suitably mutate into individuals of the V4 strains. This transition has
a given associated rate p (see Table 3.2). Basically, analogous to the deterministic
model, we have included sufficient details of interaction among the species so as
to express the properties of interest. i) For the sake of computational efficiency,
we have reduced the simulation time interval over which we validate the proper-
ties of interest by means of approximated model checking. Approximated model
checking validates a property against a sample of simulations, instead of consid-
ering the whole CTMC associated to the stochastic model. The number of such
simulations can be determined according to the desired precision of the analysis.
Shortening each simulation makes the process more efficient. In order to do this we
individuated steady-state time intervals that could be compressed without loss of
information. We have also implemented a notion of time in terms of an agent vary-
ing its quantity linearly with the time flux. Basically, we have added a stochastic
process that does a “tick” at approximately constant time intervals. In our case
the time interval is about 10 days. Accordingly a counter is incremented tracing
the passage of time which implements a notion of measurable time flux and other
processes have access to this counter, so that a mutation can be “activated” at
about a given time instance. This is a, often suitable, modelling assumptions that
may simplify the description of time-dependent more complex processes.

Repeated stochastic simulations of the model, also carried out with different
tools such as Bio-PEPA (Ciocchetta and Hillston, 2009) and Stochkit (Li et al.,
2008), have shown a steady state around a few hundred days and then after a
few hundred days after the main R5 to X4 mutation. Hence, we have reduced the
[0 — 4000] days time interval to [0 — 1000] and triggered the mutation at about
day 500. This appears to be a reasonable simplification for the methodological
purposes of this paper, and a good compromise as far as computational costs are
concerned.



Description Symbol Value Units Comments/References

Constant production of immature t A 200(range 100 - 500) cell/ul =1 (Sguanci et al., 2007)

cells from thymus

Production rate of mature CDAT cells  dyu¢ 0.129 t—1 (Ribeiro et al., 2002a)

from immature T cells

Death rate immature T cells due TNF &, ¢ 10~° ul/cell t=1 (Sguanci et al., 2007)

(Apoptosis)

Indirect proliferation of immature t o1 0.0001(range 0.0001 - 0.01)  pl/cell t—1 Estimation

cells due to Infection

Production rate of mature CTLs from - 0.005 t—1 (Ribeiro et al., 2002a)

immature T cells

Infection rate of CD4 T cells by HIV-1 S 4 %1075 ul Jcell t=1 (Layne et al., 1998; Murray et al., 1998;

viruses Phillips, 1996; Stafford et al., 2000)

Death rate of CDA4T cells Ot 0.01 t—1 CD4+ T cells has life span on average two
years (Michie et al., 1992; Stafford et al., 2000).

Death rate immature T cells due TNF 4§, 10732 ul/cell t=1 We assume death rate T cells due TNF is same

(Apoptosis) as death rate immature T cells due TNF ()

Proliferation rate of CTLs due to In- o2 0.001 ul/cell t=1 (Ribeiro et al., 2002b)

fection

Death rate of CTLs oz 0.01 t—1 (Casazza et al., 2001; Ogg et al., 1999)

Death rate of infected T cells &i 0.33 t—1 (Perelson et al., 1996; Stafford et al., 2000)
In some cases for latently infected -cells
range is estimated 0.00052-0.001 (Finzi et al.,
1999; Ramratnam et al., 2000, 2004; Zhang
et al., 1999b). For short-lived infected cells
(0.6) (Perelson et al., 1996) and long lived
death rate is 0.04 (Stafford et al., 2000).

Death rate of infected CDAT cells due  §;, 0.06 ul /cell t=1 (Asquith et al., 2006)

to CTLs

Production rate of viruses from a In- 7 200 ul/cell t—1 (Haase, 1999)

fected cell

Death rate of viruses O 3 1 Life span of HIV-11is 1/2 day to 1/3 day (Perel-
son et al.,, 1996; Stafford et al., 2000). In
some studies have given even higher estima-
tions (Mittler et al., 1999; Zhang et al., 1999a)

Production rate of TNF o3 0.0001 1 (Sguanci et al., 2007)

Viral mutation rate I 2.5 x 1073 (Sguanci et al., 2007)

Decreasing infectivity of R5 phenotype  Kpgs 1077 (ul/cell)? t~1 (Sguanci et al., 2007)

due to TNF

Increasing infectivity of X4 phenotype Kx4 10-7 (ul/cell)? t—1 (Sguanci et al., 2007)

due to TNF

Table 1 Parameters used in the model: Most of the parameters are from biological literature (Casazza et al., 2001; Haase, 1999; Layne et al., 1998;
Mansky and Temin, 1995; Michie et al., 1992; Ogg et al., 1999; Phillips, 1996; Ramratnam et al., 2000, 2004; Ribeiro et al., 2002a; Siliciano et al., 2003;
Zhang et al., 1999a,b). Even parameters from the mathematical modelling literatures (Asquith et al., 2006; Mittler et al., 1999; Murray et al., 1998;
Perelson et al., 1996; Ribeiro et al., 2002b; Sguanci et al., 2007; Stafford et al., 2000) are estimated from biological experimental studies.
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Up 25 Ug + U T4+F 2, R Is 22 Is + Zs Is =5 Vs x 200
U+ P2, p T+ vs 285, g 13225 I+ 7 14 T Vi x 200

U Suty T+vy X4, Is+7s 2% U+Is+ 25 | Va2 F+V,
U Suzy oz, i+ 21 5 Ut Iy + Za Is 20 vi 2u 0
U Suzy 7o Is + 75 Sizy 75 1. %0 Vs 2v 0
T 20 75 220 Lo+ 24 2z 7,

74 2250 s 5 v

Table 2 Reaction-centric view of the HIV model.

Most of the parameters were available in literature in the suitable formats,
as also used in the deterministic model, while others have required some tuning
against the known macroscopic behaviour of the model, because they were un-
known or not precisely defined. For instance, the d§, rate relative to virus clearance
and expected to be relative to a period of 2-3 days, has resulted in being a very
influential parameter for the overall infective behaviour: the slower §,, the more
difficult for the infection to develop.

We have constructed the stochastic model of the HIV infection by first turning
the equations in Figure 6 into a reaction centric description, shown in Table 2.
From this description a population-based representation can easily be derived by
specifying the behaviour of each involved agent. For instance, the behaviour of U
is given in terms of all the reactions to which U participates, which appears in the
first column of the table. This description is given in the specification language of
the PRISM model checker we have used (see Section 3.3).

Figure 3(a, c, e) reports the results of a stochastic simulation of the model.
The inherent noise, i.e. fluctuation of quantities, and its amount can clearly be
appreciated, especially when comparing these results with the averaged results of
the deterministic model.

Embedding HAART therapy in the stochastic model. We have modelled the
effects of the anti-HIV therapies within our stochastic model, according to the rep-
resentation of this therapy described by the equations of the deterministic model
(see page 7). Here, a notion of time flow is essential to express the degradation of
the efficacy of the therapy during the treatment period. This has been modelled
by adding a parameter that downgrades the infectivity of the virus, as prescribed
by the deterministic equations. This parameter is a multiplicative coefficient of the
rates ruling infective reactions and those regarding viral replication. This coeffi-
cient varies in time, starting from a 60% reduction of these reactions and degrading
to a null effect over a time span of 400 days. These settings have been obtained
by tuning the model on the macroscopic expected behaviour of the system. For
instance, it has been observed that higher initial values of the reduction coefficient
would have led to the unrealistic complete eradication of the virus. Figure 3(b,
d, f) reports the time course of the viral infection in the presence of a therapy
treatment from about day 200 and lasting about 400 days. The time values are
slightly approximated since the time representation within the model is also based
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Fig. 3 Reduced Model: a single stochastic simulation over the [1-1000] days interval. Plot
(a) illustrates the overall infective dynamics. The viral load develops initially based on a V5
population (light grey). At about day 500 the mutation occurs, V4 (black) prevails, and the
system is locally perturbed. Plot (c) highlights the flattened values relative to the immune
system. Here, the graphs about the viral load are reported together with those relative to Z
(i-e., the sum of Z4 and Z5) and T in a log-scale. It can be seen that the T cell population
reduces at the time of mutation, following the switch in the virus population. This is even more
clearly evident in plot (e), which reports only data about Z5, Z4 and T. Here, the degradation
of T below the 200 threshold in the later stages of the disease is evident. Figures on the right
(b, d and f) represent stochastic simulation in the presence of HAART treatment during the
approximative interval [200, 600] days. The plot (b) illustrates the overall infective dynamics.
A perturbation in terms of an oscillation can be observed in the viral load time course in
correspondence of the start of the treatment (compare with the analogous picture in plot
(a) in the left side). The situation is clearer in the log-scale plot (d): T is sustained by the
treatment. The increase follows the efficiency time course of the treatment. Importantly during
the treatment the threshold safety level of T, less than about 200, seems less easily reachable.
However, the level of T degrades after the suspension of the treatment and particularly, as
expected, when the mutation from V5 to V4 occurs. This is also clearly visible in the plot (f).
Initial conditions for these experiments are: U = 200, T = 1000, Z5 = 250, Z4 = 250, and V5
= 100 (Weinberger et al., 2009). The reference model of typical course of HIV infection can
be found in (Pantaleo et al., 1993; Perelson et al., 1996; Wodarz and Nowak, 2002).
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on a stochastic phenomenon which introduces some indeterminacy. However this
approximation is acceptable for our aims here.

The comparison of the results of the stochastic simulations with and with-
out treatment (Figure 3(a, c, ) and Figure 3(b, d, f), respectively) shows clearly
remarkable differences in the viral load and immune system time courses, demon-
strating the effects of the therapy. In the next section we will formally assess
these differences by evaluating probability values of the infection being in a cer-
tain state, amongst other things. This kind of data can be elaborated by means of
an automated procedure (PRI). We believe that this kind of quantitative, formal
and automated analysis may represent a step ahead in the understanding of the
modelling efforts of infection development, by shifting the attention from an in-
formative, but empirical, analysis of the graphs produced by simulations towards
more precise quantitative interpretations.

3.3 Model checking

Many models describing the behaviour of dynamical systems, like distributed and
concurrent computational systems, have been equipped with a formal semantics
that precisely describes the possible evolution of the system. Often, such a se-
mantics is given in terms of a Transition System that defines the possible states
of the modelled systems and the modalities to move from one state to another.
In the last decade several formal methods, e.g. Pi-calculus and P systems, have
been used in the simulation of biological networks. The Pi-calculus has been used
for modelling biochemical systems, with molecules and their domains represented
by computational processes, and reactions by communication and channel pass-
ing. The Pi-calculus offers the ability to reconfigure communication, thus it is
particularly suitable for systems in which the communication network evolves in
time (Regev and Shapiro, 2002).

Suitable logical formulas can represent sets of states which fulfil properties of
interest. Informally speaking, a formula like

oa.¢

can be used to represent the set of states in which an “a-kind-of” transition can
occur and the system evolves into a state fulfilling, in turn, the formula ¢ (i.e, the
_ . _ operator is read as a temporal sequencing operator). In a sense, the states of
the semantics become the model of the formulas. The problem of the verification
of a formula against a state semantics is known as Model checking (Clarke et al.,
1999). Recently model checking methods have been introduced in the analysis of
genetic networks. Model checking is perhaps one of the most established “proof”
techniques in symbolic reasoning. The concept of proof gets instantiated appro-
priately through an automatic search for a property to hold or not over a finite
set of states. The outcome of Model checking is either an affirmative answer or a
counter example, e.g. a set of states representing possible evolutions of the system
that do not fulfill the formula.

Logics (Aziz et al., 2000) and model checking procedures (Baier et al., 2003)
have been defined for probabilistic state semantics, that is Probabilistic model check-
ing. A typical logic may express formulas like

P>p [¢]
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where ¢ is a path formula representing a set of traces with given features, e.g.
x =0 U z > 2 represents the traces in which the value of the variable z is
constantly 0 until it becomes bigger than 2. Overall, the above formula represents
all the traces for which ¢ holds with probability bigger than p. Other examples of
operators for ¢ are F, e.g. F >=1t x > 2, the traces in which eventually x > 2 after
t time units, and G, e.g. G x < 10, globally, for all the traces, the value of x is less
than 10.

We have adopted the open-source PRISM probabilistic model checker (PRI),
one of the reference existing model checkers for the analysis of systems which
exhibit random or probabilistic behaviour. However, our framework is not deter-
mined by the features of a specific tool, and other similar platforms could have
been chosen. PRISM models are specified in a formal language that describes the
entities present in the model, their behaviour and their quantities. In our settings,
the entities are T cells, R5 and XJ Virus strains, etc. One or more entities can par-
ticipate synchronously to an event that causes a state change. The state typically
consists of the values of the variables of the model. For instance, T cell infection
is an event to which virus strains and T cell participate. This event leads to an
increased number of infected cells, and less T cells and viruses, which have turned
together into the infected cells. Participation to events is realised by executing
suitable actions. Actions have stochastic rates associated. Variables keep trace of
the amount and variations of involved entities. Such quantities affect the stochas-
tic dynamics as expected, since dynamics is ruled by the law of mass action, as
standard (according to this law, the strength of a reaction, its probability to occur
quickly say, depends on the associated rates and the amount of entities ready to
participate into the reaction).

Figure 4 shows the PRISM code for T cell. The variable t keeps trace of the
amount of T cell, and has a limited range since the model has to be finite. Then,
several possible actions, corresponding to the participation to reactions, are de-

fined. Each consists of a name, an integrity constraint, a rate and an effect. [five]

corresponds to the reaction T + V3 & I5, i.e. the infection of a T cell by a R5

strain virus V5. The constraint requires the existence of a T cell to be infected. The
rates embeds the contribution of the amount of T cells (t), the machinery that re-
flects strain mutation into reactions (beta - (Kr4 * £))) and the representation
of the therapy (1 - ((100.0 - thpy)/100)), with thpy varying according to the
effectiveness of the therapy in time. The effect of [five] is to decrease the number
of T. Correspondingly, [five] is also a reaction to which V5 and I5 participate,
as prescribed in the respective code. It is worth noting how rates are defined so
as to respect stochastic semantics. Rates of synchronously participated reactions,
such as [five], are multiplied to determine the overall rate of the corresponding
transition (i.e. the parameter of the associated negative exponential distribution).

4 Results
4.1 Sensitivity Analysis
To gain some understanding of dependence of the solution on the parameters, we

calculate the sensitivity of the key parameters, which is the sensitivity of depen-
dence of the dependent variable say y upon changes in the independent variable,
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module Tcells
t: [0 .. t_max] init Tc;

[two]l t < t_max -> 1 : (t’=t+1);
// U -=>T

[five]l] t > 0 -> (t * (beta - (Krb * £f))) * (1- ((100.0 - thpy)/100)): (t’=t-1);
// T+V5 --> I5

[six] t > 0 -> (t * (beta + (Kx4 * £)))* (1- ((100.0 - thpy)/100)): (t’=t-1);
// T+V4 --> 14

[seven] t > 0 -> t * delta_tf : (t’=t-1);
// F+T --> F

[eight] t > 0 -> t * delta_t : (t’=t-1);
// T -—>0

endmodule

module Vbvirus
v5 : [0 .. v5_max] init V5;

[five] vB6 > 0 -> v : (v5’=v5-1);
endmodule

module Ibcells
i5 : [0 .. i5_max] init I5c;

[five] i5 < i5_max -> 1 : (i5’=ib+1);
endmodule

Fig. 4 The PRISM code: excerpts.

say . Thus, the sensitivity value « is the proportional change in y for a given
proportional change in z, i.e. a = f}—?% A large parameter exploratory analysis us-
ing the stochastic approach may allow parameters that determine the sensitivity
of the model, which is the method we have adopted. One approach to sensitivity
analysis is to apply all the combinations of parameters but this approach is ex-
tremely time consuming and hence impractical for multitude parameter systems.
An alternative approach, for a N parameter model, is to fix N — 1 parameters and
vary k' over the specific range. We focus on the parameters which can be altered

by drug therapies.

4.1.1 Dynamics of C'TLs on transition of R5 to X4 switch

The evidences suggest that CTLs response contributes to control HIV-1 infection
in-vivo (Borrow et al., 1997; Carrington and OBrien, 2003; Jin et al., 1999; Kalams
et al., 1999; Phillips et al., 1991). However, disease progression rate to AIDS varies
person to person which indicates that CTLs response plays a protective role in
progression. Here, we simulate CTLs response during HIV-1 superinfection and
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R5 to X4 phenotype switch. We have varied parameter &y, (proliferation of CTLs
from immature T cells) to analyse the effect of CTLs and infected cells without
varying other parameters related to CTLs.

%\188888 l(a Viral Load - |l  Viral Load — ] ;ggoc
3 70000 | . - 700 =
8 60000 10 1 600
T 50000 | 1t 1 500 €
S 40000 . W% | 400 3
= 30000 | 1B 1300 3
£ 20000 & | e NN 1200 O
Z 10000 | LT f 100
0 1000 2000 3000 O 1000 2000 3000
Time(days) Time(days)

Fig. 5 Effect of immune response on the model due to d,. parameter: plot (a) d,. = 0.005,
where CD4+ T cells are at around 600 while in (b) 4. = 0.01, with boosted immune response,
CD4+ T cells are more than 800.

In Figure 5, we varied parameter d,. to observe the dynamics of viruses and
CD4+ T cells. CD4+4 T cells decrease in the presence of weaker immune system
(6uz = 0.005), while increasing the proliferation rate of CTLs from immature cells
(6uz = 0.01) increases CD4+ T cells, but do not make much difference in the
appearance of X4 phenotype (see Figure 5). The simulation results suggest that
boosting immune response might help to increase CD4+ T cells during initial
stage of infection. The drug which boosts CTLs response might help in controlling
HIV-1.

4.1.2 Production rate of TNF

The interaction of cytokine receptors provides essential immune and inflamma-
tory responses hence plays a major role in the immune response to pathogens.
In addition, cytokines such as TNF-a are strongly correlated with replication of
HIV (Matsuyama et al., 1991). However, finding a balanced dose of TNF inhibitor
therapy might be useful to reduce HIV replication. Here, we have varied the pro-
duction rate of TNF (parameter o3 in deterministic model) to observe the effect
of CD44 T cells, CTLs cells and viral particles. The results are in Figure 6.

Figure 6 shows dynamics of CD4+ T, CTLs cells and Viral load by varying
production rate of TNF. It might be possible to apply TNF inhibitor therapy upto
certain level (o3 = 0.001 in Figure 6) so minimum level of TNF concentration
remains in the system.

4.2 HAART

There are many different factors in HIV-1 patients that have significant impli-
cations for the generation of drug resistant viruses. HIV reverse transcribed to
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Fig. 6 Sensitivity of o3 parameter: decrease in the production rate of TNF clearly shows
increase of CD4+ T and CTLs cells and decrease of Viral load. Plot (a) shows Viral dynamics
(b) shows time course dynamics of TNF dynamics, plot (c) is CD4+4 T cells and plot (d) is
CTLs dynamics. Red (O), Green (A) , Blue (o) lines correspond to o3 values 0.00001, 0.0001
and 0.001 respectively.
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Fig. 7 Model outcome with HAART with X4 blocker and without HAART therapy: Drug
treatment simulated from time ¢ = 100 to t = 700. The concentration of CD4+ T cells is
plotted using red line (O) and green line (A) denoting without drug therapy and with drug
therapy respectively. Here, we have set npr and npy as 0.9 initially, those are decreased with
time by 0.01 factor until the end of the therapy (nrr = 0.99 X nrr and np;r = 0.99 X npr).

DNA is an error prone process and the error rate is estimated as 2.5 x 107° to
3.0 x 107° per base-pair replication cycle (Mansky and Temin, 1995). The effect
of the therapy reduces as viruses mutate and possibly some of viral strains pro-
liferate without any effect on therapy. We have simulated HAART therapy with
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X4 blocker drug combination from day ¢t = 100 to day ¢ = 700 (see Figure 7). We
reduce the effectiveness of the drug by assuming that viruses become resistance
to the drug during the course of the therapy. The simulation results suggest that
HAART is more effective when it is used combined with X4 blocker drug (see
Figure 7).

4.3 Formally assessing anti-HIV therapies

We evaluate quantitatively the effects of the HAART therapy, which we have
embedded in the stochastic model as explained in Section 3.2. In doing so, we
intend to highlight how relevant information contained in the model can precisely
be referred and assessed. We do this by integrating in our framework stochastic
model checking techniques, i.e. a formal and automated procedure for validating
properties of a model. An introduction to probabilistic model checking is beyond
the scope of this paper, we refer the interested reader to the cited literature and
references therein. Other recent works are (Fisher et al., 2007; Fromentin et al.,
2007; Mateus et al., 2007). We introduce informally the main concepts by examples.

4.8.1 Therapy effect formalisation

Comparing the quantitative results of the stochastic simulations in the form of
Figure 3(a, ¢, e) and Figure 3(b, d, f), one can have an idea about the efficacy
of the therapy. For instance, it appears quite evident that the therapy actually
has an impact on sustaining T levels as long as the treatment is provided and
especially in the initial phases, where its effectiveness is bigger, see Figure 3(b).
This also has an effect on the amount of V5 viral load, see Figure 3(f). This kind
of observation relies on the capability of properly interpreting the graphs, typical
of a domain expert.

We move from such a correct and informative, but somehow empirical, inter-
pretation of data to a more precise and formal approach by specifying properties
of interest as logical formulae. This has the advantage of requiring a definition of
all the aspects of interest, of referring to a formal unambiguous semantics, and of
having an automated procedure for verifying the formulae.

We discuss two properties of interest:

1. We take the number of infected cells leading to virus replication as a measure of
the spread of infection. Namely, this can be obtained by counting the number
of times that either action causing viral replication:

715100 x V5 7 55200x% V4

is applied. Technically this can be done by using a reward structure supported
by PRISM: values are associated with states or transitions of the model. Re-
wards allow us to take quantitative measures of the model behaviour. In our
case, we simply take a counter of rule application, i_to_v. Then we can com-
pute the cumulative value of the counter, Reward operator, within a given time
interval, here [200.0,600.0]:

R{%_tow”} =? [C' <=200.0] and R{“i_toa”}=? [C <=600.0]
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2. We consider the amount of healthy T cell t as a measure of resistance to the
virus attack. We are interested in the probability that ¢ is less than the thresh-
old 200.0, which is considered as a marker for HIV infection, in a time interval
subsequent to the beginning of virus attack, [200.0,600.0] again:

P =7 [F[200.0,600.0]t <= 200.0]

It is worth noting also the methodological relevance of the formal specification of
properties, where one has to declare, and hence carefully consider, all the facets
of the problem. It is clear that the behaviour of complex systems change in time,
but the formal specification helps make the interval of interest explicit.

4.83.2 Results of the computational analysis

PRISM supports two ways of giving semantics to the properties of the model. The
first one is by constructing the complete CTMC relative to the model. In settings
like those we are discussing, involving thousands of entities which combinatorially
may generate state explosion, this can be particularly costly and become unfeasi-
ble. The second one is an approximated verification of probabilistic formulas based
on sampling a certain number of traces in order to determine probability values
and formula validity. Given the dimensions of our model, we have adopted the
second option.

PRISM allows the degree of approximation to be controlled by means of two
parameters; precision and confidence. A sufficiently high number of traces are
sampled so that the confidence is an upper bound to the probability that the
approximation error is bigger than the precision. Also the max length of sampled
paths can be set. We have used

approx = 0.08 conf = 0.8 num samples = 249 max path length = 50000000

Given the exploratory nature of our paper, we have accepted a quite high value
for confidence, which however requires an analysis lasting about 48h on a 2.66 GHz
Intel 4-Core i5 with 8Gb RAM memory (we have run in parallel two instances of
PRISM, one for each model). The results are reported in the following table:

| Plain model | Therapy model

R{“i_tow”} =7 [200.0 <= C <= 600.0
P =7 [F[200.0,600.0]ic <= 200.0

50 157 | 47 465

]
]

0.8032 |  0.3293

Automated verification yields quantitative measures of the investigated properties.
The above table shows that in the time interval specified the therapy strongly
reduces the probability that the number of T cell falls below the threshold used
as a marker of infection, when the treatment period is considered. Differently, the
number of infected cells remains basically constant. This highlights the need for
further investigations on this phenomenon, which could have several explanations,
like the difference in scale of the viral load that tends to blur minimal differences on
the overall time interval considered, or a different distribution of cell infections over
time. This is a topic for future work. However, these perhaps minimal variations
lead anyway to a different emerging behaviour, as it can be observed in both the
graphs and in the numerical assessment of probabilities.
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5 Conclusion

Viruses that cause infectious diseases present critical issues of public health and
economic welfare. There are several strains of HIV present worldwide and often
HIV patients carry multiple strains simultaneously in their body and indeed nowa-
days HIV is being addressed through large-scale deep genomic sequencing. During
the HIV infection multiple strains of the virus arise which are able to use different
chemokine coreceptors particularly CCR5 and CXCRA4.

Here, we represent the model of CTLs response during evolutionary multi-
strain infection of HIV-1, especially transition of R5 to X4 phenotype that helps
to gain better insight of the complexity of the HIV-1 infection process. We observed
that CTLs response is a key aspect in HIV infection. However, viruses escape from
immune system by mutation. Simulation results show different behaviors of the
system by varying CTLs response parameter.

There are many options available for drug therapy in the treatment of HIV in-
fection such as Highly Active Antiretroviral Therapy, Maraviroc and gene therapy
(Zinc-finger nucleuses). We noticed, interruption and discontinuation of HAART
therapy may result in early appearance of R5 to X4 phenotype switch. However ac-
cording to our model, X4 strain blocker drug combined with HAART may decrease
viral load and increase T cells even after R5-X4 phenotype switch (Figure 7).

Our model also represents a general framework to investigate switching domi-
nance of strains and arising new dominant strains during different phases of ther-
apy. The software and the models are also general frameworks which can be used
by other users to incorporate different parameters (the program is freely available
upon requests from the authors).

We have illustrated the potential benefits for the study of viral infections and
therapy assessment of using formal methods techniques on top of quantitative mod-
els. We have done this by presenting experiments on a proof-of-concept scenario
regarding HIV infection.

The main contribution of this paper is to illustrate how properties of interest
for the study of viral infections can be formalised in a general purpose logic, as
the one supported by PRISM, how their verification can precisely characterise the
numerical results of simulations, and how this can be helpful in comparing and
assessing different antiviral therapies. Another important aspect is the attempt
to combine a determinist approach (important when testing nonlinearities) and a
stochastic one (important when testing fluctuations) to fuel information towards
a model checker. Work in progress will bring refinement in all the steps of this
procedure. We intend to explore the expressiveness of other supporting tools for
model checking, tailor the class of logical language for better expressing properties
of interest in the specific field described, and apply the approach to realistic case
studies in collaboration with experimental virology labs.

Work in progress focuses on combining in a general modelling framework the
viral multi-strain surveillance due to the variability of strain behaviour and the
correct identification of a medical condition which is a central element in clinical
practice. The combination of “classic” modelling techniques and model checking
approaches could become a solid stream of clinical bioinformatics, which is for now
concerned with bringing together bioinformaticians and biostatisticians to develop
methods and tools for analysis and visualisation of complex clinical and genetic
patient datasets.



20 Anil Sorathiya et al.

References

The PRISM model checker. Technical report, Internet Engineering Task Force.
http://www.prismmodelchecker.org.

S. Agrawal, C. Archer, and D.V. Schaffer. Computational Models of the Notch
Network Elucidate Mechanisms of Context-dependent Signaling. PLoS Com-
pututation Biology, 5(5):€1000390, 2009.

C.L. Althaus and R.J. De Boer. Dynamics of Immune escape during HIV/SIV
Infection. PLOS Computational Biology, 4(7):e1000103, 2008.

B. Asquith, C.T.T. Edwards, M. Lipsitch, and A.R. McLean. Inefficient Cytotoxic
T Lymphocyte Mediated Killing of HIV-1Infected Cells In Vivo. PLOS Biology,
4(4):e90, 2006.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time
Markov chains. ACM Transactions on Computational Logic, 1(1):162—170, 2000.
C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE Transaction on Software Engineering,

29(6):524-541, 2003.

P. Borrow, H. Lewicki, X. Wei, M.S. Horwitz, N. Peffer, H. Meyers, J.A. Nelson,
J.E. Gairin, B.H. Hahn, M.B.A. Oldstone, and G.M. Shaw. Antiviral pressure
exerted by HIV-1 specific cytotoxic T lymphocytes (CTLs) during primary in-
fection demonstrated by rapid selection of CTL escape virus. Nature Medicine,
3:205-211, 1997.

M.J. Cannon, P.J. Openshaw, and B.A. Askonas. Cytotoxic T cells clear virus but
augment lung pathology in mice infected with respiratory syncytial virus. The
Journal of Experimental Medicine, 168:1163-1168, 1988.

M. Carrington and S.J. OBrien. The influence of HLA genotype on AIDS. Annual
Review of Medicine, 54:535-551, 2003.

J. Casazza, M. Betts, L. Picker, and R. Koup. Decay kinetics of human immun-
odeficiency virus-specific CD8+ T cells in peripheral blood after initiation of
highly active antiretroviral therapy. Journal of Virology, 75:6508—-6516, 2001.

F. Celada and P.E. Seiden. Affinity maturation and hypermutation in a simulation
of the humoral immune response. Journal of Immunology, 26:1350—-1358, 1996.
L. Chao, M.P. Davenport, S. Forrest, and A.S. Perelson. A stochastic model of

cytotoxic T cell responses. Theoretical Biology, 228:227-240, 2004.

F. Ciocchetta and J. Hillston. Bio-PEPA: a Framework for the Modelling and
Analysis of Biochemical Networks. Theoretical Computer Science, 410(33):3065—
3084, 2009.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge MA, 1999.

R.J. De Boer and A.S. Perelson. Towards a general function describing T-cell
proliferation. Journal of Theoritical Biology, 175:657-576, 1995.

M. Dybul, A.S. Fauci, J.G. Bartlett, J.E. Kaplan, and A.K. Pau. Panel on Clin-
ical Practices for Treatment of HIV (September 2002): Guidelines for using
antiretroviral agents among HIV-infected adults and adolescents. Annals of In-
ternal Medicine, 137(2):381-433, 2002.

D. Finzi, J. Blankson, J.D. Siliciano, J.B. Margolick, K. Chadwick, and et al.
Latent infection of CD4+ T cells provides a mechanism for lifelong persistence
of HIV-1, even in patients on effective combination therapy. Nature Medicine, 5:



An integrated modelling approach for R5-X4 mutation and HAART therapy 21

512-517, 1999.

J. Fisher, N. Piterman, A. Hajnal, and T.A. Henzinger. Predictive modeling of
signaling crosstalk during C. elegans vulval development. PLoS Computational
Biology, 3(5):€92, 2007.

J. Fromentin, J.P. Comet, P. Le Gall, and O. Roux. Analysing gene regulatory net-
works by both constraint programming and model-checking. In The 29th Annual
International Conference of the IEEE EMBS, pages 4595—-4598. IEEE, Washington
DC, United States, 2007.

H.R. Fryer, A. Scherer, A. Oxenius, R. Phillips, and A.R. McLean. No evidence
for competition between cytotoxic T-lymphocyte responses in HIV-1 infection.
Proceeding of Royal Society of Biosciences, 276(1677):4389-4397, 2009.

V.V. Ganusov and R.J. De Boer. Estimating Costs and Benefits of CTL Escape
Mutations in SIV/HIV Infection. PLoS Computational Biology, 2(3):€24, 2005.
L. Gray, J. Sterjovski, M. Churchill, P. Ellery, N. Nasr, S.R. Lewin, S.M. Crowe,

S.L. Wesselingh, A.L. Cunningham, and P.R. Gorry. Uncoupling coreceptor us-
age of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism
reveals biological properties of CCRb5-restricted HIV-1 isolates from patients

with acquired immunodeficiency syndrome. Virology, 337:384-398, 2005.

P. Guermonprez, J. Valladeau, L. Zitvogel, C. Thery, and S. Amigorena. Anti-
gen Presentation and T cell stimulation by dendritic cells. Annual Review of
Immunology, 20:621-667, 2002.

A.T. Haase. Population biology of HIV-1 infection: viral and CD4+ T cell de-
mography and dynamics in lymphatic tissues. Annual Review of Immunology, 17:
625-656, 1999.

J.P. Herbeuval, A.W. Hardy, A. Boasso, S.A. Anderson, M.J. Dolan, M. Dy, and
G.M. Shearer. Regulation of TNF-related apoptosis-inducing ligand on primary
CD4+ T cells by HIV-1: Role of type I IFN-producing plasmacytoid dendritic
cells. PNAS, 102:13974-13979, 2005.

D. Ho, A.U. Neumann, A.S. Perelson, W. Chen, J.M. Leonard, and M. Markowitz.
Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.
Nature, 373:123-126, 1995.

X. Jin, D.E. Bauer, S.E. Tuttleton, S. Lewin, A. Gettie, J. Blanchard, C.E. Irwin,
J.T. Safrit, J. Mittler, L. Weinberger, L.G. Kostrikis, L. Zhang, A.S. Perelson,
and D.D. Ho. Dramatic rise in plasma viremia after CD8+ T cell depletion in
simian immunodeficiency virusinfected macaques. The Journal of Ezperimental
Medicine, 189:991-998, 1999.

S.A. Kalams, P.J. Goulder, A.K. Shea, N.G. Jones, A.K. Trocha, G.S. Ogg, and
B.D. Walker. Levels of human immunodeficiency virus type 1-specific cyto-
toxic T-lymphocyte effector and memory responses decline after suppression of
viremia with highly active antiretroviral therapy. Journal of Virology, 73:6721—
6728, 1999.

R. Kaslow, M. Carrington, R. Apple, L. Park, A. Munoz, A.J. Saah, J.J. Goedert,
C. Winkler, S.J. O’Brien, C. Rinaldo, R. Detels, W. Blattner, J. Phair, H. Erlich,
and D.L. Mann. Influence of combinations of human major histocompatibility
complex genes on the course of HIV-1 infection. Nature Medicine, 2:405-411,
1996.

M. Kwiatkowska, G. Norman, and D. Parker. Algorithmic Bioprocesses : Quan-
titative Verification Techniques for Biological Processes. A. Condon, D. Harel, J.
Kok, A. Salomaa and E. Winfree (editors), Natural Computing Series, Springer,



22 Anil Sorathiya et al.

391-409, 2009.

S.P. Layne, J.L. Spouge, and M. Dembo. Quantifying the infectivity of human
immunodeficiency virus. PNAS, 86:4644—4648, 1998.

H. Li, Y. Cao, L.R. Petzold, and D.T. Gillespie. Algorithms and Software for
Stochastic Simulation of Biochemical Reacting Systems. Biotechnology Progress,
24(1):56-61, 2008.

L. Mansky and H. Temin. Lower in vivo mutation rate of human immunode-
ficiency virus type 1 than that predicted from the fidelity of purified reverse
transcriptase. Journal of Virology, 69:5087-5094, 1995.

D. Mateus, J.P. Gallois, J.P. Comet, and P. LE Gall. Symbolic modeling of genetic
regulatory networks. Journal of bioinformatics and computational biology, 5(2B):
627-640, 2007.

T. Matsuyama, N. Kobayashi, and N. Yamamoto. Cytokines and HIV infection:
is AIDS a tumor necrosis factor disease? AIDS, 5(12):1405-1417, 1991.

C.A. Michie, A. McLean, C. Alcock, and P.C.L. Beverly. Lifespan of human lym-
phocyte subsets defined by CD45 isoforms. Nature, 360:264, 1992.

J.E. Mittler, M. Markowitz, D.D. Ho, and A.S. Perelson. Improved estimates for
HIV-1 clearance rate and intracellular delay. AIDS, 13(11):1415-1417, 1999.
J.M. Murray, G. Kaufmann, A.D. Kelleher, and D.A. Cooper. A model of primary

HIV infection. Mathatical Biosciences, 154(5):57-85, 1998.

G. Ogg, X. Jin, S. Bonhoeffer, P. Moss, M. Nowak, S. Monard, J.P. Segal, Y. Cao,
S.L. Rowland-Jones, A. Hurley, M. Markowitz, D.D. Ho, A.J. McMichael, and
D.F. Nixon. Decay kinetics of human immunodeficiency virus-specific effector
cytotoxic T lymphocytes after combination antiretroviral therapy. Journal of
Virology, 73:797-800, 1999.

G. Pantaleo, C. Graziosi, and A.S. Fauci. The Immunopathogenesis of Human
Immunodeficiency Virus Infection. The New England Journal of Medicine, 328:
327-335, 1993.

A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, and D.D. Ho. HIV-1
dynamics in vivo: Virion clearance rate, infected cell life-span, and viral gener-
ation time. Science, 271:1582-1586, 1996.

B.N. Phillips. Reduction of HIV concentration during acute infection: indepen-
dence from a specific immune response. Science, 271(5248):497-499, 1996.

R.E. Phillips, S. Rowland-Jones, D.F. Nixon, F.M. Gotch, J.P. Edwards, and et al.
Human immunodeficiency virus genetic variation that can escape cytotoxic T
cell recognition. Nature, 354:453-459, 1991.

B. Ramratnam, J.E. Mittler, L. Zhang, D. Boden, A. Hurley, F. Fang, C.A.
Macken, A.S. Perelson, M. Markowitz, and D.D. Ho. The decay of the latent
reservoir of replication-competent HIV-1 is inversely correlated with the extent
of residual viral replication during prolonged anti-retroviral therapy. Nature
Medicine, 6:82—-85, 2000.

B. Ramratnam, R. Ribeiro, T. He, C. Chung, V. Simon, J. Vanderhoeven, A. Hur-
ley, L. Zhang, A.S. Perelson, D.D. Ho, and M. Markowitz. Intensification of
antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and
decreases, but does not eliminate, ongoing virus replication. Journal of Acquired
Immuno Deficiciency Syndrome, 35:33—-37, 2004.

A. Regev and E. Shapiro. Cellular abstractions: Cells as computation. Nature,
419:343, 2002.



An integrated modelling approach for R5-X4 mutation and HAART therapy 23

R.M. Ribeiro, H. Mohri, D.D. Ho, and A.S. Perelson. Modeling deuterated glu-
cose labeling of T-lymphocytes. Bulletin of Mathematical Biology, 64(2):385-405,
2002a.

R.M. Ribeiro, H. Mohri, D.D. Ho, and A.S. Perelson. In vivo dynamics of T cell
activation, proliferation, and death in HIV-1 infection: Why are CD4+ but not
CD8+ T cells depleted? PNAS, 99(24):15572-15577, 2002b.

S.R. Riddell, K.S. Watanabe, J.M. Goodrich, C.R. Li, M.E. Agha, and P.D. Green-
berg. Restoration of viral immunity in immunodeficient humans by the adoptive
transfer of T cell clones. Science, 257:238-241, 1992.

J. Schmitz, M. Kuroda, S. Santra, V. Sasseville, M. Simon, and et al. Control
of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes.
Science, 283:857-860, 1999.

L. Sguanci, F. Bagnoli, and P. Lio’. Modeling HIV quasispecies evolutionary
dynamics. BMC Ewvolutionary Biology, 7(2):S5, 2007.

J.D. Siliciano, J. Kajdas, D. Finzi, T.C. Quinn, K. Chadwick, and et al. Long-
term follow-up studies confirm the stability of the latent reservoir for HIV-1 in
resting CD4(+) T cells. Nature Medicine, 9:727-728, 2003.

A. Sorathiya, A. Bracciali, and P. Lio’. Formal reasoning on qualitative models of
coinfection of HIV and Tuberculosis and HAART therapy. BMC Bioinformatics,
11(1):S67, 2010.

M.A. Stafford, L. Corey, Y. Cao, E.S. Daar, D.D. Ho, and A.S. Perelson. Modeling
plasma virus concentration during primary HIV infection. Journal of Theoretical
Biology, 203(3):285-301, 2000.

X. Wei, S.K. Ghosh, M.E. Taylor, V. A. Johnson, E.A. Emini, P. Deutsch, J.D.
Lifson, S. Bonhoeffer, M.A. Nowak, B.H. Hahn, M.S. Saag, and G.M. Shaw.
Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 373:
117-122, 1995.

A.D. Weinberger, A.S. Perelson, R.M. Ribeiro, and L.S. Weinberger. Accelerated
Immunodeficiency by Anti-CCR5 Treatment in HIV Infection. PLoS Computa-
tional Biology, 5(8):€1000467, 2009.

L. Weinberger and T. Shenk. An HIV feedback resistor: auto-regulatory circuit
deactivator and noise buffer. PLoS Biology, 5:€9, 2007.

F.W. Wiegel and A.S. Perelson. Some scaling principles for the immune system.
Immunology and Cell Biology, 82:127-131, 2004.

D. Wodarz and M.A. Nowak. HIV dynamics and evolution. BioFEssays, 24:1178—
1187, 2002.

L. Zhang, P.J. Dailey, T. He, A. Gettie, S. Bonhoeffer, A.S. Perelson, and D.D.
Ho. Rapid Clearance of Simian Immunodeficiency Virus Particles from Plasma
of Rhesus Macaques. Journal of Virology, 73(1):855-860, 1999a.

L. Zhang, B. Ramratnam, K. Tenner-Racz, Y. He, M. Vesanen, and et al. Quanti-
fying residual HIV-1 replication in patients receiving combination antiretroviral
therapy. New England Journal of Medicine, 340:1605-1613, 1999b.



