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Abstract. Most biological rates and times decrease systematically with
organism body size. We use an ordinary differential equation (ODE)
model of West Nile Virus in birds to show that pathogen replication
rates decline with host body size, but natural immune system (NIS)
response rates do not change systematically with body size. This is sur-
prising since the NIS has to search for small quantities of pathogens
through larger physical spaces in larger organisms, and also respond by
producing larger absolute quantities of antibody in larger organisms. We
call this scale-invariant detection and response. We hypothesize that the
NIS has evolved an architecture to efficiently neutralize pathogens. We
investigate a range of architectures using an Agent Based Model (ABM).
We find that a sub-modular NIS architecture, in which lymph node num-
ber and size both increase sublinearly with body size, efficiently balances
the tradeoff between local pathogen detection and global response using
antibodies. This leads to nearly scale-invariant detection and response,
consistent with experimental data. Similar to the NIS, physical space
and resources are also important constraints on Artificial Immune Sys-
tems (AIS), especially distributed systems applications used to connect
low-powered sensors using short-range wireless communication. We show
that AIS problems, like distributed robot control, will also require a sub-
modular architecture to efficiently balance the tradeoff between local
search for a solution and global response or proliferation of the solution
between different components. This research has wide applicability in
other distributed systems AIS applications.

1 Introduction

Many emerging pathogens infect multiple host species (Woolhouse et al, 2001),
and multi-host pathogens may have very different dynamics in different host
species (Cable et al, 2007). Understanding how quickly pathogens replicate and
how quickly the natural immune system (NIS) responds is important for predict-
ing the epidemic spread of emerging pathogens. We show that pathogen replica-
tion rates decline systematically with host body size, but NIS response times do
not increase significantly. We discuss how the decentralized architecture of the
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immune system facilitates parallel search, enabling NIS response times that do
not increase substantially with body size.

The NIS solves a search problem in both physical space and antigen space.
The length of the search is determined by the time it takes for a cognate B cell
to encounter antigen. This is a difficult search problem since very rare antigen
specific NIS cells have to search for small quantities of antigen throughout the
body. For example, a mosquito injects 105 live virus particles into a vertebrate
host that has billions or trillions of cells (Styer et al, 2007). The research we
describe here suggests that the time for the immune system to detect and neu-
tralize the pathogen is nearly independent of the size of the organism. We call
this scale-invariant detection and response.

This is counter-intuitive, since if we inject a sparrow and a horse with the
same amount of pathogen, the immune system of the horse has to search a
much larger physical space to find the pathogen, compared to the sparrow. This
research models how different potential architectures of the lymphatic network
enable the NIS to mount an effective immune response that neutralizes pathogens
in time that is independent of host body size. Physical space and resource are
also important constraints on Artificial Immune Systems (AIS), especially dis-
tributed systems applications used to connect low-powered sensors using short-
range wireless communication. Our research shows how the optimal design of
such AIS can be informed by architectural strategies employed by the natural
immune system.

In addition to the immune system having to search larger spaces in larger
organisms, larger body size may be expected to slow immune system response
times because the metabolic rate of cells is lower in larger species (Brown et al,
2004). The metabolic rate of each cell is constrained by the rate at which nutri-
ents and oxygen are supplied by the cardio-vascular network. The rate at which
this network supplies nutrients to each cell (Rcell), scales as the body mass
(M) raised to an exponent of -1/4: Rcell ∝M−1/4, such that individual cellular
metabolic rates decrease as the body mass increases (West et al, 1997; Brown
et al, 2004). The metabolic rate of a cell dictates the pace of many biological
processes (Brown et al, 2004). This could affect NIS search times by reducing
movement and proliferation of immune cells (Wiegel and Perelson, 2004). Rates
of DNA and protein synthesis are also dependent on the cellular metabolic rate
and could influence the rate at which pathogen replicates inside infected cells
(Cable et al, 2007).

The possibilities that NIS cells and pathogens may move and proliferate at
speeds independent of mass (∝ M0) or proportional to cellular metabolic rate
(∝M−1/4) lead to four hypotheses, shown in Table 1, as originally proposed by
Wiegel and Perelson (2004).

We combine an ordinary differential equation model, an Agent Based Model
(ABM) and empirical results from experimental infection studies on West Nile
Virus (WNV) (Komar et al, 2003; Bunning et al, 2002; Austgen et al, 2004)
in what is the first test that we are aware of, examining the effects of body



size on pathogen replication and immune system response rates. Our results are
consistent with H2: pathogen replication rate ∝M−1/4 and NIS rates ∝M0.

The remainder of the paper is organized as follows: Section 2 gives an in-
troduction to the relevant immunology; our statistical methods are outlined in
Section 3; Section 4 discusses an ordinary differential equation model of pathogen
growth and immune response; Section 5 discusses the difficulties faced by the
NIS in searching space; we use an ABM to derive scaling relations for NIS cell
detection and migration times in Section 6; the results are summarized in Section
7; Section 8 explains how a sub-modular NIS architecture balances fast search
times and fast communication to recruit NIS cells, leading to scale invariant
detection; Section 9 discusses the applications and implications for this work in
distributed systems AIS, using an example of multi-robot control, and lastly we
make concluding remarks in Section 10.

Table 1. Four scaling hypotheses of pathogen replication and immune system response
rate (Wiegel and Perelson, 2004)

H1: Pathogen replication rate ∝M0 H2: Pathogen replication rate ∝M−1/4

NIS search time ∝M0 NIS search time ∝M0

H3: Pathogen replication rate ∝M0 H4: Pathogen replication rate ∝M−1/4

NIS search time ∝M−1/4 NIS search time ∝M−1/4

2 A Brief Introduction to the Immune System

The NIS has two main components: the innate immune system and the adaptive
immune system. The innate immune system is the first line of defense of an
organism and consists of complement proteins, macrophages and dendritic cells
(DC) (Janeway et al, 2005). The adaptive immune system consists of T helper
cells, B cells and cytotoxic T cells. The area of tissue that drains into a lymph
node (LN) is called its draining region (DR). The lymphatic system collects
extra-cellular fluid called lymph from tissues and returns it to blood (Janeway
et al, 2005). DCs sample the tissue in DRs for pathogens, and upon encountering
them, migrate to the nearest LN T cell area to present antigen to T helper cells.
Cognate T helper cells specific to a particular pathogen are very rare (1 in 106

NIS cells) (Soderberg et al, 2005). Upon recognizing cognate antigen on DCs, T
helper cells proliferate and build up a clonal population in a process called clonal
expansion. While proliferating, T helper cells also migrate to the LN B cell area
to activate B cells. Cognate B cells specific to a particular pathogen are also very
rare. They need to recognize cognate antigen on follicular dendritic cells (FDC)
and also need stimulation from cognate T helper cells. After recognition, cognate
B cells undergo clonal expansion and differentiate into antibody-secreting plasma
cells (Janeway et al, 2005).



This difficult search through the large physical space is facilitated by infected
site inflammation, chemokines and preferential expression of adhesion molecules,
which guide NIS cells to sites of pathogen invasion (Janeway et al, 2005). The
infected site LN recruits NIS cells from other LNs and we refer to the recruitment
time as communication overhead between LNs. Some pathogens do not invoke
all the arms of the immune system, e.g. some bacteria are efficiently eliminated
by the innate immune system. We focus here on pathogens, like WNV, that elicit
an antibody response. However, the arguments put forward in this paper would
apply also to pathogens that evoke a cytotoxic T cell or other response.

We are interested in the physical structure of the NIS, and we hypothesize
that evolutionary pressures have shaped NIS architecture to minimize the time
taken to unite rare antigen-specific NIS cells with their pathogens. This requires
both rapid detection of the initial pathogens and also rapid clonal expansion to
produce sufficient T helper cells to activate a critical number of B cells. These B
cells will then undergo clonal expansion and differentiate into antibody-secreting
plasma cells. Hence this paper focuses primarily on the uptake of antigen by DCs
in DR, recognition of antigen on DCs by T cells in LN, the subsequent process
of clonal expansion and recruitment of B cells from other LNs.

3 Statistical Methods

We use ordinary least squares (OLS) regression to test whether our model predic-
tions are consistent with hypothesized scaling relationships and, where possible,
biological measurements. We calculate the r2 value, where r is the Pearson cor-
relation coefficient and the r2 quantifies the proportion of variation that the
independent variable explains in the dependent variable. We test how empirical
data from literature and results of our simulation scale with mass by taking the
logarithm of both variables and doing an OLS regression. We report whether
the scaling exponent is consistent with -0.25, 0, or both. We test for significance
at the alpha = 0.05 level. The mean is reported after testing all log-transformed
datasets for normality using the Jarque-Bera test (Jarque and Bera, 1987).

4 An Ordinary Differential Equation Model for Viral
Dynamics

A standard Ordinary Differential Equation (ODE) model was developed to ob-
serve how viral proliferation rates and immune response rates scale with body
size, and model results were parameterized to empirical levels of virus in blood
(Banerjee and Moses, 2009). Data on viral proliferation was taken from studies,
which used the same West Nile Virus (WNV) strain to experimentally infect 25
different species with body mass ranging from 0.02 kg (house finch) to 390 kg
(horse), and the viral load was monitored each day in blood serum over a span
of 7 days post infection (d.p.i) (Komar et al, 2003; Bunning et al, 2002; Austgen
et al, 2004). In the model, p = rate of virion production per infected cell, γ =



innate immune system mediated virion clearance rate, ω = adaptive immune
system proliferation rate, and tpv = time to attain peak viral concentration.
Equations (1) to (4) are shown below

dT

dt
= −βTV (1)

dI

dt
= βTV − δI (2)

dV

dt
= pI − c(t)V (3)

c(t) =

{
γ , t < tpv

γeω(t−tpv) , t ≥ tpv
(4)

Target cells T are infected at a rate proportional to the product of their
population size and the population size of virions V , with a constant of pro-
portionality β. The loss in the target cell population is balanced by a gain in
the infected cell population. Infected cells I also die at a rate δI. Virions are
produced by infected cells at a rate p and cleared by the immune system at
the rate c(t)V . The action of the immune system is decomposed into an innate
response (γ) before the virus concentration attains a peak, and an exponential
adaptive immune response after peak due to clonal expansion characterized by
a proliferation rate ω. This paper focuses on p as pathogen replication, and γ
and ω as immune system response.

Empirical data show that time to peak viral concentration (tpv, time between
infection and peak viral concentration in blood) for WNV empirically occurs
between 2 - 4 d.p.i. If this peak were due to target cell limitation, then we
would expect tpv to increase with host mass M since larger animals have more
target cells. However, tpv is likely to be determined by WNV specific antibodies,
which have a critical role in WNV clearance (Diamond et al, 2003). If the peak
is determined by a threshold presence of antibodies, then it implies that tpv is
determined by the time for cognate B cells to recognize antigen, proliferate and
produce antibodies: tpv = tdetect + tprolif . Empirically, tpv is independent of host
mass (Komar et al, 2003). The time tpv is highly conserved, ranging only between
2 and 4 d.p.i. across different hosts that range in mass from 0.02 kg (house finch)
to 390 kg (horses). Since there is no statistically significant relationship between
tpv and M (p-value testing significance of slope not equal to zero - 0.35, 95%
CI on slope - [-0.037, 0.0607]), then the data are consistent with the hypothesis
that tpv ∝M0.

Hence empirical data for WNV supports the hypothesis that NIS response
rates are independent of M . Other empirical data suggests that pathogen replica-
tion rates scale asM−1/4 for a variety of pathogens in a variety of hosts, including
WNV in birds and mammals (Cable et al, 2007). Together, these observations
reject all hypotheses in Table 1, except H2: pathogen replication declines with
M−1/4 and immune response times are invariant with respect to M . Ideally we
would test both hypotheses simultaneously using the ODE model described by



Equations (1) to (4). However, the ODE has too many parameters to simultane-
ously test both hypotheses without overfitting the data. Since our main goal is
to determine the scaling of the NIS response rates and times, we fit the data by
choosing initial parameter estimates consistent with pathogen replication rates
scaling as M−1/4, and then fit the model to the data.

The ODE model was fit to the viral load data for each of 25 species (Komar
et al, 2003; Bunning et al, 2002; Austgen et al, 2004) for days 1 - 7 d.p.i and
the model parameters were estimated using non-linear least squares regression.
The Berkeley Madonna R©(Macey and Oster, 2001) software package was used
to generate the fits and we assigned the parameter value to the mass of the
species to do an OLS regression. The scaling relations found were: p ∝ M−0.29

(the predicted exponent of -0.25 is in the 95% CI, r2 = 0.31, p-value testing
significance of slope = 0.0038). The innate immune system mediated pathogen
clearance rate (γ, day−1) and adaptive immune system cell proliferation rate
(ω, day−1) were independent of host mass M (p-values testing significance of
slope not equal to zero - 0.4238 and 0.7242 respectively, 95% CI on slope - [-0.04,
0.146] and [-0.347,0.4319] respectively). In ongoing work, we are using simpler
models with fewer parameters to simultaneously fit replication and NIS response
and are getting similar predictions without seeding the initial estimates of p to
be proportional to M−1/4. A sample parameter estimate and model prediction
is shown in Table 2 and Fig. 1.

Table 2. Estimated ODE model parameters for great-horned owl (PFU - Plaque Form-
ing Units

V0

(
PFU
mL

)
β

(
1

PFU
mL

day

)
p
(

1

PFUday

)
δ
(

1

day

)
γ
(

1

day

)
ω
(

1

day

)
tpv

(
1

day

)
2.95 10−7 524.97 1.19 91.99 2.7 3

These findings from our ODE model and empirical data are consistent with
hypothesis H2: pathogen replication rates decline in larger hosts, but immune
response is independent of host mass (scale-invariant detection and response).
This raises the question: what mechanisms make NIS rates independent of host
body mass and metabolism? The problem of slower metabolism in larger hosts
can be circumvented in immune response if LNs have privileged metabolism i.e.
they consume energy which is independent of host mass (Wiegel and Perelson,
2004). However, even if immune system cells are not constrained by the lower
mass specific metabolism in larger organisms, it remains to be explained how
larger spaces can be searched in invariant time.



Fig. 1. A sample plot of virus concentration in blood vs. time post infection (solid line
- predicted ODE model output, circles - actual experimental data for a great-horned
owl (data from Komar et al, 2003). Y axis - virus concentration in log10 PFU/mL of
blood, X axis - days post infection.

5 Searching for a Needle in a Haystack

The NIS is confronted with a very difficult search problem. Extremely rare B
cells or T cells specific to a particular antigen (1 antigen-specific T cell in 106

T cells)(Miller et al, 2004) search for initially rare antigen in localized tissue. A
constant number of virions is injected into a host by mosquitoes, regardless of
host size, for WNV (Styer et al, 2007) and other pathogens spread by mosquito
vectors. Our analysis of the ODE model and the empirical tpv suggest that
the NIS in bigger organisms can find this fixed number of virus particles in
approximately the same time as in smaller organisms i.e. a horse finds those
virions in a haystack 10,000 times larger than a sparrow’s haystack, but in the
same time.

By way of introduction we define a completely modular system as one that
is composed of self-contained units that are a fixed size and do not need to
communicate, and a module as a LN and its DR. To simplify our models, we
assume that each LN has a single DR and a DR drains into a single LN. Perfectly
parallel search is easily achievable if immune response is completely modular
at the LN level and systemic communication in the immune system does not
generate more overhead in larger systems. Completely modular systems have no



overhead of communication and hence achieve perfectly parallel search (Amdahl,
1967) since search is in a space of the same size and is replicated in parallel.
However, experimental evidence suggests that the NIS is not modular at the LN
level (see Section 8) (Halin et al, 2005; Altman and Dittmer, 1974; Hildebrandt
et al, 2005).

A conceptually similar example of modularity can be found in the concept of
a protecton (Cohn and Langman, 1990), which is a modular unit of protection
consisting of 107 B cells of different specificities per mL of volume and is iterated
proportional to the size of the organism i.e. if one samples 1 mL of a tadpole and 1
mL of an elephant, we will likely find the same set of 107 B cells but the elephant
will have more copies of the protecton. This modular design reduces the time
taken to build up a population of effector cells by clonal expansion. However,
we would like to point out that the concept of a protecton is theoretical. The
theory states that the NIS could be constructed in a modular fashion. The NIS
cells constituting a protecton however can follow different migration paths and
communicate with cells outside their group. Nevertheless, this further motivates
the question of investigating whether there is modularity at the level of LN
that would help to parallelize the search process. Sections 6 and 7 explore the
empirical architecture of LN organization, and explain why a purely modular
architecture is not optimal.

6 Agent Based Model to Explore How LN Size Affects
NIS Response Time

The general model of immune system dynamics in the LN and its DR are shown
in Fig. 2 and summarized as follows:

1. Stage 1: DCs randomly search for antigen in a local DR. The time taken to
detect antigen is denoted by tDC

detect.
2. Stage 2: DC migrates to a local LN T cell area along a chemotactic gradient.

The time taken to migrate is tDC
migrate.

3. Stage 3: Antigen-specific T cell in a LN detects antigen on DC and the time
taken to detect is tTcell,DC

detect . T cells then activate cognate B cells, which
undergo clonal expansion, to produce antibody-secreting plasma cells.

Total time to detect antigen is given by

tdetect = tDC
detect + tDC

migrate + tTcell,DC
detect (5)

The total time spent in communication (recruiting other NIS cells to the LN)
by the draining infected site LN is explained in detail in the Section 8 and is
shown below

tcomm = Ncomm/ratecomm ∝M/V 2
LN (6)

We use an ABM to investigate how organization of the lymphatic network
minimizes the time to detect antigen tdetect and tcomm, leading to scale-invariant
detection and response.



Fig. 2. Immune system dynamics within a lymph node and its draining region.

We note that the total volume of organs and fluids in mammals both scale
proportional to M (Peters, 1983; West et al, 1997), so in our models, we assume
that LN volume and the total volume of lymph in the entire body are both
proportional to M . Thus, the number of LN multiplied by the volume of each
LN is proportional to M . Additionally, the volume of a DR is determined by
M (which is proportional to body volume, given that tissue density is constant
across animals)(Peters, 1983) divided by the number of LN, i.e., for a fixed size
M , more LN result in a smaller DR for each LN.

In order to explore how the spatial arrangement of LNs affects time to detect
antigen, we use the CyCells (Warrender, 2004, 2003) ABM to simulate viral
replication in a 3D compartment representing the LN and DR. We simulated
DCs, T cells, viruses and LNs, and explicitly modeled DC migration from tissue
to LN along a chemotactic gradient, and random walk of DC and T cells in LN
T cell area. The model parameters are summarized in Table 3.

The assumptions that we make are: a) initially, we ignore migration of antigen
specific B cells from other LNs. We consider how such systemic responses change
the NIS architecture in the next section, b) there is a fixed chemotactic gradient
for DCs to migrate into the LN, c) the pathogen does not replicate until it is in
the LN as is the case for WNV, d) DCs and T cells perform random walks in LN T
cell area (Bajenoff et al, 2007), and e) LNs have preferential metabolism (Wiegel
and Perelson, 2004), i.e. inside a LN, NIS cells have speed and proliferation rates
that are invariant with host mass M .



Table 3. The parameters used in the agent based model together with a short descrip-
tion of their role and default value (L - literature, F - fit to data)

Description Value Source

Side length of cubic compart-
ment (DR)

1000µm to 4000µm L (Halin et al, 2005)

Side length of cubic compart-
ment (LN)

250µm to 1000µm L (Halin et al, 2005)

Duration of a time step 60 sec F

Number of antigen specific B
cells in a lymph node of 106 B-
cells

1 L (Miller et al, 2004)

Density of DC in DR 1250/mm3 L (Banchereau and Stein-
man, 1998)

Amount of antigen in DR 100 L (Styer et al, 2007)

Radius of T cell 10µm L (Miller et al, 2004)

Radius of antigen-presenting
DC

30µm L (Miller et al, 2004)

Speed of T cell 0.1664µm/sec L (Miller et al, 2004)

Speed of antigen-presenting DC
in LN

0.0416µm/sec L (Miller et al, 2004)

Speed of antigen-presenting DC
in DR

0.0832µm/sec L (de Vries et al, 2003)

Sweep and sense distance of
antigen-presenting DC (mea-
sured from cell center)

50µm L (Miller et al, 2004)



7 Results

We first use an ABM to calculate the detection and migration times in Eqn.
(6) for mice and then show how each of these times scale with LN and DR
dimensions. We then use these scaling relations to derive analytical expressions
for detection, migration and communication times for three hypotheses of LN
organization.

7.1 The Base Case Model of a Typical Lymph Node and Scaling Up

A DR was simulated as a cubic compartment of side 4000µm with a cubic LN
of length 1000µm. The mean time taken by DCs to detect antigen and the time
taken by antigen-specific T cell to recognize antigen on DC are shown in Table
4. These are in agreement with experimental observations in mice (Miller et al,

2004). The total time to detect antigen (tdetect = tDC
detect + tDC

migrate + tTcell,DC
detect )

is then around 19 hours which is in agreement with experimental studies in
mice (Itano and Jenkins, 2003) and consistent with our observation that peak
viral concentration occurs in day 2 to 4 for WNV across organisms- since we
hypothesize that the peak occurs due to WNV-specific NIS cells, which must
first have come into contact with WNV in the LN.

The DR and LN regions were then scaled up and we observed how DC detec-
tion, migration and T cell interaction times scaled with the size of the DR and
LN. We simulated 3 cubic DRs: DR of length 1000µm with LN of length 250µm,
DR of length 2000µm with LN of length 500µm, and DR of length 4000µm with
a LN of length 1000µm. The observed scaling relations are in Table 5 and are
consistent with DC migration time scaling with the mean distance from DR to
LN. The time for DC to detect antigen specific T cell in LN was found to be
uncorrelated with the size of the LN.

We now explore 3 competing hypotheses of lymphatic system organization
(Fig. 3).

Table 4. Simulated values in mice for DC antigen detection, DC migration and DC-T
cell interaction

Times Dimensions (DR, LN) Value (simulation)

tDC
detect + tDC

migrate 4000µm, 1000µm Mean = 4.13 hours, SD =
1.4 hours, 10 simulations

tTcell,DC
detect 4000µm, 1000µm Mean = 15.13 hours, SD =

6 hours, 10 simulations

7.2 Model 1: Completely Modular Detection Network

In our first model, we assume that the lymphatic network forms a completely
modular network containing LN of constant size and number of LN proportional



Table 5. Scaling relations for time for DC antigen detection, DC migration and DC-T
cell interaction (rDR = radius of DR, rLN = radius of LN). + - testing for significance
of exponent = 1, § - testing for significance of exponent 6= 0.

Times Dimensions (DR) Scaling Relation Statistics

tDC
detect + tDC

migrate 1000µm, 2000µm, 4000µm ∝ (rDR − rLN )0.91 r2 = 0.98, p < 0.001 +

tTcell,DC
detect 1000µm, 2000µm, 4000µm ∝ r0LN p > 0.05 §

Table 6. Scaling relations for LN and DR parameters and how tDC
migrate depends on

DR and LN dimensions (N - number of LNs, Vlymph - volume of lymph, VLN - volume
of LN). § - taken from empirical data (Altman and Dittmer, 1974)

LN
Archi-
tecture

N Vlymph ∝ N ∗VLN VLN VDR ∝
M/N

tDC
migrate ∝ rDR − rLN tcomm ∝

M/V 2
LN

Model
1

M1 M1 M0 M0 M0 M1

Model
2

M0 M1 M1 M1 M1/3 M−2

Model
3

M1/2§ M1 M1/2 M1/2 M1/6 M−1/2

to organism size M . Using the scaling relationship for tDC
migrate from Table 5

and noting that in this model the LN and DR dimensions do not change with
organism size gives us tDC

migrate ∝ M0. Since the ABM predicts that detection

times in LN do not depend on LN dimensions (Table 5) we have tdetect ∝ M0

and hence the completely modular architecture gives us perfect scale-invariant
detection. The predicted relations are summarized in Table 6.

7.3 Model 2: Non-Modular Detection Network

The second model is the other extreme, that LNs are arranged in a detection
network with a constant number of LN (all animals have the same number of
LNs, however the size of LNs is larger in larger animals). In this model, the DR
volume increases proportional to organism mass, and the average distance that a
DC has to travel from the DR to the LN increases with organism mass as M1/3

(Table 6). Hence tDC
migrate ∝ M1/3 and since DC migration times are around 4

hours in mice, this model predicts that DC migration times in horses (which are
25,000 larger than mice) will be 30 times more than that in mice, which is 5
days in horses and greater than the total observed time for antibody response.
Hence the hypothesis of complete lack of modularity in the NIS is ruled out.



Fig. 3. The 3 different hypotheses of scaling of lymph node size and numbers. (1) Com-
pletely Modular Detection Network: base organism with 2 LNs and another organism
4 times as big with 4 times the number of lymph nodes each of the same size as the
base organism. (2) Non-Modular Detection Network: organism 4 times bigger has the
same number of LNs but each is 4 times bigger. (3) Hybrid Sub-Modular Detection
Network: organism 4 times bigger has more LNs each of which are also bigger.

7.4 Model 3: Hybrid Sub-Modular Architecture

This architecture lies midway between Model 1 and Model 2. In this model LNs
increase in both size and in numbers as animal size increases, and so does the
size of the DR. Table 6 gives the predicted relation for tDC

migrate ∝M1/6. This will
lead to migration times that is only 5 times longer in horses (around 20 hours)
than in mice. It is not implausible that detection should take so long in a horse,
and these slight increases in detection time might be compensated for by slower
rates of exponential growth by the pathogen, as predicted by our ODE model
(Section 4). Hence the sub-modular architecture produces detection times which
are consistent with our empirical observations (scale-invariant detection), since
the difference between 4 hours and 20 hours cannot be resolved on the basis of
measurements of viral load taken every 24 hours.

8 Sub-Modular Architecture Balances Tradeoff Between
Local and Global Communication

The few published empirical data that we could find suggest that the mam-
malian NIS has a hybrid sub-modular architecture (Model 3). There is a trend



of increasing LN size and number as animal size increases, for example, 20g mice
have 24 LN averaging 0.004g each, and humans are 3000 times bigger and have
20 times more LN, each 200 times bigger (Halin et al, 2005; Altman and Dittmer,
1974). Data from elephants (with LN approaching the size of an entire mouse)
and horses (with 8000 LN) also support the hypothesis that LN size and number
both increase with body size (Model 3) (Hildebrandt et al, 2005; Altman and
Dittmer, 1974); however, data for more species are required to statistically reject
any of our 3 models.

We hypothesize that the NIS is submodular (consistent with Model 3) be-
cause it is selected not just to minimize time to detect pathogens (achieved by
Model 1), but also to minimize the time to produce a sufficient concentration
of antibody in the blood (Abcrit). A horse 25,000 times larger than a mouse
must generate 25,000 times more absolute quantities of antibody (Ab) in order
to achieve the same concentration of antibody in the blood (where blood vol-
ume is ∝ M)(Peters, 1983). A fixed antibody concentration is required to fight
infections like WNV that spread systemically through the blood. We can now
consider that the NIS has evolved to minimize two quantities: the time to detect
antigen (tdetect), and the time (tproduce) to produce Ab, where Ab is propor-
tional to M (Ab is the absolute quantity of antibody required to neutralize the
pathogen in blood).

In all pathogens which evoke the adaptive immune system, the rate limiting
step is the recognition of antigen on DCs by antigen-specific T helper cells within
the LN T cell area (Soderberg et al, 2005). The time taken in this recognition
step impacts on other downstream processes like activation of B cells since T
helper cells activated by DCs must migrate to the B cell area to activate B cells.
If organisms of all body sizes activated the same number of initial B cells prior
to clonal expansion, the time for a fixed number of B cells to produce Ab would
be ∝ log2M (since B cells reproduce exponentially through clonal expansion).
For example, since it takes 4 days of exponential growth of activated B cells
to produce sufficient anti-WNV neutralizing antibody in mice (Diamond et al,
2003), then the corresponding time for a horse would be more than 2 months,
should the same number of initial B cells be activated prior to clonal expansion.
This conflicts with empirical data on horses (Bunning et al, 2002). We assume
that the NIS of larger organisms has to activate a larger number of initial B cells
(Bcrit) ∝ M , in order to build up the critical density of antibodies in a fixed
period of time. We now ask how the NIS can activate Bcrit in our three models.

In Model 1, LNs are a fixed size, and therefore contain a fixed number of
B cells, and the smallest LNs (e.g. in mice) contain on the order of a single B
cell that recognizes any particular pathogen. Thus, activating Bcrit to fight an
infection like WNV that is initially localized in a single DR, requires recruiting
B cells from distant LN. We consider this activation of B cells from remote LN
as communication overhead. In general, the number of LNs that a single infected
site LN has to communicate with (Ncomm) in order to recruit more B cells is
proportional to the amount of antibody required to neutralize the pathogen
divided by the number of B cells resident in a LN (NumBcell):



Ncomm ∝ Ab/NumBcell. Noting that Ab ∝M and NumBcell ∝ VLN we have
Ncomm ∝M/VLN

The rate at which new B cells from other LN enter into infected site LN
through the blood or lymphatic vessels (ratecomm) is proportional to the volume
of the LN, ratecomm ∝ VLN (assuming that a larger LN will have proportionally
more high endothelial venules). The time spent in communicating with other
LNs and recruiting and activating other B cells (tcomm) is then given by

tcomm = Ncomm/ratecomm ∝M/V 2
LN (7)

Hence in Model 1, there are increasing costs to communicating with other
LN as the organism gets bigger (tcomm ∝ M); it carries out efficient search but
is not optimized for antibody production.

Model 2 (non-modular detection network) compensates for the limitation of
physically transporting NIS cells over larger distances by making LNs bigger
in larger organisms (VLN ∝ M). This increases the rate of influx of B cells
(ratecomm ∝ VLN ∝ M) and also situates more NIS cells inside the infected
site LN. Since all the necessary NIS cells that need to be activated are within
the LN, this architecture has no communication cost. However, as shown above
(Section 7.3), Model 2 leads to DC migration times that are prohibitively long
for large animals (tDC

migrate ∝M1/3).

The architecture that strikes a balance between the two opposing goals
of antigen detection (local communication) and antibody production (global
communication) is Model 3 (hybrid sub-modular architecture). It minimizes
T = tdetect + tproduce, where tdetect = time taken to detect antigen, and tproduce
= time taken to produce antibody = tcomm (since the time taken to produce
antibodies is equal to the time taken to recruit B cells or communicate with
other LNs; after recruitment starts and cognate T cells recognize antigen on
DCs, T cells can migrate to the B cell area and activate B cells in parallel to the
recruitment process described earlier).

We can solve for the total time (T = tdetect + tproduce) to detect antigen and
produce B cells using Eq. (7) and the scaling relationship for tDC

migrate from Table
5 giving:

T = tDC
detect + a(rDR − rLN ) + tTcell,DC

detect + bM/V 2
LN (8)

where a and b are constants, rDR = radius of DR, rLN = radius of LN, VLN =
volume of LN, M = organism mass, and N = number of LNs. This becomes

T = tDC
detect + cV

1/3
LN + tTcell,DC

detect + bM/V 2
LN (9)

where c is a constant, and rDR and rLN scale as V
1/3
DR and V

1/3
LN respectively

since VLN and VDR scale isometrically, as M/N .

Differentiating with respect to VLN and setting the derivative to zero to find
the minimum T , gives

VLN ∝M3/7 (10)



Since the amount of lymph is proportional to host body mass (N ∗ VLN ∝ M),
then

N ∝M4/7 (11)

These predictions are consistent with the few empirical data we were able to
obtain. We note that Wiegel and Perelson predicted N ∝ M1/2 (Perelson and
Wiegel, 2009), but that analysis did not explicitly consider an optimization to
simultaneously minimize detection time and time to produce the critical number
of Ab.

In summary, due to the requirement of activating increasing number of NIS
cells for antibody production in larger organisms, there are increasing costs to
global communication as organisms grow bigger. The semi-modular architecture
(Model 3) balances the opposing goals of detecting antigen using local com-
munication and producing antibody using global communication. This leads to
optimal antigen detection and antibody production time, and scale-invariant
detection and response.

9 Relevance to Artificial Immune Systems

The natural immune system (NIS) utilizes an architecture that functions within
constraints imposed by physical space. Physical space is also an important con-
straint on artificial immune systems (AIS), especially in applications used to
connect inexpensive low-powered sensors using short-range wireless communi-
cation (Kleinberg, 2007). Such spatial networks are being increasingly used in
environmental monitoring, disaster relief and military operations (Kleinberg,
2007). These networks might operate under constraints of resource and physical
space, similar to an NIS. Although there are systematic differences between an
NIS and an AIS (Timmis et al, 2008), the design of the AIS can be informed by
architectural strategies employed by their biological counterpart.

9.1 Original System

As a concrete example of an application where space is a constraint and scal-
ing of performance with system size is an important design criterion, we con-
sider an AIS approach to control multiple robots tasked with obstacle avoidance
(Nair and Godfrey, 2008). The robots communicate with software agent(s) in a
server upon encountering an obstacle. The agents transmit rule-sets of actions to
robots to help overcome their obstacles, and agents also share information glob-
ally amongst themselves by migrating to other computer servers. Some analogies
between this AIS and an NIS are: the obstacle problem presented by a robot is
analogous to an antigen, the rule-set of actions transmitted by an agent corre-
spond to antibodies, the robots are akin to DCs, software agents correspond to
B cells, the computer servers themselves are analogous to LNs, and the physical
area ”serviced” by a single computer server corresponds to a DR. The system is
diagrammed in Fig. 4 (modified from Nair and Godfrey, 2008).



Fig. 4. (A) Left Panel: a scaled down version of the multi-robot AIS system. The
shaded regions are artificial LNs (computer servers) and the unshaded regions are the
artificial DR. Light arrows denote communication between robots and servers (local
communication) and bold arrows denote communication between servers (global com-
munication). (B) Right Panel: a scaled up multi-robot AIS system with sub-modular
architecture. Note that the number of artificial LNs and their size (the number of robots
they service and the number of software agents they have in memory) both increase
with the size of the system.

9.2 Modifying the Original System Using a Sub-Modular
Architecture

We are interested in an architecture that minimizes the time taken by a robot
to transmit information about an obstacle (local detection), the time taken by
a computer server to transmit back an initial rule-set of actions (local response)
and the time taken by a computer server to communicate good rule-sets to
other agents (global response). There are two potential communication bottle-
necks (communication between robots and computer servers, and communication
between computer servers)

A bottleneck in (local) communication between robot and server demands
many small DRs. A bottleneck in (global) server communication requires a few
large servers. If both local and global communication are constrained, the ar-
chitecture which balances these opposing requirements is sub-modular, i.e. the
number of servers increases sublinearly with system size and the capacity of each
server (bandwidth, memory and number of robots serviced by each server) in-
creases sublinearly with system size (shown in Fig. 4). The four ways in which
communication can be bottlenecked are outlined below:

1. Unlimited Robot Bandwidth, Unlimited Server Bandwidth: Assuming that
robots have unlimited bandwidth to communicate with computer servers
and software agents can communicate with each other over a channel with



unlimited bandwidth, we see that trivially any of the architectures would
suffice.

2. Limited Robot Bandwidth, Unlimited Server Bandwidth: Assuming commu-
nication between robots and computer servers is a bottleneck, mandates a
small fixed size DR i.e. a computer server servicing a small number of robots
to reduce contention and transmission time. Since communication between
servers is not constrained, we can have the number of servers scaling lin-
early with system size, giving Model 1 (completely modular network) as the
optimal architecture.

3. Unlimited Robot Bandwidth, Limited Server Bandwidth: Assuming commu-
nication between computer servers is a bottleneck, stipulates a fixed number
of computer servers to reduce communication overhead. Since communica-
tion between robots and servers is not constrained, we can have the DR size
(number of robots serviced by a single server) and LN size (number of agents
in a single server) scaling with system size. Hence the optimal architecture
is Model 2 (non-modular detection network).

4. Limited Robot Bandwidth, Limited Server Bandwidth: A bottleneck in robot
and server communication demands a small DR and lots of servers, whereas
a bottleneck in server communication requires a large server with fewer to-
tal number of servers. The architecture that balances these opposing re-
quirements is Model 3 (hybrid sub-modular architecture) i.e. the number of
servers and their size (number of robots serviced by each server) increases
with system size (4).

The local communication time within an artificial DR is a function of the
number of robots (d) serviced by a single artificial LN

tlocal = f(d) (12)

The function f will depend on constraints on communication between robots
and servers, influenced, for example, by how robot requests are queued on the
server and the distance over which low power robots can send and receive mes-
sages. The global communication time between artificial LNs is also a function
of the number of LNs in the system (n/d) where n is the total number of robots
in the entire system

tglobal = g(n/d) (13)

The function g depends on communication constraints between servers. For
low latency and high bandwidth connections among servers, tglobal may not scale
appreciably. However, low power servers distributed in remote environments,
may preclude broadcast communication such that tglobal increases with n/d. An
increase in the size of an artificial LN (and hence the number of robots serviced,
d) would reduce tglobal at the cost of tlocal. The size and number of artificial LNs
to balance local and global communication depends on the precise functions f
and g mediating local and global communication.



Although we have provided only one example, this research is widely appli-
cable to other distributed systems AIS applications. In recent work, we have
extended our work to modify peer-to-peer systems with a sub-modular architec-
ture (Banerjee and Moses, 2010).

In summary, understanding the tradeoff between fast search for pathogens
and fast production of antibodies is important for AIS that mimic the NIS. If
the goal of an AIS is only search or detection in physical space with a local
response, then a completely modular design (Model 1) will be optimal. If an
AIS searches in physical space but requires a global response after detection, a
sub-modular architecture (Model 3) optimizes the tradeoff between local search
and global response and will lead to faster search and response times (T =
tlocal + tglobal). Our analysis sheds light on the relationship between physical
space and architecture in resource-constrained distributed systems.

10 Conclusion

Host body size constrains pathogen replication rates due to the physical charac-
teristics of transportation networks that supply infected and normal cells with
energy. Host body size also constrains NIS detection and response times by in-
creasing the physical size of search spaces. The NIS is comprised of rare antigen-
specific immune system cells that it must utilize to search for initially small
numbers of pathogens localized in a large physical space. The NIS solves this
classic search for a ”needle in a haystack” in time that is almost invariant of
the size of the organism. The decentralized nature of the lymphatic network also
helps in efficient pathogen detection by acting as a small volume of tissue where
DCs can efficiently present antigen to T cells. The NIS must also respond to
the antigen by producing antibodies (in the case of WNV) proportional to the
mass of the organism. From empirical data, that time also appears independent
of body size.

We use an ODE model to show that NIS response rates are independent of
host body size and pathogen replication rates decrease with body size. We exam-
ine three different hypothesized NIS architectures to explain the scale-invariant
detection and response times of the NIS. The sub-modular detection network
strikes a balance between the two opposing goals of antigen detection (local
communication) and antibody production (global communication), and is con-
sistent with observed numbers and sizes of LN. This is surprising since many
other components of the NIS, like collections of immune system cells represent-
ing a complete repertoire, are theorized to be constructed in modular units called
protectons (Cohn and Langman, 1990).

The mechanisms used by the NIS to overcome physical constraints of system
size are worthy of consideration in AIS domains. Similar to NIS, physical space
and resource are also important constraints on AIS, especially distributed sys-
tems applications used to connect low-powered sensors using short-range wireless
communication. A sub-modular architecture efficiently balances local and global
communication in AIS problems like distributed robot control that require a



tradeoff between local search for a solution and global response or distribution
of the solution between different components.
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