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Abstract Particle swarm optimisation (PSO) has been successfully applied to
train feedforward neural networks (NNs) in static environments. Many real-world
problems to which NNs are applied are dynamic in the sense that the underlying
data distribution changes over time. In the context of classification problems,
this leads to concept drift where decision boundaries may change over time. This
article investigates the applicability of dynamic PSO algorithms as NN training
algorithms under the presence of concept drift.
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1 Introduction

Due to the nature of the Universe, it is never correct to assume that our environ-
ment is static. Even though such crude approximation may work for a short while,
it will always fail in the long term. Both measurable and hidden parameters of a
problem tend to change over time, causing the once found solutions to loose preci-
sion and deteriorate. Examples of dynamic environments are the stock exchange,
road congestion due to traffic, different price markets, such as electricity or food
markets, and the like. From a mathematical perspective, a dynamic environment
can be visualised as a function with floating optima. An optimum may change its
position and value, existing optima may disappear, or new optima may emerge.
Alternatively, for classification problems, decision boundaries that separate dif-
ferent classes may change over time. In both cases, the task of the optimisation
algorithm is not only to find the optimal solution, but also to detect environment
changes and promptly adapt to them, which might entail dismissing the old solu-
tion entirely. To be applicable in dynamic environments, optimisation algorithms
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developed for static environments have to be changed in order to include these
extra targets.

An example of successfully adapting an algorithm originally developed for
static environments to dynamic environments is particle swarm optimisation (PSO),
a population-based optimisation technique that models social behaviour of a bird
flock (Kennedy and Eberhart, 1995). Due to the success of the PSO in static en-
vironments, numerous variants of PSO that cater for dynamic changes have been
developed to date, including the simple restarting PSO (Eberhart and Shi, 2001),
the charged PSO based on electrostatic principles (Blackwell and Bentley, 2002),
and the quantum PSO based on the model of an atom (Blackwell and Branke,
2006), amongst others.

However, one of the oldest fields of CI research, namely neural networks (NNs)
(Bishop, 1995; Dreyfus, 2005; Zurada, 1992) – powerful mathematical models in-
spired by the human brain and capable of representing any non-linear relationship
between input and output data – have remained conservative towards the emerging
field of optimisation in dynamic environments. It has been assumed that the stan-
dard NN training algorithms that employ gradient descent are implicitly dynamic
(Ismail, 2001; Kuncheva, 2004; Rokach, 2010), and if the NN fails to adapt to the
changes, then restarting the training process would be the most efficient solution.
In order to avoid re-training, redundancy in the form of ensemble classifiers has
also been proposed (Street and Kim, 2001; Tsymbal, 2004; Tsymbal et al, 2008).
The chances of obtaining at least one acceptable solution using ensemble classifiers
are increased by training a number of separate NNs on the same problem over dif-
ferent time periods. However, the ensemble approach does not offer any training
algorithm improvements to make each classifier aware of environment changes.

NNs are widely used in real life (Cournane and Hunt, 2004; Watanasusin and
Sanguansintukul, 2011; Zhao et al, 2011), and it is necessary to ensure that NNs
can be effectively trained in dynamic environments. PSO has been successfully
applied to NN training before (Kennedy et al, 2001; Engelbrecht and Ismail, 1999;
Gudise and Venayagamoorthy, 2003; Van Den Bergh and Engelbrecht, 2000), and
in this work the applicability of dynamic PSOs to NN training in dynamic envi-
ronments is studied. The main focus of this work is on classification problems with
dynamic decision boundaries, further referred to as dynamic classification prob-
lems. The behaviour of both back propagation (Werbos, 1974) and a few popular
dynamic PSOs on different dynamic classification problems is analysed.

The rest of the paper is organised as follows. Section 2 outlines the static PSO
algorithm. Section 3 briefly discusses NNs and back propagation. Section 4 dis-
cusses dynamic environments and the dynamic PSOs used in this study. Section 5
discusses the existing approaches to NN training in dynamic environments. Sec-
tion 6 presents the empirical study conducted. Section 7 provides a summary of the
conclusions arrived at in this study, and lists possible future research directions.

2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a nature-inspired population-based opti-
misation technique. PSO operates on a set (referred to as a swarm) of particles,
where every particle represents a candidate solution to the optimisation problem.
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For an n-dimensional optimisation problem, a particle is represented by an n-
dimensional vector, x, also referred to as particle position. Every particle has a
fitness value, which indicates the quality of the candidate solution represented by
the particle. The n-dimensional search space of the problem is the environment in
which the swarm operates. In addition to a position within the search space, each
particle possesses a velocity vector v, which determines the step size and direction
of the particle’s movement. Social interaction is imitated by forming neighbour-
hoods within a swarm. Each particle stores its own best position found so far, and
can also query neighbouring particles for the best position as discovered by the
neighbourhood thus far. PSO searches for an optimum by moving the particles
through the search space. At each time step, t, the position xy(t) of particle y is
modified by adding the particle velocity vy(t) to the previous position vector:

xy(t) = xy(t − 1) + vy(t) (1)

The velocity vector determines the step size and direction of the particle. The
velocity update equation is given by

vy(t) = ωvy(t − 1) + c1r1(xpbest,y(t) − xy(t)) + c2r2(xnbest,y(t) − xy(t)) (2)

where ω is the inertia weight (Shi and Eberhart, 1999), controlling the influence of
previous velocity values on the new velocity; c1 and c2 are acceleration coefficients
used to scale the influence of the cognitive (second term of Equation (2)) and
social (third term of Equation (2)) components; r1 and r2 are vectors with each
component sampled from a uniform distribution U(0, 1); xpbest,y(t) is the personal
best of particle y, or, in other words, the best position encountered by this particle
so far; similarly, xnbest,y(t) is the neighbourhood best of particle y, or the best
position found by any of the particles in the neighbourhood of particle y. Thus,
each particle is attracted to both the best position encountered by itself so far, as
well as the overall best position found by the neighbourhood so far. A maximum
velocity Vmax (Shi and Eberhart, 1998) is sometimes used to limit (or clamp)
particle velocity in every dimension. Velocity clamping is done to prevent particles
from traversing the search space too fast, since unreasonably big steps prevent
particles from exploiting good regions. Vmax is enforced by restricting vy(t) per
dimension:

vyl(t) =

8

>

<

>

:

Vmax,l if vyl(t) > Vmax,l

−Vmax,l if vyl(t) < −Vmax,l

vyl(t) otherwise

(3)

Various PSO neighbourhood topologies have been proposed in the literature
and applied in practice. A particle’s neighbourhood is determined topologically
rather than spatially, meaning that the distance between particles is determined
by particle’s indices and not the actual position in the search space (Kennedy,
1999). The structure and size of the neighbourhood determines the way in which
information is shared between the particles. Thus, choosing an appropriate neigh-
bourhood topology is crucial for the overall efficiency of the optimisation process.

The Von Neumann topology was first introduced by Kennedy and Mendes
(2002). This neighbourhood topology connects the particles in a grid-like struc-
ture such that every particle connects to its four immediate neighbours. The Von
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Neumann topology can be visualised as a square lattice, the extremities of which
are connected. Peer et al (2003) showed that the Von Neumann neighbourhood
topology maintains swarm diversity due to the fact that the influence of a single
particle propagates through the structure slowly, thus making it harder for a sin-
gle particle to dominate the swarm. It was empirically shown by Li and Khanh
(2003) that PSO utilising the Von Neumann topology (sometimes also referred to
as the fine-grained PSO) performs well in dynamic environments. The fine-grained
PSO managed to outperform PSO with other information sharing strategies on a
selection of high-dimensional dynamic problems (Li and Khanh, 2003). The Von
Neumann neighbourhood topology was used in all experiments conducted for this
study.

3 Neural Networks

A neural network is a simple mathematical model inspired by the learning mecha-
nisms of the human brain. NNs are able to carry out tasks such as pattern recog-
nition, classification, and function approximation (Dreyfus, 2005; Hassoun, 1995;
Patterson, 1998; Rojas, 1996). A NN is essentially a collection of interconnected
neurons aligned in layers. It was theoretically proved in Lawrence et al (1996); Jinli
and Zhiyi (2000) that a NN can represent any non-linear mapping between the
input space and the target space, provided the hidden layer has enough neurons.
The NN itself is just a structure capable of representing a function, requiring to
be trained on a problem in order to learn the mapping between input space and
output space. Training can be supervised, unsupervised or reinforced. This paper
deals with supervised NNs only. Such NNs work on a set of data patterns, where
each pattern is a vector of problem inputs and the corresponding targets. Given
a set of data patterns with known targets, a NN is trained to learn the mapping
between the inputs and the targets. A trained NN is then capable of accurately
approximating outputs for the data patterns it has never seen before. Such ability
is known as the ability to generalise. The generalisation ability of a NN can dete-
riorate if the data set is not representative of the mapping to be learned, contains
noise, if the NN is trained for too long, and if there are too many weights in the
NN. The deterioration of the generalisation ability of the NN due to learning un-
necessary information is known as overfitting. A NN that can not generalise has
no practical use, since such NN will only be able to predict the outputs for the
previously seen patterns. For a more extensive discussion of overfitting, refer to
(Bishop, 1995; Blackwell and Chen, 2009).

The rest of this Section is dedicated to NN training algorithms applied in this
study. Section 3.1 discusses back propagation. Section 3.2 explains how PSO can
be applied to NN training, and outlines the advantages of PSO compared to back
propagation.

3.1 Back Propagation

Many different supervised training algorithms exist. The most commonly used
and popular algorithm is gradient descent back propagation (BP) (Werbos, 1974),
which iteratively adjusts the NN weights to decrease the resulting NN output error.
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The stopping criteria of BP is usually defined by a maximum number of algorithm
iterations, or epochs, by setting a threshold on the classification error, or by setting
a threshold on the mean squared error (MSE) produced by the generalisation set.

BP is essentially a hill-climbing algorithm, and its major disadvantage is sus-
ceptibility to premature convergence on local minima. Another disadvantage of
hill-climbing approaches is the dependence on the starting point of the search,
which would be the initial weights in case of NNs. Population-based algorithms
such as PSO (Engelbrecht and Ismail, 1999; Kennedy et al, 2001) address this
problem by starting the search from multiple random initial positions.

3.2 Particale Swarm Optimiser Training

In order to train a NN using PSO, a fitness function has to be defined, which is
usually simply the MSE. An appropriate representation of candidate solutions also
has to be determined. Each particle is used to represent a candidate solution, which
is a vector of all of the weights and biases of a NN. Every element of a particle
represents a single weight or bias, using floating-point numbers. Therefore, each
particle has a dimension equal to the total number of weights and biases in the
NN. The PSO is then used, as discussed in Section 2, to adjust the weight and
bias values (using the particle velocity and position updates) such that the given
fitness function is minimised.

Recent research has shown PSO to be an effective NN training algorithm (En-
gelbrecht and Ismail, 1999; Gudise and Venayagamoorthy, 2003; Kennedy et al,
2001; Mendes et al, 2002; Van Den Bergh and Engelbrecht, 2000). PSO outper-
formed BP on a selection of classification, function approximation, and prediction
problems. The advantages that PSO offers in comparison with BP are:

– weaker dependence on the initial weight values, since multiple starting points
(i.e. particles) are used in the search process,

– derivative information of the activation functions and the error function is not
used, thus the activation functions and the error function do not have to be
differentiable,

– computationally more efficient, and
– more robust on rugged surfaces, since population-based search is less prone to

premature convergence on local minima than back propagation (Mendes et al,
2002).

The major disadvantages of PSO, as compared to BP, are slower speed of conver-
gence and more algorithm parameters to optimise before optimal performance can
be expected.

4 Dynamic Environments

This section focuses on dynamic classification problems, also referred to as clas-
sification problems with concept drift, and the relevant dynamic optimisation al-
gorithms. Section 4.1 discusses the phenomena of concept drift and its properties.
Section 4.2 lists the existing approaches to concept drift. Section 4.3 discusses the
dynamic PSO algorithms applied to train NNs for problems with concept drift in
this study.
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4.1 Concept Drift

Dynamic environments can often be observed in real life, for example, the stock
exchange, or traffic conditions on roads. Given a problem in such an environment
(e.g. constructing an optimal traffic lights schedule), it is clear that a solution once
found may become suboptimal because certain properties of the environment will
change over time (e.g. increased road congestion during the rush hour will yield a
traffic light schedule optimised for midday road congestion suboptimal). Tempo-
ral properties introduce extra complexity into any problem, since a solution once
found will have to be adapted every time a temporal property changes. In case
of classification, the underlying data distribution may change over time, causing
changes in the decision boundaries. Changes in the decision boundaries will yield
changes in the target concepts, i.e. the mapping between inputs and targets will
change. This phenomena is referred to as concept drift (Schlimmer and Granger,
1986). The term “concept drift” belongs to the field of data mining, and is usually
used to refer to drifting concepts as observed in large data sets and continuous data
sets over time. In case of classification, drifting concepts imply changes in the de-
cision boundaries that separate classes. The boundaries between classes may shift,
new boundaries may appear, and old boundaries may become obsolete. The sever-
ity of concept drift may vary from gradual changes, when the decision boundaries
shift slowly over time, to abrupt changes, when the old boundaries are abruptly
replaced by new boundaries (Tsymbal, 2004). This property of concept drift is
referred to as spatial severity. Figure 1 illustrates spatial severity of changes as
applied to concept drift. Decision boundaries may change continuously, at regular
time intervals, or unpredictably. This property of concept drift is referred to as
temporal severity, or frequency of change.
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Fig. 1 Spatial severity applied to concept drift



Training Feedforward Neural Networks with Dynamic Particle Swarm Optimisation 7

Concept drift complicates the process of concept learning by the NN, because
the learned concepts become obsolete as the actual concepts drift, requiring the
learned model to be revised. If decision boundaries change over time, the NN will
have to detect and track such changes in order to update the learnt model accord-
ingly. Different combinations of temporal severity and spatial severity result in
different types of dynamic environments, ranging from dynamic environments ex-
hibiting infrequent gradual changes, to dynamic environments exhibiting frequent
abrupt changes. Frequent abrupt changes are the hardest to track and adapt to,
since optimisation algorithms are required to make significant adjustments in a
short period of time.

4.2 Optimisation in the Presence of Concept Drift

Most existing approaches to handle concept drift do not deal with the process of
concept learning, but rather with the way in which data is presented to the learner
(Klinkenberg, 2004; Last, 2002; Widmer and M., 1996). Three major categories of
concept drift handling techniques can be distinguished, namely instance selection,
instance weighting, and ensemble learning (Tsymbal et al, 2008).

In a dynamic environment, the learner can never assume the current predictive
model to be final. This implies that the learner must always try to learn new, up-
to-date information from the environment. In case of data mining in presence of
concept drift, the up-to-date information can only be learned from up-to-date data,
and up-to-date data is obtained by instance selection (Last, 2002; Widmer and M.,
1996). The goal of the learner is to discover concepts in data, and if data accurately
represents the existing concepts, the learner’s success will depend entirely on the
learner’s ability to train and generalise. The simplest form of instance selection
is windowing, implemented by fixing the number of instances in the training set
and dismissing the oldest instances as new instances arrive (Widmer and M.,
1996). More complex forms of instance selection that delete noisy, irrelevant and
redundant instances have also been developed (Delany et al, 2005; Last, 2002).
The windowing approach to instance selection applied in this study is described
in more detail in Section 6.

Instance weighting is sometimes used instead of instance selection with the
learning algorithms that have the ability to process weighted instances (Klinken-
berg, 2004). An example of such algorithms are support vector machines (SVMs)
(Cortes and Vapnik, 1995). Instances are weighted according to their age and rel-
evance, and most recent and most relevant instances contribute the most to the
learning process. This study, however, deals with NN training, to which instance
weighting is not applicable.

A more advanced approach that deals with the classifiers rather than the
training data is ensemble learning (Rokach, 2010; Tsymbal, 2004). With ensemble
learning, a selection of classifiers is combined. Each classifier maintains a separate
concept description. The quality of concept descriptions provided by each classi-
fier is measured, and the best-performing classifier has the most influence on the
final classification (Tsymbal, 2004). Worst performing classifiers can be dynami-
cally replaced by new classifiers, which start learning the concept from scratch.
The chances of obtaining at least one acceptable concept description are increased
by training a number of separate classifiers on the same problem over different
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time periods. Much research on handling concept drift using classifier ensembles
was done (Chu et al, 2004; Rokach, 2010; Street and Kim, 2001; Tsymbal, 2004;
Tsymbal et al, 2008). However, the ensemble approach treats individual classi-
fiers as black boxes, and does not look into the learning process of a classifier.
Ensemble classifiers offer no training algorithm improvements to make each clas-
sifier more adaptive and flexible in dynamic environments, assuming redundancy
to be the only effective solution. Redundancy can indeed be effective, however,
the performance of ensemble classifiers can be further improved by improving the
performance of each single classifier (a NN, in case of this study) by adapting
the learning process, or, in other words, the training algorithm, to the drifting
concepts.

As opposed to the aforementioned concept drift handling techniques, this study
deals with the learning process of a single classifier, and the chosen classifier is a
NN. Dynamic NN training algorithms are suggested, and the dynamic properties
of back propagation are studied.

4.3 Dynamic Particle Swarm Optimisation

A number of PSO algorithms for dynamic environments have been developed.
These include the reinitialising PSO (Hu and Eberhart, 2002), the charged PSO
based on electrostatic principles (Blackwell and Bentley, 2002), and the quantum
PSO based on the model of an atom (Blackwell and Branke, 2006), amongst others.
Generally speaking, all dynamic optimisation algorithms have to go through two
phases:

1. Change detection: Some kind of an environment change sensor has to be
implemented to make the algorithm aware of the changes that occur.

2. Response to the change: The existing solution has to be adjusted, if neces-
sary, whenever the environment changes.

Both phases are discussed below in the context of PSO.

4.3.1 Change Detection

In order to respond to a change in the environment, the change has to be detected
by the PSO. Change detection is usually accomplished by making use of a sentry,
which is either a dedicated particle or a fixed point in the search space (Carlisle
and Dozier, 2000; Carlisle and Dozler, 2002). The only difference between a normal
particle and a sentry particle is that the sentry particles keep a record of their
previous fitness values. In the beginning of each iteration, sentry particles are re-
evaluated, and if the difference between the previous fitness and the new fitness
exceeds a certain threshold, it can be assumed that a change has occurred. The
number of sentry particles to use in order to efficiently detect changes is problem
dependent.

4.3.2 Response to the Change

Standard PSO faces the following problems when optimisation in dynamic envi-
ronments is required:
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1. Outdated memory: Once the environment changes, previous values stored
in PSO memory (personal best and global best positions) are no longer rep-
resentative of the new environment Engelbrecht (2005), and thus provide the
swarm with misleading information instead of leading the search towards an
optimum.

2. Loss of swarm diversity: It was formally proved (Clerc and Kennedy, 2002;
Van Den Bergh, 2002) that with a standard PSO, the swarm will gradually
loose diversity from iteration to iteration, until all particles converge on a
weighted average of the personal best and global best positions. Once con-
verged, PSO will not explore any longer, because particle velocities, according
to equation (2), will tend to zero as the distance between the current and the
global best position, as well as the distance between the current and the per-
sonal best position decrease. A converged PSO has no exploration capabilities
and will not be able to adapt to an environment change (Engelbrecht, 2005).

A number of PSO variations have been developed, differing in the way that the
above issues are addressed. A review of dynamic PSO algorithms used in this study
is given below.

Reinitialising PSO: The reinitialising PSO approaches the aforementioned prob-
lems in a simple, naive manner. The outdated memory issue is addressed by re-
evaluating particle positions, as well as the stored global and personal best posi-
tions. Diversity of the swarm is boosted by means of reinitialising the positions,
velocities and personal best positions of a percentage of particles. The particles to
be reinitialised are randomly selected. The disadvantage of this approach is partial
loss of knowledge about the search space due to particle reinitialisation (Hu and
Eberhart, 2002). Reinitialisation ratio is problem dependent and should be chosen
empirically.

Charged PSO: The charged PSO (Blackwell and Bentley, 2002) is based on elec-
trostatic principles. All particles in a charged PSO store a charge, represented by
a positive scalar value. A charge magnitude equal to zero means that a particle
is neutral (i.e. does not bear a charge), and a value greater than zero indicates a
charged particle. Charge magnitude can not be negative, and does not change dur-
ing algorithm execution. Charged particles repel from one another if the distance
between them is small enough. This prevents charged particles from converging
to a single point, thus facilitating exploration and addressing the diversity loss
problem. Repelling forces are introduced by adding an acceleration term to the
standard velocity equation (refer to Blackwell and Bentley (2002)). Acceleration
is inversely proportional to the distance between the charged particles, and the
further two charged particles are from each other, the weaker they will repel. Thus,
repelling forces maintain swarm diversity without yielding divergent behaviour.

The problem of outdated swarm memory is addressed by re-evaluating the
fitness of each particle in the swarm, the personal best of each particle, and the
global best of each neighbourhood, whenever a change occurs.

Quantum PSO: The quantum PSO (Blackwell and Branke, 2006) is vaguely based
on the model of an atom. The orbiting electrons of an atom are replaced by a quan-
tum cloud, where the position of each electron is determined not by its previous
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position and trajectory dynamics, but by a probability distribution instead. A
percentage of particles in the swarm are treated as the “quantum cloud”, and at
each iteration the cloud is randomised in the spherical area with radius rcloud

centred around the global best particle of the swarm. The particles that do not
constitute the cloud behave according to the standard PSO velocity and position
update equations. Since the quantum cloud is completely randomised at each it-
eration, the swarm does not completely converge on a small area; hence swarm
diversity is preserved. The non-quantum particles refine the current solution while
the quantum cloud searches for new and better solutions. In this manner, a good
balance between exploration and exploitation is achieved.

The problem of outdated memory is again addressed by complete re-evaluation
of the swarm memory.

5 Neural Networks in Dynamic Environments

Back propagation is a gradient descent method, which implies a hill-climbing ap-
proach to training (Werbos, 1974). The algorithm minimises the objective function
by following its steepest slope. In order to visualise the behaviour of back propa-
gation in a dynamic environment, it is important to remember that the objective
function being optimised is the error function of the NN, and not the mapping
between inputs and targets as represented by the data set. This mapping is thus
the context in which the error function exists, and changes in the mapping, or, in
other words, in the environment, yield changes in the error function. A change in
the environment may yield an increase in NN error, since the current weight vector
would no longer accurately represent the environment. An increase in NN error
implies that the current position is not necessarily an optimum anymore, thus
the gradient descent may start climbing downhill again. This automatic response
to environment changes makes back propagation an implicitly dynamic training
algorithm.

Implicit dynamism, however, does not eliminate the premature convergence
problem. The error function hypersurface may have flat regions where gradient
descent is inefficient, and local minima where the algorithm may get stuck (Fogel
et al, 1990; Gallagher, 2000; Gudise and Venayagamoorthy, 2003; Hush et al, 1992).
When the error surface changes due to a change in the environment, the current
position of the weight vector may happen to map to a region of the changed error
surface that is hard to optimise, yielding poor adaptation to the change. A few
examples of possible scenarios are given below.

Figure 2(a) illustrates the error function before a change in the environment.
For the sake of clarity, 2-dimensional space is used, where x refers to the current
position of the NN in the weight space. Figure 2(b) illustrates a scenario where a
change in the environment causes the current position to be on the slope of the
error function. Under such scenario, back propagation exhibits implicit dynamism
and will find the new optimum by following the error function slope in the down-
hill direction. Figure 2(c) illustrates a scenario where the changed error function
causes the current position to become a local minimum. As a hill-climber, back
propagation will not be able to escape the local minimum, and will therefore fail
to locate the global minimum. Figure 2(d) illustrates a scenario where the current
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Fig. 2 Back Propagation in dynamic environments

position becomes a position on a flat region after the environment change, once
again preventing gradient descent from discovering the new global optimum.

Thus, even though implicit dynamism of back propagation can not be alto-
gether denied, back propagation should not be relied upon as an ultimate dynamic
training algorithm, since a number of dynamic scenarios exist under which back
propagation will fail to either detect or track the changes.

The success of back propagation is also highly dependent on the initial set of
weights (Fogel et al, 1990; Gudise and Venayagamoorthy, 2003; Porto and Fogel,
2002), and choosing a good starting point is crucial for algorithm convergence. In
the context of dynamic environments, the surface of the error function changes,
and the success of adaptation after each change also depends on the current weight
vector. Thus, the algorithm’s success becomes dependent not only on the initial
weights, but also on the current weights.

This study evaluates the implicit dynamism of back propagation. Two variants
of back propagation were applied on a selection of dynamic classification problems:
standard back propagation (BP) and reinitialising back propagation (RBP). RBP
applied the standard BP algorithm between environment changes, and completely
reinitialised NN weights and biases whenever an environment change occured.
RBP was used to test the supposition, made in Chu et al (2004); Rokach (2010);
Street and Kim (2001); Tsymbal (2004), that restarting back propagation after
environment changes is an efficient approach to NN training in the presence of
concept drift.

Due to the pitfalls described above, back propagation can not be relied upon
as the best possible NN training algorithm for dynamic classification problems.
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Therefore, the authors of this study suggested applying dynamic PSO to train
NNs in the presence of concept drift.

6 Empirical Analysis

This section provides a description of the experimental procedure followed and ex-
perimental results obtained for this study. This study hypothesises that dynamic
PSO algorithms can be applied to efficiently train NNs in the presence of con-
cept drift. To test this hypothesis, a number of dynamic PSO algorithms were
applied to train NNs on a selection of dynamic classification problems. Namely,
the reinitialising PSO (RPSO), the charged PSO (CPSO), and the quantum PSO
(QPSO). The research field of dynamic PSO is still relatively young, and no stan-
dard or optimal approach to optimisation in dynamic environments with PSO has
been identified yet (Duhain, 2011). The three algorithms listed above were chosen
based on their relative popularity. The RPSO was chosen as the most natural,
naive way of adapting the standard PSO to dynamic environments. The CPSO
and the QPSO were chosen due to the relatively solid theoretical and empirical
research behind them that showed these algorithms to be effective on a selection of
dynamic optimisation problems (refer to Blackwell and Branke (2006); Blackwell
and Bentley (2002); Blackwell (2005); Li et al (2008); Rakitianskaia and Engel-
brecht (2008, 2009)). The performance of dynamic PSO algorithms is compared
to the performance of BP and RBP, and the behaviour of these algorithms in the
presence of concept drift of varying spatial and temporal severity is investigated
on five different dynamic classification problems.

The rest of the section is structured as follows: Section 6.1 describes the exper-
imental procedure followed. Section 6.1 discusses the data sets used. Performance
measures are described in Section 6.2. Experimental results are presented in Sec-
tion 6.3.

6.1 Experimental Procedure

This section describes the experimental procedure followed. Section 6.1.1 provides
a description of the parameter optimisation process. Section 6.1.2 describes how
problems with concept drift were simulated.

6.1.1 Parameter Optimisation

An iterative approach to algorithm parameter optimisation was used. Algorithm
parameters were optimised one at a time. For each parameter, the algorithm was
tested under a selected range of possible values for this parameter, while the other
parameters remained fixed. In order to keep the optimisation process statistically
sound, 30 runs were conducted for every value in the chosen discrete range. The
parameter value yielding the lowest average training and generalisation errors was
subsequently chosen as optimal, and optimisation proceeded to the next parameter.
For optimisation of the remaining parameters, all the parameters already optimised
were fixed to their best values. The discrete parameter value ranges used for BP
and RBP are listed in Table 1, and the discrete parameter value ranges used for
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the dynamic PSO algorithms are listed in Table 2. Optimal parameters obtained
for each problem are listed in Table 3. All NNs used a single hidden layer. For
all dynamic PSO experiments, the inertia weight was set to 0.729844, while the
values of the acceleration coefficients were set to 1.496180. This choice is based
on Eberhart and Shi (2000), where it was shown that such parameter settings
facilitate convergent behaviour. Although preservation of diversity is vital in the
context of dynamic environments, convergent behaviour is still necessary, since a
solution must be found in between environment changes. Initial particle velocities
were set to 0. For the CPSO and the QPSO, 50% particles were labelled charged
and quantum, respectively.

Table 1 Parameter Ranges for BP and RBP

Parameter Range

NN weight initialisation range wint {[−1, 1], [−2, 2], [−3, 3], [−4, 4], [−5, 5]}
Learning Rate η {0.1, 0.3, 0.5, 0.7, 0.9}
Momentum α {0.1, 0.3, 0.5, 0.7, 0.9}

Table 2 Parameter Ranges for the dynamic PSOs

Parameter Range

Vmax {0.1, 0.5, 1, 2, 5, 10, 20, +∞}
Swarm Size SP {15, 20, 30, 50}
NN weight initialisation range wint {[−1, 1], [−2, 2], [−3, 3], [−4, 4], [−5, 5]}
RPSO: Reinitalisation Ratio ̺ {0.25, 0.5, 0.75, 1.0}
CPSO: Charge Magnitude Q {0.1, 0.3, 1, 5, 10, 20}
QPSO: Radius R {1, 1.5, 2, 3, 5, 10}

6.1.2 Simulating Concept Drift

In this study, one real-life data set was used, and another four data sets were
artificially generated to simulate dynamic classification problems of varying di-
mensionality and decision boundary shape. The process of generating a data set
with concept drift applied in this study is described below.

M points were randomly chosen from the specified domain. M data patterns
were then obtained by assigning a target classification to every input vector accord-
ing to current problem-specific decision boundaries. The boundaries were updated
N times, thus simulating N environment changes. After every such change, the
target classification of every pattern, p = 1, . . . , pM , was updated accordingly, and
the updated M patterns were appended to the previous M patterns. Thus, the
total number of data patterns in a complete data set is calculated as follows:

P = M + M ∗ N

Classification problems with concept drift were simulated by sliding a window
over such a data set. In this study, the size of the window was set to M , thus
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Table 3 Optimal Parameter Values

SEA Moving Dynamic Sliding Electricity
Concepts Hyperplane Sphere Thresholds Pricing

BP wint [−5; 5] [−2, 2] [−3, 3] [−1, 1] [−1, 1]
η 0.1 0.1 0.1 0.1 0.1
α 0.7 0.7 0.3 0.1 0.7

RBP wint [−5; 5] [−2, 2] [−3, 3] [−1, 1] [−1, 1]
η 0.1 0.1 0.1 0.1 0.1
α 0.7 0.7 0.3 0.2 0.7

RPSO wint [−3; 3] [−1, 1] [−1, 1] [−1, 1] [−1, 1]
Vmax 0.5 0.5 1 1 2
SP 50 30 50 50 30
̺ 0.25 0.5 0.5 0.75 0.25

CPSO wint [−3; 3] [−2, 2] [−5, 5] [−1, 1] [−1, 1]
Vmax 0.5 0.5 0.1 2 5
SP 30 50 50 50 30
Q 0.3 20 5 20 0.1

QPSO wint [−1; 1] [−1, 1] [−1, 1] [−1, 1] [−3, 3]
Vmax 0.5 0.1 0.1 2 5
SP 50 30 20 50 50
R 1.5 1 1.5 2 1.5

at every iteration the NN was presented with data patterns which represented a
complete set of M points. The data patterns inside the window were split into two
subsets for training and generalisation purposes: 80% of the patterns were used as
a training set, DT , and the other 20% were used as a generalisation set, DG. Since
the aim was to simulate decision boundaries that change over time, the original
data set was not shuffled to preserve the pattern order. The patterns were only
shuffled inside the window before being split into DT and DG to prevent NNs from
learning the pattern order instead of the classification boundaries.

Shifting the window by S patterns implies discarding the first S patterns from
the window, and appending the next S patterns from the data set to the window.
The window step size, S, controls the spatial severity of changes: changes become
more drastic for larger values of S, since a lot of new information is added while a
lot of previously valid information is discarded. If the decision boundaries change
every M patterns in the data set and the window size is equal to M , a shift by
S < M patterns may introduce new decision boundaries into the window while
still keeping the data patterns classified according to the previous decision bound-
aries inside the window. An example to illustrate this process is shown in Figure
3. Here, M = 6 and S = 4. When the window shifts, four patterns, {p1, p2, p3, p4},
are discarded, and new patterns {p′1, p

′

2, p
′

3, p
′

4} are added, while p5 and p6 re-
main in the window. Thus the shifted window contains patterns representing the
environment both before and after the dynamic change, or, in other words, the
window contains patterns representing both the old decision boundaries and the
updated decision boundaries. As the window slides along the data set, more pat-
terns classified according to the previous decision boundaries are replaced by the
patterns classified according to the current decision boundaries, until the previous
boundaries are completely discarded. This implies that the training algorithm will
often have to deal with more than one decision boundary within the data set,
with a possibility of conflicting boundaries that contradict each other, as shown in
Figure 4. Conflicting boundaries make dynamic adaptation more challenging for
the training algorithms.
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Fig. 3 Introducing new decision boundaries by window shifts

Fig. 4 Conflicting boundaries

Two major characteristics of a dynamic problem are: (a) spatial severity of
changes, and (b) temporal severity of changes, as described in Section 4. In order
to provide a representative coverage of the existing types of concept drift, different
combinations of spatial severity and temporal severity were simulated, resulting in
a number of different dynamic scenarios. Every dynamic scenario is characterised
by two variables:

– The step size, S, which refers to the number of patterns by which the window
shifts in order to simulate an environment change. This attribute determines
the abruptness of the environment change, or, in other words, the level of
spatial severity.

– The number of algorithm iterations, F , that the current training algorithm is
allowed to run before the window shifts. This attribute controls the frequency
of changes, or, in other words, the level of temporal severity.

Since an exhaustive evaluation of the considered training algorithms under all
possible combinations of values of the above two variables is practically infeasible,
discrete ranges of values were considered for both variables on every problem.
All possible combinations of values in these discrete ranges were considered. The
discrete ranges were problem-specific, and are reported later in this section.

For every scenario considered, every training algorithm had to traverse the
entire data set. Since both the step size and the frequency of changes varied from
scenario to scenario, every scenario required a different total number of iterations
to traverse the entire data set. The number of iterations is calculated as

T = F ∗
P − Pw

S
+ F (4)
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where F is the number of iterations on a window between the window shifts (i.e.
change frequency), P is the total number of patterns in the data set, Pw is the
window size, and S is the step size. The collective mean error results and the
corresponding standard deviation values reported in this work were obtained after
the number of iterations as given by equation (4). The window size was problem-
dependent, and the values of both F and S were determined by the scenario in
use.

6.2 Measuring NN Performance in Dynamic Environments

In dynamic environments, the algorithms must not only find an optimum, but
also detect changes in the optimum, track the optimum, and locate new better
optima as they appear. Clearly, standard performance measures that reflect the
current algorithm state only do not provide any information regarding the change
detection and response to the change exhibited by the algorithm, and thus cannot
be used in dynamic environments. This is why Morrison (2003) suggested that
a representative performance measure in a dynamic environment should reflect
algorithm performance “across the entire range of landscape dynamics”. Morrison
(2003) proposed that the collective mean fitness, or the average over all previous
fitness values, be used as given by:

Fmean(T ) =

PT
t=1

F (t)

T
(5)

where T is the total number of iterations, and F (t) is algorithm fitness after
iteration t. The term “fitness” is borrowed from the evolutionary computation
field, and refers to an applicable measure that reflects the quality of the current
solution. In case of NN training, the MSE is usually used as a fitness measure.
Collective mean fitness represents the entire algorithm performance history, hence
it gives an indication of the adaptive properties of the algorithm. This measure
allows for convenient statistical comparison between algorithms, and does not
depend on any additional knowledge about the search space such as the location
of the global optimum. The collective mean fitness was used as a performance
measure in all the experiments conducted in this study.

When referring to fitness in the context of NNs, it should be clarified what
exactly is meant by this term. In the current work, the MSE calculated over the
data set during each epoch was used to measure algorithm fitness at each iteration.
This measure reflects the quality of a NN, i.e. the NN’s ability to recognise the
training patterns for the training MSE (ET ), and the NN’s ability to generalise for
the generalisation MSE (EG). It was theoretically shown by Wan (1990) that min-
imisation of the MSE consequently minimises the probability of misclassification.
Thus, MSE does not loose its meaning when classification problems are concerned.

A study of overfitting is outside the scope of this work, thus no measures
were taken to prevent overfitting of training data. Counter-overfitting techniques
developed to date were designed for static problems (Lau, 1994; Williams, 1995;
Zhang, 2005), and, to the author’s knowledge, no studies of overfitting in the
context of dynamic environments were published to date. Existing techniques may
require modifications in order to become applicable to dynamic problems. The
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generalisation error was nonetheless recorded throughout the experiments and
reported in the analysis that follows.

All reported results are averages over 30 independent simulations. The next
section describes the data sets used in the experiments.

6.3 Dynamic classification problems

Four synthetically generated classification problems and one real-life classification
problem were used in the experiments. The considered problems are discussed in
this section.

6.3.1 SEA Concepts

This problem was adopted from Street and Kim (2001); Tsymbal et al (2008). The
data set consisted of 10 000 patterns, obtained by randomly generating 10 000
3-dimensional points, {x1,x2, . . . ,x10000},xi ∈ [0; 10)3, i = 1, . . . , 10 000. The
generated points were divided into four equal concept blocks, 2500 points each,
as illustrated in Figure 5. In each block, the class label of each data point x was
determined as follows:

Classification(x) =



Class A if x1 + x2 ≤ θ

Class B otherwise,
(6)

where x1 and x2 are the values of the first two dimensions, and θ is the threshold
value. Thus, only the first two dimensions determined the class label of a point.
Threshold values of 8, 9, 7, and 9.5 were used in the four blocks, and 10% class
noise was inserted into each block by changing the class label of randomly chosen
data patterns in that block. The patterns were then recorded into a single data set
in sequential order, block by block, resulting in a data set of 10 000 patterns. Just
as with the previous problems, a window was slided over the data set to simulate
a dynamic environment. The window size was fixed to 2500 patterns, equal to the
size of a concept block.

It should be noted at this point that, in case of NN training, the dimensionality
of the optimisation problem is determined by the total number of weights and
biases, and not by the dimensionality of the input patterns. A NN comprises
of three layers - an input layer, a hidden layer, and an output layer. In all the
experiments conducted for this study, fully connected NNs were used, thus the
total number of NN weights for each problem, taking bias units into account, is
calculated as follows:

nw = (I + 1)J + (J + 1)K (7)

where nw is the total number of NN weights, I is the number of inputs, J is the
number of hidden units, and K is the number of outputs. A NN with 3 input
units, 4 hidden units and 1 output unit was trained on the SEA concepts problem.
According to equation (7), the total number of weights and biases, corresponding
to the dimensionality of the problem, was equal to 21.

Twenty different dynamic scenarios outlined in Table 4 were applied to the
SEA concepts problem. As shown in Table 4, the values for both the frequency of
change and the step size increase non-linearly, because the influence of parameter
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Fig. 5 SEA Concepts

values was expected to be stronger for small values. Change frequencies of 10, 50,
100, and 250 iterations were considered. Different levels of spatial severity were
simulated by shifting the sliding window by 50, 100, 500, 1000, and 2500 patterns
per step.

Table 4 Dynamic Scenarios for the SEA Concepts Problem

Frequency (F) Step Size (S)

50 100 500 1000 2500
10 A1 A2 A3 A4 A5
50 B1 B2 B3 B4 B5
100 C1 C2 C3 C4 C5
250 D1 D2 D3 D4 D5

6.3.2 Moving Hyperplane

The hyperplane is given by
n

X

i=1

aixi + c = a0,

where n is the number of dimensions over which the hyperplane is defined, ai

for i = 1, 2, . . . , n are linear coefficients, and c is a constant. All points satisfying
Pn

i=1
aixi+c > a0 are labelled as class A, and all points satisfying

Pn
i=1

aixi+c ≤
a0 as class B. For the purpose of this study, n was set to 10, yielding a 10-
dimensional hyperplane. The linear coefficients and c are real numbers chosen from
the interval [0, 1]. A data set was generated according to the procedure described
in Section 6.1.2, where the number of data points, M , was set to 1000, and the
number of environment changes, N , was set to 10. A set of M 10-dimensional
points, {x1,x2, . . . ,x1000}, was randomly generated such that xj ∈ [0, 1]10, j =
1, . . . , 1000. The hyperplane was generated N times by uniformly randomising its
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coefficients, {a1, a2, . . . , aN} ∈ [0, 1], the constant c ∈ [0, 1] and the threshold
value, a0 ∈ [0, 1]. Target classification of M patterns was updated N times, and
every time the updated patterns were appended to the data set, yielding a data
set of 11 000 patterns. The size of the sliding window was set to 1000, equal to M .

A NN with 10 input units, 6 hidden units, and a single output unit was used for
the moving hyperplane problem. According to equation (7), the total number of
weights for this problem was equal to 73. Thus, the dimensionality of the moving
hyperplane problem was 73.

The moving hyperplane problem was considered under sixteen different dy-
namic scenarios. Parameter settings corresponding to each dynamic scenario are
listed in Table 5.

Table 5 Dynamic Scenarios for the Moving Hyperplane

Frequency (F) Step Size (S)

50 100 500 1000
10 A1 A2 A3 A4
50 B1 B2 B3 B4
100 C1 C2 C3 C4
250 D1 D2 D3 D4

6.3.3 Dynamic Sphere

This dynamic classification problem was obtained by generating a 3-dimensional
hypersphere and using it to divide the space into two mutually exclusive classes.
The hypersphere is given by

n
X

i=1

(xi + bi) = R
2
, (8)

where R is the radius of the sphere, and b is the centre of the sphere. For the
purpose of this study, n was set to 3. A 3-dimensional point outside the hypesphere
is labelled as class A, and a 3-dimensional point inside the hypersphere is labelled
as class B. A data set was generated according to the procedure described in
Section 6.1.2, where the number of data points, M , was set to 1000, and the
number of environment changes, N , was set to 10. A set of M 3-dimensional points,
{x1,x2, . . . ,x1000} was randomly generated such that xj ∈ [0, 1]3, j = 1, . . . , 1000.
The sphere was generated N times by randomising its centre point, b ∈ [0, 1]3,
and radius, R ∈ [0, 1]. Target classification of M patterns was updated N times,
and every time the updated patterns were appended to the data set, yielding a
data set of 11 000 patterns in total. The size of the sliding window was set to 1000.

A NN with 3 input units, 4 hidden units and 1 output unit was trained on the
Dynamic Sphere problem. The total number of weights and biases, corresponding
to the dimensionality of the problem, was equal to 21, according to Equation (7).

Sixteen different dynamic scenarios as described in Section 6.3.2 and outlined
in Table 5 were applied to the dynamic sphere problem. Parameter settings cor-
responding to each dynamic scenario are listed in Table 5.
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6.3.4 Sliding Thresholds

For this problem, the Cartesian space was subdivided into three classes by means
of two parallel linear thresholds. The two parallel linear thresholds, f1(x) and
f2(x), are given by

f1(x) = t1

f2(x) = t2

t1 < t2,

where t1 and t2 are constant values, therefore f1(x) and f2(x) are parallel vertical
lines. Thus, a 2D point can be classified based on its x-axis component only (x1).
Classification was done as follows:

Classification(x) =

8

<

:

Class A if x1 ≤ t1
Class B if x1 ≥ t2
Class C otherwise

(9)

A data set was generated according to the procedure described in Section
6.1.2, where the number of points, M , was set to 1000, and the total number
of environment changes, N , was set to 10. A set of M 2-dimensional points,
{x1,x2, . . . ,x1000} was randomly generated such that xj ∈ [0, 1]2, j = 1, . . . , 1000,
and each point xj was assigned a class value according to equation (9). Thresholds
were generated N times by setting t1 and t2 to random numbers from the interval
[0, 1] such that t1 < t2. Target classification of M patterns was updated N times,
and every time the updated patterns were appended to the data set, yielding a
data set of 11 000 patterns in total. The size of the sliding window was set to 1000.

A NN with 2 input units, 3 hidden units, and 3 output units was trained on
the Sliding Thresholds problem. According to equation (7), the total number of
weights and biases, corresponding to the dimensionality of the problem, was equal
to 24.

Sixteen different dynamic scenarios as described in Section 6.3.2 and outlined
in Table 5 were considered for the sliding thresholds problem. Sliding thresholds
is a 2D problem that has only linear decision boundaries. Although linear decision
boundaries are trivial to learn, this problem was rather difficult to optimise due to
the sliding window approach used to simulate dynamic environments. As discussed
in Section 6.1.2, a dynamic environment is simulated by sliding a window over a
large data set. If the data set is traversed in order, the classification of the data
patterns will change every M = 1000 patterns. The previous problems discussed
dealt with one decision boundary per 1000 patterns. Thus, for the previous prob-
lems considered, a sliding window of N patterns, N ≤ M , contained at least one
decision boundary and at most two. For the sliding thresholds problem, there were
two decision boundaries per every 1000 data patterns. After every 1000 patterns
traversed, two new boundaries were introduced. Therefore, for the sliding thresh-
olds problem, the sliding window contained at least two decision boundaries and
at most four. Although linear boundaries are trivial, it can be problematic for the
training algorithm to simultaneously detect two new boundaries. Furthermore, old
boundaries and new boundaries may be mutually exclusive, i.e. classify the same
pattern into different classes, since new boundaries were generated randomly.
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6.3.5 Electricity Pricing

This problem used a real-life data set based on the electricity market in the Aus-
tralian state of New South Wales. The data set was adopted from Harries (1999).

Prices in the electricity market are determined by matching the present demand
for electricity with the least expensive combination of electricity from all available
power stations. Both market prices and electricity price schedules published by
each power station are frequently recalculated and updated. Market prices depend
on both demand and supply of electrical power. Significant factors affecting the
demand are season, weather, time of day and central business district population
density. The supply is affected mainly by the number of active electricity genera-
tors. Thus, this environment is subject to both regular long-term changes, such as
seasonal changes, and irregular short-term changes, such as weather fluctuations
(Harries, 1999).

A dynamic classification problem was constructed based on the changing elec-
tricity market price. Six parameters on which the price is dependent were identified.
These include day of week, time of day, and electricity demand estimates. Param-
eter values were recorded every half an hour, from 7 May 1996 to 5 December
1998. In this manner, a data set of 27 552 samples was recorded. Each pattern was
labelled as either class A or class B. The class label identified whether the current
price is higher (class A) or lower (class B) than a moving average price over the
last 24 hours. The task of the NN was thus to predict whether the price will go
up or down based on the given input values.

Dynamic environments were simulated by sliding a window over the data set.
The original temporal order of the data was preserved, and the patterns were
shuffled only inside the window. The size of the window was set to 1000 patterns.
A NN with 6 input units, 6 hidden units and 1 output unit was trained on the
electricity pricing problem. According to equation (7), the total number of weights
and biases, corresponding to the dimensionality of the problem, was equal to 56.

Sixteen different dynamic scenarios as described in Section 6.3.2 and outlined
in Table 5 were applied to the electricity pricing problem.

6.4 Analysis of Empirical Data

Table 6 lists the average ranks obtained by the considered algorithms under the five
considered problems. Algorithms were ranked based on their collective mean ET

and EG values reported in Appendix A, taking p-values reported in Appendix B
into account. It follows from the overall average ranks in Table 6 that, on average,
all three dynamic PSO algorithms obtained a higher rank than both BP and
RBP. Thus, it can immediately be concluded that the dynamic PSOs proved to
be a viable alternative to BP and RBP. RBP obtained the lowest average rank,
thus proving to be the least successful approach to NN training on problems with
concept drift. Figure 6(a) illustrates the EG profiles obtained by the algorithms
on the electricity pricing problem under infrequent gradual changes. Figure 6(a)
illustrates that RBP’s error not only fluctuated severely, but also failed to reach
a minimum EG as obtained by BP and the dynamic PSOs. RBP was the only
algorithm which made no use of previously learned information when a change
occurred, and started the search for decision boundaries anew every time the
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Table 6 Algorithm Ranking for the SEA Concepts Problem

Problem BP RBP RPSO CPSO QPSO

SEA R(ET ) 2.925 4.775 2.2 2.9 2.2
Concepts R(EG) 2.6 4.625 2.675 2.55 2.55

Moving R(ET ) 4 2.09375 3.1875 2.5 3.21875
Hyperplane R(EG) 2.90625 4.71875 2.75 2.09375 2.53125

Dynamic R(ET ) 3.6875 1.34375 2.0625 3.6875 4.21875
Sphere R(EG) 2.4375 3.25 2.71875 3 3.59375

Sliding R(ET ) 4.75 4.03125 1.75 2.28125 2.1875
Thresholds R(EG) 4.4375 4.3125 1.71875 2.3125 2.21875

Electricity R(ET ) 2.5625 5 3.34375 2.28125 1.8125
Pricing R(EG) 2.5625 5 3.0625 2.28125 2.09375

Average R(ET ) 3.585 3.44875 2.50875 2.73 2.7275
Rank R(EG) 2.98875 4.38125 2.585 2.4475 2.5975

environment changed. However, previously learned information remained useful
when changes were spatially gradual (i.e. only a few new patterns were added to
the sliding window), or when the new patterns were derived from the previous
patterns (e.g. electricity pricing problem). Thus, the algorithms which made use
of previously learned information had an advantage over RBP.

The ranks in Table 6 also show that RBP’s ET rank was often higher than the
corresponding EG rank, indicating that RBP did not generalise well. Figure 6(b)
illustrates EG profiles obtained by the algorithms on the moving hyperplane prob-
lem, under a semi-abrupt scenario, where exactly one half of the sliding window
was replaced by new patterns whenever a change occurred. Figure 6(b) illustrates
that RBP performed comparably well to other algorithms when the sliding window
contained a single concept (complete replacement of patterns inside the window),
but failed to generalise when two bordering and possibly conflicting concepts were
present in the sliding window. Thus, RBP exhibited a strong sensitivity to the
presence of stale data inside the sliding window. Poor generalisation of RBP can
again be attributed to RBP’s “forgetfulness”: lack of memory of previous solutions
prevented RBP from discerning between old and new data patterns.

Figure 6(c) illustrates a scenario under which both BP and RBP failed to op-
timise decision boundaries between environment changes. As discussed in Section
5, BP will fail to adapt to an environment change if the change of the error func-
tion landscape causes the current position of the NN weight vector to be in an
unfruitful region such as a plateau of a local minimum. The failure of BP to adapt
to changes illustrated in Figure 6(c) indicates that these changes trapped BP in a
region from which BP could not escape. RBP was reinitialised after every change,
thus RBP did not become trapped in such unfruitful regions as easily as BP. How-
ever, Figure 6(c) illustrates that RBP was also susceptible to stagnation between
changes, and performed significantly worse than the dynamic PSOs. Stagnation of
RBP is attributed to the strong dependency of any hill-climbing algorithm on the
starting point of the search: the RBP failed to find the optimum when the weight
vector was located in an unfruitful region of the search space by reinitialisation.

Table 6 indicates that RPSO obtained the top rank on the sliding thresh-
olds problem, where, as explained in Section 6.3.4, multiple conflicting boundaries
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Fig. 6 Generalisation error profiles over time

could have been present. Figure 7(a) illustrates algorithm EG profiles obtained for
the sliding thresholds problem under scenario C1, and indicates that the RPSO’s
EG profile peaked lower than that of the other algorithms. The RPSO is the least
memory-dependent of the three dynamic PSOs considered, because RPSO reini-
tialises a percentage of randomly selected particles, not sparing the neighbourhood
best particles if these particles happen to be chosen for reinitialisation. Weaker de-
pendence on memory helps the RPSO to promptly “unlearn” obsolete information
after every environment change, which proved useful on a problem where multiple
conflicting boundaries were present.

Table 6 shows that CPSO and QPSO performed superior to RPSO on problems
where the ability to preserve previously learned information was more important
than the ability to promptly “unlearn” the stale data. Examples of such problems
are the electricity pricing problem, where new electricity prices were derived from
old electricity prices, and the SEA concepts problem, where no conflicting bound-
aries were present due to the fact that concept blocks were mutually exclusive.
Figure 7(b) illustrates algorithm EG profiles obtained for the electricity pricing
under a gradual temporally severe scenario. Here, the CPSO and the QPSO were
visibly more apt at tracking the moving optima than the RPSO. Under frequent
changes, the RPSO did not have enough time to properly exploit the found op-
tima, whereas the CPSO and the QPSO used their memory of previous solutions
to promptly optimise the solution at hand.
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Fig. 7 Generalisation error profiles over time

Table 7 lists the best performing algorithms under various sliding window step
sizes (i.e. spatial severity) considered for the five dynamic classification problems.
Table 7 shows that the dynamic PSOs were more successful under gradual to
semi-gradual scenarios, while BP and RBP were more successful under abrupt
scenarios. An important advantage of the hill-climbing approach to NN training
is the fast speed of convergence, and it is precisely this property which allowed
BP and RBP to outperform the dynamic PSOs under abrupt changes. Figure
8(a) illustrates that under an abrupt scenario, the dynamic PSOs took longer to
converge than both BP and RBP: the three dynamic PSOs took 25 iterations
to reach the minimum attained by BP and RBP in 10 iterations. Figure 8(b)
illustrates another abrupt scenario where the dynamic PSOs exhibited no signs of
stagnation, but were unable to match the convergence speed of the hill-climbers.
Thus, slow convergence speed of the dynamic PSOs often made these algorithms
less efficient than BP under abrupt changes.

Table 7 Best Algorithms under varying Spatial Severity

Step Size 50 100 500 1000 2500

SEA Concepts RPSO RPSO, QPSO QPSO BP BP
Moving Hyperplane RPSO RPSO CPSO BP -
Dynamic Sphere RPSO RPSO BP RBP -
Sliding Thresholds RPSO RPSO RPSO, CPSO, QPSO QPSO -
Electricity Pricing QPSO CPSO, QPSO BP BP -

However, figures 6(a) and 8(c) illustrate that, once the dynamic PSOs reached
a minimum, the dynamic PSOs maintained the obtained minimum better than
BP or RBP: under gradual scenarios, the dynamic PSOs were able to reach a
lower minimum error than that obtained by BP and RBP. The dynamic PSOs
also tracked gradual changes more closely than the hill-climbers. Gradual changes
imply that little new data is added to the sliding window after every change, thus
the new optimum is expected to be in the near proximity of the old optimum.
The population-based principle allowed the dynamic PSOs to promptly evaluate
the area covered by the swarm, and immediately find a more up-to-date solu-
tion amongst the particles, while BP and RBP had to climb downhill towards the
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Fig. 8 Training and Generalisation error profiles over time

changed optimum. The ability to explore a wider area around the current solu-
tion made the dynamic PSOs more apt than the hill-climbers at tracking gradual
changes.

Table 8 lists the best performing algorithms under various change frequencies
(i.e. temporal severity). Table 8 shows that BP was more successful under frequent
changes, which corresponds to the already made observation that BP and RBP
converged faster than the dynamic PSOs. However, BP came as the best performer
only three times out of 20, as Table 8 shows, thus slower convergence did not
prevent the dynamic PSOs from outperforming BP and RBP under most scenarios
considered.

Table 8 also shows that BP was the best performer on the dynamic sphere
problem under the least temporally severe scenarios, although the dynamic PSOs
performed best under other change frequencies considered for the same problem.
This indicates that although the dynamic PSOs typically took longer than BP to
exploit a fruitful area, exploiting a fruitful area for too long can indeed result in
poor performance due to over-exploitation. Figure 8(d) illustrates the algorithms’
EG profiles obtained on the dynamic sphere problem under abrupt infrequent
changes. Figure 8(d) illustrates that, after iteration 1500, all dynamic PSOs ob-
tained EG ≈ 0, and produced a very high error after the next environment change.
Low temporal severity allowed the dynamic PSOs not only to find a good solu-
tion, but also to over-exploit it, leading the swarms to an unfruitful search space
region (such as a plateau or a local minimum), from which the swarms struggled
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Table 8 Best Algorithms under varying Temporal Severity

Change Frequency A (10) B (50) C (100) D (250)

SEA Concepts BP RPSO, QPSO RPSO, QPSO RPSO, QPSO
Moving Hyperplane CPSO CPSO CPSO RPSO
Dynamic Sphere RPSO CPSO CPSO BP
Sliding Thresholds CPSO, QPSO RPSO RPSO RPSO
Electricity Pricing BP QPSO QPSO CPSO, QPSO

to escape after a change in the error landscape. The fact that BP did not exhibit
over-exploitation under the same scenario indicates that the dynamic PSOs are
more prone to over-exploitation than BP when left training for too long.

In general, it can be observed that the dynamic PSOs exhibited a stronger
sensitivity to such characteristics of dynamic environments as spatial severity and
temporal severity. Figures 9(a) and 9(b) illustrate the collective mean EG values
obtained by the algorithms under various dynamic scenarios for the electricity
pricing problem and the moving hyperplane problem, respectively. In Figures 9(a)
and 9(b), the performance of the dynamic PSOs deteriorated as both the temporal
severity and the spatial severity increased. In Figure 9(b), the performance of
dynamic PSOs also deteriorated under gradual scenarios of low temporal severity,
because the dynamic PSOs were allowed to train for too long and thus over-
exploited. In both Figures 9(a) and 9(b), BP produced more robust results than the
dynamic PSOs: the BP error was less affected by the extent of spatial and temporal
severity. The dynamic PSO algorithms involve more parameter optimisation than
the hill-climbing BP and RBP, since, in addition to the standard PSO parameters,
parameters specific to each dynamic PSO also require optimisation. Hence, the
dynamic PSOs require more scenario-specific optimisation than BP and RBP, but
have a high potential to outperform the hill-climbers when properly optimised.

Figure 9(c) illustrates the collective mean EG values obtained by the algo-
rithms under various dynamic scenarios for the sliding thresholds problem. Figure
9(c) illustrates that the dynamic PSOs outperformed both BP and RBP under
most scenarios considered. Superior performance of the dynamic PSOs on a prob-
lem where multiple decision boundaries were present indicates that the dynamic
PSOs were less sensitive to the total number of decision boundaries, as well as the
presence of stale data inside the sliding window. Thus, the dynamic PSOs may be
expected to outperform BP on more rugged NN error surfaces.

7 Conclusions and Future Work

The main objective of this paper was to show that dynamic PSO algorithms have
potential to be efficiently applied to NN training in the presence of concept drift.
An experimental procedure was designed to compare the training algorithms on a
representative selection of dynamic classification problems under a representative
selection of dynamic environments. A sliding window was used for pattern selec-
tion, and dynamic environments of varying spatial and temporal severity were
simulated by adjusting the step size of the sliding window and the number of al-
gorithm iterations between the sliding window shifts, respectively. Four artificially
generated dynamic classification problems and one real-life data set with concept
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drift were used in the experiments. The problems differed in terms of dimen-
sionality, decision boundary shape, total number of decision boundaries, and the
probability of encountering conflicting decision boundaries in the sliding window
data. BP was compared to RBP, as well as to the three dynamic PSO algorithms:
the RPSO, the CPSO, and the QPSO.

The obtained empirical results showed the dynamic PSOs to be viable NN
training algorithms in the context of dynamic classification problems. The dy-
namic PSOs exploited and tracked decision boundaries better than BP and RBP,
allowing the dynamic PSOs to outperform BP and RBP under scenarios exhibit-
ing infrequent to moderately infrequent gradual changes. BP and RBP converged
faster than the dynamic PSOs, which enabled BP to outperform the dynamic PSOs
under frequent abrupt changes. RBP exhibited the worst performance under most
scenarios for most problems, thus showing that a complete reinitialisation of NN
weights is an inefficient approach to handling concept drift. The dynamic PSOs
exhibited stronger sensitivity to the extent of temporal and spatial severity than
BP and RBP. Therefore, the dynamic PSOs require scenario-specific optimisation.
However, the dynamic PSOs were less sensitive to the total number of decision
boundaries or the presence of stale data in the sliding window than BP and RBP.
Thus, the dynamic PSOs are expected to perform better than hill-climbers on
rugged NN error surfaces. The RPSO performed better than the CPSO and the
QPSO on problems which required prompt “unlearning” after a change (e.g. con-
flicting data present in the sliding window, numerous decision boundaries). The
CPSO and the QPSO performed better than the RPSO on problems which re-
quired previously learned information to be preserved (e.g. no conflicting bound-
aries present, new decision boundaries derived from old decision boundaries).

Further research will include a study of overfitting behaviour exhibited by the
dynamic PSOs applied to NN training under concept drift. The applicability of dy-
namic PSO NN training to dynamic problems other than classification problems,
e.g. dynamic function approximation, also needs to be investigated. The depen-
dence of the dynamic PSO performance on choosing optimal algorithm parameters
can be lessened by developing self-adapting parameter strategies for dynamic en-
vironments. It would also be interesting to apply other dynamic population-based
techniques, such as dynamic genetic algorithms, to NN training in dynamic envi-
ronments. The most popular approach to concept drift handling, namely ensemble
learning, can also be improved by employing dynamic PSOs as training algorithms
for the single classifiers involved.
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A Accuracy

This appendix reports the collective mean ET and EG values obtained by the algorithms for
the five dynamic classification problems considered. Tables 9 and 10 list ET and EG obtained
for the SEA concepts problem. Table 11 lists ET and EG obtained for the moving hyperplane
problem. Table 12 lists ET and EG obtained for the dynamic sphere problem. Table 13 lists
ET and EG obtained for the sliding thresholds problem. Table 14 lists ET and EG obtained
for the electricity pricing problem.

B Statistical significance

Whenever experimental results were compared, the two-tailed non-parametric Mann-Whitney
U test (Mann and Whitney, 1947) was used to determine whether the difference in algorithm
performance was statistically significant. The choice of the significance test is based on Dems̆ar
(2006), where the authors showed that the Mann-Whitney U test is safer than the parametric
tests such as the t-test, since the Mann-Whitney U test assumes neither normal distributions
of data, nor homogeneity of variance. The null hypothesis H0 : µ1 = µ2, where µ1 and µ2

are the means of the two samples being compared, was evaluated at a significance level of
95%. The alternative hypothesis was defined as H1 : µ1 6= µ2. Thus, any p-value less than
0.05 corresponded to rejection of the null hypothesis that there is no statistically significant
difference between the sample means (printed in bold in the tables that follow). For the sake
of convenience, all p-values were bounded below by 0.0001. Tables 15 and 16 list the p-values
obtained for the SEA concepts problem. Tables 17 and 18 list the p-values obtained for the
moving hyperplane problem. Tables 19 and 20 list the p-values obtained for the dynamic sphere
problem. Tables 21 and 22 list the p-values obtained for the sliding thresholds problem. Tables
23 and 24 list the p-values obtained for the electricity pricing problem.
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Table 9 SEA Concepts Results for Scenarios A1 to B5

Scenario BP RBP RPSO CPSO QPSO

A1 ET Mean 0.074272 0.11765 0.073435 0.074025 0.073285
Std. Dev. 0.00206 0.004987 0.000793 0.000728 0.000881

EG Mean 0.076167 0.117498 0.074669 0.074008 0.074031
Std. Dev. 0.004317 0.007621 0.004909 0.004829 0.004996

A2 ET Mean 0.075578 0.117573 0.074902 0.075401 0.074578
Std. Dev. 0.002115 0.006597 0.000935 0.000924 0.000829

EG Mean 0.074614 0.118017 0.074139 0.076178 0.075184
Std. Dev. 0.004726 0.006797 0.006028 0.005241 0.00473

A3 ET Mean 0.080557 0.118469 0.081363 0.081821 0.081712
Std. Dev. 0.012953 0.016798 0.001426 0.002034 0.001563

EG Mean 0.082473 0.116704 0.083129 0.08162 0.080766
Std. Dev. 0.012549 0.017312 0.00422 0.003807 0.003235

A4 ET Mean 0.081234 0.117146 0.089078 0.090294 0.089353
Std. Dev. 0.012918 0.023963 0.003179 0.003153 0.002067

EG Mean 0.082579 0.115934 0.090288 0.090222 0.091455
Std. Dev. 0.011709 0.023393 0.00601 0.004523 0.005

A5 ET Mean 0.085228 0.117479 0.097821 0.101398 0.099188
Std. Dev. 0.036716 0.023246 0.005196 0.005385 0.005198

EG Mean 0.086351 0.109948 0.098403 0.101769 0.099901
Std. Dev. 0.034788 0.019195 0.006403 0.006693 0.00484

B1 ET Mean 0.074078 0.087951 0.071208 0.071717 0.071246
Std. Dev. 0.001688 0.00329 0.000677 0.000875 0.000872

EG Mean 0.074755 0.096313 0.072236 0.071091 0.071703
Std. Dev. 0.005007 0.00589 0.005498 0.004605 0.004318

B2 ET Mean 0.073412 0.087863 0.071659 0.07204 0.071649
Std. Dev. 0.001436 0.003877 0.00059 0.000625 0.000882

EG Mean 0.074548 0.095976 0.073009 0.073066 0.073669
Std. Dev. 0.005521 0.005494 0.005974 0.00437 0.005507

B3 ET Mean 0.07414 0.086878 0.07347 0.073609 0.073475
Std. Dev. 0.00119 0.007596 0.000578 0.000684 0.000735

EG Mean 0.074036 0.092688 0.073569 0.074822 0.073081
Std. Dev. 0.003998 0.0074 0.003802 0.003874 0.00474

B4 ET Mean 0.074784 0.09203 0.075825 0.076371 0.075958
Std. Dev. 0.001933 0.015599 0.000901 0.001175 0.000959

EG Mean 0.074867 0.097183 0.077073 0.077229 0.075926
Std. Dev. 0.005506 0.015191 0.005139 0.005933 0.005911

B5 ET Mean 0.072648 0.083178 0.073692 0.074436 0.073581
Std. Dev. 0.016249 0.008553 0.001728 0.001995 0.001283

EG Mean 0.072121 0.083807 0.075357 0.074777 0.074403
Std. Dev. 0.017849 0.009732 0.005735 0.005022 0.004463
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Table 10 SEA Concepts Results for Scenarios C1 to D5

Scenario BP RBP RPSO CPSO QPSO

C1 ET Mean 0.073506 0.077631 0.070671 0.07088 0.070579
Std. Dev. 0.001122 0.002366 0.000646 0.000762 0.00085

EG Mean 0.072902 0.086025 0.071146 0.071306 0.072789
Std. Dev. 0.003983 0.005988 0.004587 0.004753 0.005814

C2 ET Mean 0.073749 0.077723 0.070901 0.071195 0.071195
Std. Dev. 0.001783 0.002391 0.000572 0.000732 0.000575

EG Mean 0.072401 0.086938 0.071495 0.072334 0.071782
Std. Dev. 0.005544 0.005286 0.005306 0.004217 0.004171

C3 ET Mean 0.074033 0.079415 0.072101 0.072522 0.072109
Std. Dev. 0.001444 0.006442 0.000826 0.00072 0.000685

EG Mean 0.074472 0.088763 0.072631 0.072996 0.072983
Std. Dev. 0.004278 0.010017 0.005729 0.004072 0.004936

C4 ET Mean 0.076934 0.07673 0.074013 0.074196 0.073903
Std. Dev. 0.014302 0.005086 0.000879 0.001033 0.000713

EG Mean 0.0765 0.081602 0.074156 0.074275 0.07515
Std. Dev. 0.01565 0.007463 0.00472 0.004435 0.004517

C5 ET Mean 0.067721 0.071498 0.069651 0.070355 0.069229
Std. Dev. 0.004688 0.001767 0.001247 0.001678 0.001408

EG Mean 0.069545 0.071627 0.070552 0.071822 0.06982
Std. Dev. 0.004448 0.005087 0.004322 0.00472 0.004534

D1 ET Mean 0.073396 0.073543 0.070056 0.070774 0.070851
Std. Dev. 0.001278 0.001375 0.000934 0.001174 0.001382

EG Mean 0.072911 0.083022 0.070433 0.070202 0.07095
Std. Dev. 0.00406 0.004974 0.004267 0.003386 0.005426

D2 ET Mean 0.07305 0.073585 0.070082 0.070429 0.07056
Std. Dev. 0.001589 0.00157 0.000753 0.000892 0.000799

EG Mean 0.073786 0.082509 0.071375 0.07152 0.07096
Std. Dev. 0.004696 0.006086 0.004665 0.004626 0.00482

D3 ET Mean 0.073626 0.074375 0.070449 0.071185 0.070834
Std. Dev. 0.001459 0.005637 0.000807 0.000702 0.000589

EG Mean 0.073364 0.08254 0.073815 0.071683 0.070073
Std. Dev. 0.005627 0.007563 0.005382 0.004437 0.003652

D4 ET Mean 0.072973 0.073241 0.072299 0.072747 0.072287
Std. Dev. 0.001673 0.002844 0.000698 0.000734 0.000805

EG Mean 0.075229 0.077941 0.072563 0.07269 0.073863
Std. Dev. 0.005077 0.005381 0.004719 0.004979 0.005888

D5 ET Mean 0.065106 0.071554 0.065198 0.065742 0.065092
Std. Dev. 0.004135 0.010663 0.001192 0.001147 0.000992

EG Mean 0.064206 0.06982 0.066019 0.067239 0.066777
Std. Dev. 0.005316 0.013026 0.006596 0.005103 0.004757
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Table 11 Moving Hyperplane Results for Scenarios A1 to D4

Scenario BP RBP RPSO CPSO QPSO

A1 ET Mean 0.155488 0.114547 0.112531 0.107024 0.108173
Std. Dev. 0.002328 0.001191 0.000872 0.001584 0.00201

EG Mean 0.132911 0.237748 0.117451 0.110943 0.112485
Std. Dev. 0.004695 0.004665 0.003418 0.004261 0.003668

A2 ET Mean 0.156778 0.113846 0.11839 0.111091 0.113791
Std. Dev. 0.002442 0.001363 0.001208 0.001421 0.001672

EG Mean 0.138453 0.238293 0.123117 0.117111 0.117842
Std. Dev. 0.005059 0.006099 0.004598 0.004598 0.004111

A3 ET Mean 0.13741 0.103456 0.134078 0.12389 0.129902
Std. Dev. 0.001797 0.002951 0.003818 0.0039 0.005268

EG Mean 0.113383 0.175411 0.146382 0.132682 0.138235
Std. Dev. 0.002645 0.006053 0.009233 0.005736 0.007295

A4 ET Mean 0.033327 0.08689 0.101326 0.106926 0.121284
Std. Dev. 0.003651 0.005457 0.005489 0.008617 0.01013

EG Mean 0.029691 0.083383 0.188668 0.121909 0.137007
Std. Dev. 0.004585 0.00689 0.053221 0.010094 0.012799

B1 ET Mean 0.1504 0.067478 0.101187 0.107609 0.108914
Std. Dev. 0.0020 0.000596 0.00147 0.004842 0.004429

EG Mean 0.136252 0.221859 0.10774 0.116852 0.11807
Std. Dev. 0.00552 0.005365 0.003387 0.006497 0.006523

B2 ET Mean 0.150329 0.067098 0.103442 0.103015 0.104123
Std. Dev. 0.001864 0.000852 0.001701 0.002516 0.002512

EG Mean 0.132623 0.220962 0.108933 0.109161 0.108856
Std. Dev. 0.005332 0.006585 0.003523 0.004026 0.003687

B3 ET Mean 0.131567 0.056117 0.095947 0.091132 0.093299
Std. Dev. 0.001894 0.001308 0.001563 0.001667 0.001708

EG Mean 0.100828 0.14698 0.101191 0.094755 0.09686
Std. Dev. 0.003609 0.005182 0.0039 0.003897 0.003581

B4 ET Mean 0.011053 0.04116 0.038352 0.029461 0.032953
Std. Dev. 0.000871 0.001592 0.003989 0.003598 0.004226

EG Mean 0.013329 0.042341 0.049599 0.031942 0.03649
Std. Dev. 0.001963 0.003982 0.022523 0.004398 0.005777

C1 ET Mean 0.149038 0.05963 0.098834 0.115017 0.119668
Std. Dev. 0.002822 0.000607 0.001292 0.005976 0.006391

EG Mean 0.138761 0.221091 0.11088 0.129655 0.133049
Std. Dev. 0.007095 0.006619 0.004162 0.008136 0.007534

C2 ET Mean 0.149106 0.059685 0.100531 0.105563 0.109364
Std. Dev. 0.001946 0.001031 0.001239 0.004117 0.005167

EG Mean 0.132797 0.221858 0.107885 0.114033 0.118749
Std. Dev. 0.005508 0.005652 0.003989 0.004939 0.00727

C3 ET Mean 0.128096 0.046808 0.088614 0.084396 0.086369
Std. Dev. 0.001797 0.001316 0.001428 0.001449 0.001536

EG Mean 0.10101 0.141273 0.093955 0.08831 0.091123
Std. Dev. 0.003321 0.004968 0.004054 0.00282 0.003255

C4 ET Mean 0.007695 0.0294 0.026101 0.019177 0.019719
Std. Dev. 0.000638 0.001623 0.003031 0.003232 0.002443

EG Mean 0.009819 0.030122 0.038808 0.022115 0.021954
Std. Dev. 0.001473 0.00328 0.028168 0.002804 0.003473

D1 ET Mean 0.148513 0.056655 0.098873 0.127313 0.130179
Std. Dev. 0.00199 0.00071 0.001553 0.002895 0.003944

EG Mean 0.144373 0.219934 0.118008 0.14769 0.150337
Std. Dev. 0.007129 0.005605 0.004376 0.007511 0.007289

D2 ET Mean 0.14725 0.056406 0.098709 0.121175 0.122189
Std. Dev. 0.002158 0.00071 0.001347 0.004601 0.004256

EG Mean 0.136828 0.216878 0.110697 0.135658 0.136576
Std. Dev. 0.006315 0.006479 0.004437 0.006594 0.007123

D3 ET Mean 0.126362 0.041062 0.083174 0.082042 0.082775
Std. Dev. 0.002513 0.000895 0.001437 0.004411 0.002679

EG Mean 0.098811 0.138068 0.091993 0.088738 0.090142
Std. Dev. 0.003342 0.004618 0.009105 0.00514 0.004242

D4 ET Mean 0.004087 0.017219 0.015818 0.00995 0.011061
Std. Dev. 0.000332 0.001044 0.002082 0.001949 0.001863

EG Mean 0.007678 0.019877 0.034009 0.013311 0.014333
Std. Dev. 0.001513 0.003026 0.028019 0.002892 0.002704
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Table 12 Dynamic Sphere Results for Scenarios A1 to D4

Scenario BP RBP RPSO CPSO QPSO

A1 ET Mean 0.171713 0.131876 0.113942 0.119896 0.120057
Std. Dev. 0.00311 0.002916 0.001718 0.002418 0.00155

EG Mean 0.135771 0.199343 0.115899 0.121289 0.120964
Std. Dev. 0.004825 0.005105 0.003382 0.00364 0.003453

A2 ET Mean 0.172275 0.130808 0.11798 0.133813 0.136196
Std. Dev. 0.002906 0.003701 0.001374 0.005329 0.004216

EG Mean 0.140283 0.198831 0.120919 0.13525 0.137025
Std. Dev. 0.004329 0.005248 0.003699 0.004943 0.006435

A3 ET Mean 0.159435 0.122616 0.13249 0.176709 0.20885
Std. Dev. 0.004758 0.008421 0.004636 0.004776 0.006293

EG Mean 0.132337 0.161899 0.172753 0.179689 0.208684
Std. Dev. 0.007327 0.00782 0.0356 0.004688 0.008191

A4 ET Mean 0.076418 0.093061 0.115917 0.137869 0.21962
Std. Dev. 0.009425 0.010648 0.006892 0.009361 0.004297

EG Mean 0.076587 0.08518 0.270092 0.142018 0.220084
Std. Dev. 0.010715 0.01001 0.041104 0.010995 0.005145

B1 ET Mean 0.168007 0.105521 0.105274 0.109405 0.110216
Std. Dev. 0.002584 0.000871 0.001257 0.001918 0.001549

EG Mean 0.132217 0.182805 0.109222 0.115289 0.114269
Std. Dev. 0.004245 0.00569 0.003762 0.00367 0.003857

B2 ET Mean 0.166557 0.105463 0.106646 0.11202 0.112497
Std. Dev. 0.002542 0.001317 0.001065 0.001841 0.003126

EG Mean 0.131353 0.181257 0.109564 0.114478 0.116895
Std. Dev. 0.004144 0.005014 0.003063 0.004462 0.004536

B3 ET Mean 0.145928 0.090385 0.111102 0.140143 0.147884
Std. Dev. 0.003437 0.002677 0.005848 0.00421 0.006497

EG Mean 0.11083 0.142071 0.226889 0.140779 0.150163
Std. Dev. 0.005273 0.004415 0.04717 0.005707 0.008159

B4 ET Mean 0.060173 0.056284 0.07264 0.196929 0.216473
Std. Dev. 0.01075 0.004055 0.005138 0.013914 0.013488

EG Mean 0.061217 0.054775 0.233869 0.197626 0.218016
Std. Dev. 0.012189 0.004384 0.009101 0.014396 0.016347

C1 ET Mean 0.16711 0.099321 0.103326 0.11267 0.107417
Std. Dev. 0.002519 0.000977 0.000945 0.026986 0.00243

EG Mean 0.132319 0.177713 0.109139 0.116969 0.111008
Std. Dev. 0.004788 0.005864 0.003655 0.024469 0.003637

C2 ET Mean 0.166076 0.098423 0.104653 0.110679 0.110652
Std. Dev. 0.002259 0.000873 0.001422 0.003285 0.003651

EG Mean 0.132456 0.177158 0.108582 0.11461 0.11474
Std. Dev. 0.004116 0.005948 0.003781 0.003748 0.005502

C3 ET Mean 0.143071 0.082777 0.109036 0.1242 0.130536
Std. Dev. 0.002946 0.002989 0.002281 0.003351 0.005925

EG Mean 0.106784 0.136712 0.240324 0.125316 0.132597
Std. Dev. 0.005094 0.005531 0.013597 0.005589 0.008417

C4 ET Mean 0.058047 0.045874 0.063607 0.200857 0.209843
Std. Dev. 0.007239 0.002774 0.004789 0.015219 0.014711

EG Mean 0.058775 0.046078 0.228473 0.200924 0.210977
Std. Dev. 0.00914 0.004682 0.013786 0.014838 0.017679

D1 ET Mean 0.165768 0.091211 0.101189 0.244169 0.246038
Std. Dev. 0.002174 0.000851 0.001321 0.029981 0.020945

EG Mean 0.132933 0.173511 0.10672 0.248832 0.251531
Std. Dev. 0.003737 0.006563 0.004144 0.031562 0.02237

D2 ET Mean 0.164773 0.090866 0.101856 0.242995 0.247662
Std. Dev. 0.002493 0.001116 0.001426 0.036794 0.026591

EG Mean 0.13038 0.172943 0.107513 0.246834 0.251565
Std. Dev. 0.005265 0.005622 0.004631 0.037879 0.027257

D3 ET Mean 0.140808 0.073325 0.102763 0.236357 0.25326
Std. Dev. 0.002707 0.001552 0.001444 0.041818 0.001802

EG Mean 0.105287 0.129212 0.240959 0.238866 0.254952
Std. Dev. 0.004103 0.004556 0.008675 0.04002 0.006693

D4 ET Mean 0.054159 0.034517 0.056596 0.240363 0.238631
Std. Dev. 0.007395 0.00331 0.008 0.006358 0.019632

EG Mean 0.056111 0.035871 0.226403 0.241697 0.240392
Std. Dev. 0.008284 0.004875 0.023402 0.007598 0.019668
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Table 13 Sliding Thresholds Results for Scenarios A1 to D4

Scenario BP RBP RPSO CPSO QPSO

A1 ET Mean 0.153493 0.103516 0.070907 0.072955 0.071743
Std. Dev. 0.015032 0.000502 0.000673 0.004674 0.003221

EG Mean 0.136737 0.147665 0.071907 0.073412 0.073101
Std. Dev. 0.014298 0.003263 0.002433 0.005112 0.00487

A2 ET Mean 0.142729 0.102635 0.074074 0.074585 0.074158
Std. Dev. 0.009063 0.00077 0.000665 0.003901 0.003075

EG Mean 0.125513 0.147616 0.074277 0.075893 0.074692
Std. Dev. 0.011567 0.004737 0.003028 0.004829 0.00366

A3 ET Mean 0.114955 0.09379 0.082315 0.072066 0.071948
Std. Dev. 0.009776 0.001615 0.002789 0.002915 0.00227

EG Mean 0.098212 0.12228 0.084629 0.075276 0.075056
Std. Dev. 0.012554 0.004462 0.005339 0.00405 0.003118

A4 ET Mean 0.049715 0.080386 0.066253 0.058537 0.057151
Std. Dev. 0.004035 0.002757 0.004782 0.005081 0.005216

EG Mean 0.045486 0.080073 0.096665 0.063731 0.063549
Std. Dev. 0.005378 0.005149 0.024581 0.007158 0.007882

B1 ET Mean 0.151092 0.094176 0.061455 0.072534 0.070514
Std. Dev. 0.020754 0.00101 0.001925 0.005605 0.004996

EG Mean 0.13528 0.139925 0.062192 0.073516 0.071295
Std. Dev. 0.017375 0.003195 0.002846 0.006696 0.005128

B2 ET Mean 0.149287 0.093804 0.06368 0.071221 0.068427
Std. Dev. 0.017802 0.001313 0.001258 0.008886 0.004953

EG Mean 0.132267 0.139525 0.065144 0.072218 0.069381
Std. Dev. 0.014432 0.004149 0.002031 0.00837 0.00564

B3 ET Mean 0.132411 0.083283 0.058312 0.059298 0.058643
Std. Dev. 0.011119 0.003031 0.00091 0.003277 0.00301

EG Mean 0.115916 0.11243 0.058575 0.059405 0.060084
Std. Dev. 0.010667 0.004419 0.002254 0.00457 0.003505

B4 ET Mean 0.085928 0.066596 0.024424 0.024341 0.022029
Std. Dev. 0.029466 0.005977 0.001652 0.020914 0.004917

EG Mean 0.08665 0.064456 0.024827 0.025131 0.022903
Std. Dev. 0.031776 0.007366 0.003369 0.020715 0.005061

C1 ET Mean 0.200552 0.092587 0.059751 0.076702 0.077463
Std. Dev. 0.11802 0.00123 0.00178 0.004779 0.005842

EG Mean 0.182108 0.136819 0.059944 0.078222 0.079614
Std. Dev. 0.112807 0.003454 0.002863 0.005915 0.006852

C2 ET Mean 0.158981 0.091914 0.061345 0.071107 0.072182
Std. Dev. 0.038679 0.001601 0.002197 0.006099 0.006226

EG Mean 0.171066 0.137699 0.061962 0.072751 0.073344
Std. Dev. 0.107484 0.003701 0.003968 0.00658 0.00678

C3 ET Mean 0.138621 0.082158 0.054092 0.056934 0.056913
Std. Dev. 0.017921 0.004326 0.000935 0.003381 0.004078

EG Mean 0.120052 0.111868 0.055278 0.057185 0.058309
Std. Dev. 0.016573 0.005933 0.002278 0.003319 0.004474

C4 ET Mean 0.08482 0.061294 0.018883 0.018289 0.018509
Std. Dev. 0.026541 0.00619 0.002162 0.006454 0.004962

EG Mean 0.085047 0.061548 0.019303 0.018742 0.018866
Std. Dev. 0.026804 0.008117 0.003366 0.007034 0.005452

D1 ET Mean 0.190979 0.089317 0.056782 0.089642 0.086245
Std. Dev. 0.116883 0.001316 0.001141 0.009767 0.005966

EG Mean 0.174311 0.134207 0.057856 0.093216 0.087575
Std. Dev. 0.114016 0.003126 0.002018 0.011032 0.006176

D2 ET Mean 0.16679 0.088831 0.058099 0.076492 0.078824
Std. Dev. 0.082548 0.001458 0.00136 0.005072 0.00572

EG Mean 0.150545 0.133354 0.058946 0.078749 0.08096
Std. Dev. 0.081005 0.004312 0.002143 0.005938 0.005934

D3 ET Mean 0.161774 0.078363 0.049395 0.059674 0.058129
Std. Dev. 0.044374 0.004173 0.000909 0.007093 0.006498

EG Mean 0.144836 0.107945 0.04987 0.061183 0.059113
Std. Dev. 0.043317 0.005508 0.001521 0.007908 0.007565

D4 ET Mean 0.118543 0.055971 0.012676 0.017977 0.016372
Std. Dev. 0.070682 0.006565 0.000938 0.009832 0.00934

EG Mean 0.120698 0.055365 0.013223 0.018939 0.016812
Std. Dev. 0.071051 0.008704 0.001815 0.009866 0.009346
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Table 14 Electricity Pricing Results for Scenarios A1 to D4

Scenario BP RBP RPSO CPSO QPSO

A1 ET Mean 0.107272 0.130724 0.1123 0.103669 0.101964
Std. Dev. 0.001239 0.000274 0.000892 0.005592 0.00475

EG Mean 0.107447 0.148172 0.112489 0.103975 0.102248
Std. Dev. 0.001796 0.001327 0.002648 0.005727 0.005023

A2 ET Mean 0.110246 0.132773 0.11512 0.112274 0.111304
Std. Dev. 0.001341 0.000297 0.001249 0.002701 0.00308

EG Mean 0.109761 0.144535 0.114578 0.112519 0.111775
Std. Dev. 0.002554 0.00125 0.001907 0.003538 0.003462

A3 ET Mean 0.115424 0.135959 0.121239 0.120312 0.11953
Std. Dev. 0.001046 0.000425 0.001295 0.001869 0.001611

EG Mean 0.115071 0.136993 0.121328 0.122126 0.120109
Std. Dev. 0.001993 0.001513 0.002863 0.00201 0.002337

A4 ET Mean 0.11685 0.137511 0.123221 0.123785 0.122252
Std. Dev. 0.001113 0.000552 0.001571 0.001418 0.001398

EG Mean 0.116022 0.136005 0.12502 0.126081 0.124756
Std. Dev. 0.003052 0.001683 0.002156 0.002805 0.002274

B1 ET Mean 0.102724 0.111686 0.090001 0.086432 0.085533
Std. Dev. 0.00105 0.000244 0.001818 0.001352 0.001075

EG Mean 0.104494 0.13992 0.091167 0.087266 0.08741
Std. Dev. 0.002749 0.001823 0.00302 0.003113 0.002577

B2 ET Mean 0.104079 0.114145 0.097767 0.090506 0.090119
Std. Dev. 0.001168 0.000307 0.003733 0.001881 0.001454

EG Mean 0.105228 0.133539 0.098844 0.091683 0.09106
Std. Dev. 0.002769 0.002286 0.003975 0.003021 0.001837

B3 ET Mean 0.106364 0.118998 0.110811 0.110661 0.1091
Std. Dev. 0.001252 0.000255 0.001183 0.002022 0.002018

EG Mean 0.10602 0.121973 0.110738 0.110967 0.110334
Std. Dev. 0.001793 0.002099 0.002312 0.002817 0.003032

B4 ET Mean 0.104404 0.119889 0.111163 0.112023 0.1101
Std. Dev. 0.001763 0.000466 0.001441 0.001367 0.000844

EG Mean 0.105596 0.120727 0.112698 0.114921 0.113525
Std. Dev. 0.003542 0.002529 0.002586 0.002237 0.002294

C1 ET Mean 0.100309 0.107059 0.085203 0.083106 0.082736
Std. Dev. 0.002084 0.00025 0.001031 0.001323 0.001698

EG Mean 0.102539 0.136312 0.086372 0.084711 0.085369
Std. Dev. 0.00303 0.002022 0.002087 0.002284 0.002352

C2 ET Mean 0.101966 0.109329 0.088946 0.086329 0.08598
Std. Dev. 0.001622 0.00024 0.001818 0.001865 0.001284

EG Mean 0.104083 0.13032 0.090749 0.087324 0.0881
Std. Dev. 0.003152 0.002253 0.002938 0.002207 0.002133

C3 ET Mean 0.103866 0.113369 0.107534 0.10435 0.102471
Std. Dev. 0.001315 0.000367 0.001977 0.004578 0.004847

EG Mean 0.104704 0.118371 0.108407 0.105365 0.103366
Std. Dev. 0.002472 0.002558 0.003185 0.005218 0.005688

C4 ET Mean 0.100393 0.114362 0.107722 0.108165 0.1067
Std. Dev. 0.001628 0.000416 0.001031 0.001332 0.001677

EG Mean 0.104217 0.116367 0.110712 0.111114 0.109474
Std. Dev. 0.002812 0.002244 0.002297 0.002527 0.002684

D1 ET Mean 0.094779 0.100251 0.081339 0.080573 0.08026
Std. Dev. 0.003527 0.000249 0.001314 0.002001 0.001216

EG Mean 0.097618 0.127633 0.084291 0.083854 0.083442
Std. Dev. 0.00474 0.001818 0.002058 0.002978 0.002134

D2 ET Mean 0.099172 0.102321 0.083684 0.082523 0.081744
Std. Dev. 0.002479 0.000283 0.001233 0.001528 0.001526

EG Mean 0.100719 0.122955 0.085278 0.084428 0.084446
Std. Dev. 0.002892 0.002114 0.00214 0.002947 0.002468

D3 ET Mean 0.10169 0.105676 0.095168 0.090168 0.088658
Std. Dev. 0.001228 0.000334 0.004108 0.003092 0.001317

EG Mean 0.102847 0.111569 0.095952 0.09121 0.089816
Std. Dev. 0.002181 0.002374 0.005246 0.003668 0.003046

D4 ET Mean 0.099187 0.106452 0.102084 0.098671 0.098989
Std. Dev. 0.001916 0.000427 0.001793 0.004797 0.003366

EG Mean 0.102562 0.109373 0.105275 0.101999 0.102871
Std. Dev. 0.003234 0.002192 0.003199 0.006492 0.004776
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Table 15 Mann-Whitney U p-values obtained for the average training error comparisons on
the SEA concepts problem with reference to the null hypothesis that the means of the compared
samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 5 1 2 3 4 5
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2794 0.0001 0.0020 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0162 0.0007 0.0001
C 0.0001 0.0001 0.0001 0.2927 0.0001 0.0001 0.0001 0.0001 0.6653 0.0001
D 0.4761 0.2300 0.2601 0.4231 0.0001 0.0001 0.0001 0.0001 0.0654 0.0110

BP vs CPSO BP vs QPSO

1 2 3 4 5 1 2 3 4 5
A 0.0025 0.9593 0.0001 0.0005 0.0001 0.0001 0.06113 0.0001 0.0012 0.0001
B 0.0001 0.0001 0.0571 0.0001 0.0001 0.0001 0.0001 0.0207 0.0003 0.0001
C 0.0001 0.0001 0.0001 0.9360 0.0001 0.0001 0.0001 0.0001 0.5134 0.0001
D 0.0001 0.0001 0.0001 0.7528 0.0001 0.0001 0.0001 0.0001 0.0462 0.0076

RBP vs RPSO RBP vs CPSO

1 2 3 4 5 1 2 3 4 5
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0021
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.1091 0.0001 0.0001 0.0001 0.0001 0.2601 0.0224
D 0.0001 0.0001 0.0001 0.8434 0.0001 0.0001 0.0001 0.0027 0.1124 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 5 1 2 3 4 5
A 0.0001 0.0001 0.0001 0.0001 0.0002 0.0080 0.0332 0.2728 0.1462 0.0183
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0142 0.0274 0.4231 0.0878 0.1774
C 0.0001 0.0001 0.0001 0.0995 0.0001 0.2539 0.0850 0.0723 0.6440 0.0772
D 0.0001 0.0001 0.0001 0.8148 0.0001 0.0263 0.1462 0.0002 0.0162 0.1973

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 5 1 2 3 4 5
A 0.4404 0.2728 0.1973 0.5134 0.3353 0.0005 0.0002 0.7865 0.2996 0.0699
B 0.9709 0.9826 0.8664 0.5326 0.5720 0.0332 0.06994 0.8091 0.2132 0.0677
C 0.9360 0.0688 0.8549 0.6283 0.1973 0.3353 0.9709 0.0479 0.4492 0.0084
D 0.0187 0.0234 0.0371 0.9942 0.7306 0.7416 0.5040 0.0263 0.0184 0.1266
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Table 16 Mann-Whitney U p-values obtained for the average generalisation error comparisons
on the SEA concepts problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 5 1 2 3 4 5
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.1230 0.0514 0.0003 0.0022 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0371 0.4492 0.6024 0.1124 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.1727 0.0935 0.6335 0.1727 1.0058 0.4146
D 0.0001 0.0001 0.0001 0.0906 0.0136 0.0308 0.0400 0.5720 0.0699 0.1194

BP vs CPSO BP vs QPSO

1 2 3 4 5 1 2 3 4 5
A 0.0677 0.6024 0.0032 0.0006 0.0001 0.0514 0.2132 0.0120 0.0002 0.0001
B 0.0034 0.5134 0.2996 0.1547 0.0002 0.0225 0.6440 0.3428 0.6760 0.0001
C 0.1973 0.9826 0.2418 0.7640 0.1194 0.8664 0.6024 0.2478 0.4853 0.9942
D 0.0084 0.1026 0.3353 0.0935 0.0155 0.1091 0.0319 0.0225 0.2358 0.0080

RBP vs RPSO RBP vs CPSO

1 2 3 4 5 1 2 3 4 5
A 0.0001 0.0001 0.0001 0.0001 0.0096 0.0001 0.0001 0.0001 0.0001 0.1026
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.5820 0.0001 0.0001 0.0001 0.0001 0.5720
D 0.0001 0.0001 0.0001 0.0002 0.3737 0.0001 0.0001 0.0001 0.0003 0.8320

RBP vs QPSO RPSO vs CPSO

1 2 3 4 5 1 2 3 4 5
A 0.0001 0.0001 0.0001 0.0001 0.0225 0.6653 0.2078 0.1871 0.6440 0.0611
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.3136 0.9360 0.1727 0.8780 0.9476
C 0.0001 0.0001 0.0001 0.0001 0.3580 0.8664 0.7416 0.7528 0.7085 0.3428
D 0.0001 0.0001 0.0001 0.0063 0.8091 0.8664 0.7195 0.1194 0.9244 0.5620

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 5 1 2 3 4 5
A 0.6024 0.4062 0.0479 0.5820 0.3898 0.9593 0.4146 0.5040 0.2300 0.1401
B 0.8434 0.7978 0.5922 0.2794 0.8320 0.3580 0.8205 0.0850 0.5230 0.6546
C 0.1547 0.9593 0.8549 0.4063 0.6127 0.1680 0.7306 0.9011 0.5922 0.1547
D 0.6546 0.8780 0.0020 0.5423 0.6024 0.4492 0.6546 0.1973 0.5620 1.0058
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Table 17 Mann-Whitney U p-values obtained for the average training error comparisons on
the Moving Hyperplane problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.000199 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.000774 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.970925 0.0001 0.0001 0.0001 0.0001 0.0001 0.003358
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.552109 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.002107 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.00082 0.0001 0.027919 0.0001 0.0001 0.0001
B 0.0001 0.082354 0.0001 0.0001 0.299565 0.063239 0.0001 0.000213
C 0.0001 0.0001 0.0001 0.0001 0.003034 0.001794 0.0001 0.342795
D 0.0001 0.0001 0.52295 0.0001 0.004311 0.393843 0.063242 0.038533
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Table 18 Mann-Whitney U p-values obtained for the average generalisation error comparisons
on the Moving Hyperplane problem with reference to the null hypothesis that the means of
the compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.708548 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.006047 0.0001 0.0001 0.0001
D 0.090617 0.644024 0.0001 0.0001 0.003358 0.889553 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.959278 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.820526 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.146226 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.775176 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.218715 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.000332 0.0001 0.168039 0.503955 0.002468 0.0001
B 0.0001 0.889553 0.0001 0.000175 0.633505 0.62306 0.044588 0.001092
C 0.0001 0.0001 0.007297 0.0001 0.044588 0.002599 0.001222 0.675994
D 0.0001 0.0001 0.797771 0.0001 0.197283 0.633505 0.053247 0.12295
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Table 19 Mann-Whitney U p-values obtained for the average training error comparisons on
the Dynamic Sphere problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.001092 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000511
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.901142

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.130369 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.013354 0.0001 0.0001
B 0.099517 0.000258 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.786452 0.04622 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.07719 0.809129 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.901142 0.809129 0.0001 0.028468
D 0.0001 0.0001 0.0001 0.0001 0.912745 0.612688 0.014243 0.090617
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Table 20 Mann-Whitney U p-values obtained for the average generalisation error comparisons
on the Dynamic Sphere problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.001032 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.000774 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.012515 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.571977 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.292726 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000153 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.030748 0.0001 0.001998 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.513407 0.423131 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.177408 0.035773 0.0001 0.0001
C 0.119364 0.0001 0.0001 0.000134 0.096477 0.831957 0.000543 0.018329
D 0.0001 0.0001 0.0001 0.000774 0.542302 0.970925 0.099517 0.467073
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Table 21 Mann-Whitney U p-values obtained for the average training error comparisons on
the Sliding Thresholds problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.000164 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.093511 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.074711 0.697635 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.686783 0.002599
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000175 0.023386
D 0.010973 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.002599

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.494594 0.854916 0.0001 0.0001 0.266409 0.708548 0.775176 0.202493
B 0.0001 0.0001 0.719519 0.02959 0.072293 0.241747 0.592174 0.423131
C 0.0001 0.0001 0.007643 0.241747 0.552109 0.423131 0.820526 0.458089
D 0.0001 0.0001 0.0001 0.130369 0.365817 0.159042 0.373698 0.27936
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Table 22 Mann-Whitney U p-values obtained for the average generalisation error comparisons
on the Sliding Thresholds problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.030748 0.000102 0.0001 0.0001 0.0001 0.0001
C 0.003192 0.000117 0.020724 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.002599 0.001794 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.004311 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.168039 0.159042 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.763945 0.002107
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.014864 0.096477
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001155

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.172671 0.786452 0.0001 0.0001 0.809127 0.260089 0.947634 0.866438
B 0.0001 0.001998 0.077194 0.087794 0.197283 0.207802 0.406247 0.592174
C 0.0001 0.0001 0.009599 0.292726 0.458089 0.654613 0.602392 0.414639
D 0.0001 0.0001 0.0001 0.177408 0.059075 0.172677 0.272832 0.159042
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Table 23 Mann-Whitney U p-values obtained for the average training error comparisons on
the Electricity Pricing problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.018329 0.0001 0.0001 0.0001 0.0001 0.003532 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.072293 0.0001 0.0001 0.0001 0.982572 0.0001
D 0.0001 0.0001 0.0001 0.831957 0.0001 0.0001 0.0001 0.52295

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.012515 0.074711
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.866438 0.021582
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.003358 0.313557
D 0.0001 0.0001 0.0001 0.0001 0.082354 0.001155 0.0001 0.004103

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.024336 0.17034 0.19217 0.069934 0.0001
B 0.0001 0.0001 0.0001 0.001443 0.006965 0.485326 0.001092 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.292719 0.62306 0.177408 0.0001
D 0.010038 0.0001 0.0001 0.0001 0.532582 0.063242 0.082358 0.912747
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Table 24 Mann-Whitney U p-values obtained for the average generalisation error comparisons
on the Electricity Pricing problem with reference to the null hypothesis that the means of the
compared samples are equal at the significance level of 95%

BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.003034

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4
A 0.010973 0.000688 0.0001 0.0001 0.0001 0.0017 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.099517 0.0001 0.0001 0.0001 0.335329 0.0001
D 0.0001 0.0001 0.0001 0.953455 0.0001 0.0001 0.0001 0.582035

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.0001 0.0001 0.0001 0.008379 0.260082 0.112435
B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.602392 0.000312
C 0.0001 0.0001 0.0001 0.0001 0.004103 0.0001 0.016175 0.224322
D 0.0001 0.0001 0.0001 0.0001 0.571977 0.241747 0.0001 0.0479

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4
A 0.0001 0.0001 0.049631 0.924365 0.230029 0.397957 0.000426 0.055132
B 0.0001 0.0001 0.552109 0.159042 0.854916 0.494588 0.414639 0.016867
C 0.11586 0.000164 0.000227 0.093511 0.142132 0.074711 0.163495 0.009599
D 0.096477 0.365817 0.0001 0.043005 0.552109 1.00578 0.213209 0.592174


