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Abstract This paper presents an objective function specially designed for the
convergence analysis of a number of particle swarm optimization (PSO) variants.
It was found that using a specially designed objective function for convergence
analysis is both a simple and valid method for performing assumption free conver-
gence analysis. It was also found that the canonical particle swarm’s topology did
not have an impact on the parameter region needed to ensure convergence. The
parameter region needed to ensure convergent particle behavior was empirically
obtained for the fully informed PSO, the bare bones PSO, and the standard PSO
2011 algorithm. In the case of the bare bones PSO and the standard PSO 2011 the
region needed to ensure convergent particle behavior differs from previous theoret-
ical work. The difference in the obtained regions in the bare bones PSO is a direct
result of the previous theoretical work relying on simplifying assumptions, specifi-
cally the stagnation assumption. A number of possible causes for the discrepancy
in the obtained convergent region for the standard PSO 2011 are given.

Keywords Particle Swarm Optimization · Theoretical Analysis · Particle
Convergence

1 Introduction

Particle swarm optimization (PSO) is a stochastic population-based search algo-
rithm that has been effectively utilized to solve numerous real world optimization
problems (Poli, 2008). PSO and its variants have also undergone numerous the-
oretical investigations (Ozcan and Mohan, 1998, 1999; Clerc and Kennedy, 2002;
Zheng et al., 2003; Van den Bergh and Engelbrecht, 2006; Trelea, 2003; Cleghorn
and Engelbrecht, 2014a; Kadirkamanathan et al., 2006; Gazi, 2012; Poli, 2009;
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Campana and Fasano, 2010; Bonyadi and Michalewicz, 2014; Blackwell, 2012;
Montes de Oca and Stützle, 2008; Liu, 2014). Despite the numerous theoretical
investigations, there still exists important aspects of PSO’s behavior that are not
completely understood. For example the conditions necessary for PSO to enter a
state of stagnation are still unknown.

As with most theoretical studies, where the problem being analyzed is in-
tractable, a number of simplifying assumptions are needed in order to be able
to reasonably derive a result. The last assumption that remains in all theoretical
work on all stochastic PSO variants is the stagnation assumption. The stagnation
assumption in its strongest form assumes that the personal and neighborhood best
positions remain constant for each particle. The weakest stagnation assumption
used in a recent study done by Liu (2014) assumed that only the particle with the
best objective function evaluation is constant. With the presence of the stagnation
assumption in theoretical investigations, it is not clear that the derived criteria
for convergent particles will ensure convergent particle behavior in practice. While
the stagnation assumption appears reasonable, particularly the weak variant (Liu,
2014), there is no guarantee that PSO will in fact ever enter a state of stagna-
tion, it is for this reason that theoretical analysis performed under any form of
stagnation should be verified empirically in an assumption free context.

In the paper, we define convergence to be order-2 stability, as defined by Poli
(2009). Specifically, a sequence of random variables zn is order-2 stable if

lim
n→∞

E[zn] = µ and lim
n→∞

StdDev[zn] = σ (1)

This definition of stability, as apposed to one where the standard deviation ap-
proaches zero, is based on the derivation by Poli (2009) for the canonical PSO,
that shows that the standard deviation only approaches 0 if the personal best and
the neighborhood best positions become equal. However, in practice there is no
guarantee of this equality occurring for multiple particles, let alone the swarm as
a whole.

There are two primary aims in this study. The first aim is to empirically verify
the use of a specially designed objective function for particle swarm optimization
(PSO) convergence analysis. The second aim is to analyze the parameter region
needed to ensure convergent particle behavior of PSO variants utilizing the spe-
cially designed objective function. The empirical analysis presented in this paper
imposes no simplifying assumption on the analyzed PSO variants, resulting in a
true reflection of the PSO variants’ convergence behavior.

A brief description of the PSO algorithm is given in section 2. A description of
the fully informed PSO (FIPS), bare bones PSO (BPSO), and the standard PSO
2011 (SPSO2011) is given in section 3. A summary of the theoretical convergence
results obtained for PSO and PSO’s variants is presented in section 4. The experi-
mental set up and results for each experiment are presented in section 5. Section 6
presents a summary of the findings of this paper, as well as a discussion of topics
for future research.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) was originally developed by Kennedy and
Eberhart (1995) to simulate the complex movement of birds in a flock. The stan-
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dard variant of PSO this section focuses on includes the inertia coefficient proposed
by Shi and Eberhart (1998).

The PSO algorithm is defined as follows: Let f : Rk → R be the objective
function that the PSO algorithm aims to find an optimum for, where k is the
dimensionality of the objective function. For the sake of simplicity, a minimization
problem is assumed from this point onwards. Specifically, an optimum o ∈ Rk is
defined such that, for all x ∈ Rk, f(o) ≤ f(x). In this paper the analysis focus is
on objective functions where the optima exist. Let Ω (t) be a set of N particles in
Rk at a discrete time step t. Then Ω (t) is said to be the particle swarm at time t.
The position xi of particle i is updated using

xi (t+ 1) = xi (t) + vi (t+ 1) , (2)

where the velocity update, vi (t+ 1), is defined as

vi (t+ 1) = wvi (t) + c1r1(t)⊗ (yi(t)− xi (t)) + c2r2(t)⊗ (ŷi(t)− xi (t)), (3)

where r1,j(t), r2,j(t) ∼ U (0, 1) for all t and 1 ≤ j ≤ k. The operator ⊗ is used
to indicate component-wise multiplication of two vectors. The position yi(t) rep-
resents the “best” position that particle i has visited, where “best” means the
location where the particle had obtained the lowest objective function evaluation.
The position ŷi(t) represents the “best” position that the particles in the neigh-
borhood of the i-th particle have visited. The coefficients c1, c2, and w are the
cognitive, social, and inertia weights, respectively.

A primary feature of the PSO algorithm is social interaction, specifically the
way in which knowledge about the search space is shared amongst the particles in
the swarm. In general, the social topology of a swarm can be viewed as a graph,
where nodes represent particles, and the edges are the allowable direct communi-
cation routes. The social topology chosen has a direct impact on the behaviour of
the swarm as a whole (Kennedy, 1999; Kennedy and Mendes, 2002; Engelbrecht,
2013a). Some of the most frequently used social topologies are discussed below:

• Star: The star topology is one where all the particles in the swarm are inter-
connected as illustrated in figure 1a. The original implementation of the PSO
algorithm utilized the star topology (Kennedy and Eberhart, 1995). A PSO
utilizing the star topology is commonly referred to as the Gbest PSO.

• Ring: The ring topology is one where each particle is in a neighborhood with
only two other particles, with the resulting structure forming a ring as illus-
trated in figure 1b. The ring topology can be generalized to a network structure
where larger neighborhoods are used. The resulting algorithm is referred to as
the Lbest PSO.

• Von Neumann: The Von Neumann topology is one where the particles are
arranged in a grid-like structure. The 2-D variant is illustrated in figure 1c,
and the 3-D variant is illustrated in figure 1d.

The PSO algorithm is summarized in algorithm 1. The PSO, as defined in
this section, is referred to as canonical PSO (CPSO) within the remainder of this
paper.
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(a) Star topology. (b) Ring topology. (c) 2-D Von Neu-
mann topology.

(d) 3-D Von Neu-
mann topology.

Fig. 1: Common social topologies

Algorithm 1 PSO algorithm

Create and initialize a swarm, Ω (0), of N particles uniformly within a predefined hypercube
of dimension k.
Let f be the objective function.
Let yi represent the personal best position of particle i, initialized to xi(0).
Let ŷi represent the neighborhood best position of particle i, initialized to xi(0).
Initialize vi(0) to 0.
repeat

for all particles i = 1, · · · , N do
if f(xi) < f(yi) then

yi = xi

end if
for all particles î with particle i in their neighborhood do

if f(yi) < f(ŷî) then
ŷî = yi

end if
end for

end for
for all particles i = 1, · · · , N do

update the velocity of particle i using equation (3)
update the position of particle i using equation (2)

end for
until stopping condition is met

3 Particle Swarm Optimization Variants

There exists a large number of PSO variants (Engelbrecht, 2007). The simplest
variants alter one or more of the PSO velocity update equation’s coefficients to be
a function of time, in an attempt to control the exploration-exploitation behavior
of the swarm over the course of the search. There are also more sophisticated PSO
variants that substantially alter the PSO’s behavior. This section focuses on three
of these variants that are commonly used: the fully informed PSO (FIPS), bare
bones PSO (BPSO), and the standard PSO 2011 (SPSO2011).

3.1 Fully Informed PSO

The FIPS algorithm was inspired by the observation made by Kennedy and Mendes
(2003) that human individuals are not influenced by only a single individual, but
rather by a statistical summary of the state of their neighborhood. Based on this
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observation, the velocity equation is altered such that each particle is influenced
by the successes of all its neighbors, and not by the performance of only one other
individual in the neighborhood.

The velocity update equation of FIPS is defined as follows:

vi (t+ 1) = wvi (t) +

|Ni|∑
m=1

γm(t)⊗ (ym(t)− xi (t))

|Ni|
, (4)

where Ni is set of particles in particle i’s neighborhood, |Ni| is the cardinality of
Ni, and γm,j(t) ∼ U (0, c1 + c2) for 1 ≤ j ≤ k.

The FIPS algorithm was originally proposed using constriction. For a detailed
explanation of constriction the reader is refereed to Clerc and Kennedy (2002).
However, the velocity update equation (4) can be rewritten to utilize constriction
instead of an inertia weight by setting the constriction factor X equal to w, and
(c1 + c2) /X = ĉ1 + ĉ2, where ĉ1 and ĉ2 are coefficients chosen for a PSO using
constriction. From a theoretical perspective the models are equivalent.

3.2 Bare Bones PSO

Kennedy (2003) proposed the BPSO algorithm based on the empirical observation
that the distribution of particle positions are centered around the weighted average
between the personal best and neighborhood best positions, specifically

ζi =
c1yi(t) + c2ŷi(t)

c1 + c2
. (5)

This observation was later supported by the theoretical work of Van den Bergh and
Engelbrecht (2006) and Trelea (2003), where it was shown for the deterministic
PSO model under the stagnation assumption that each particle converges to the
point defined in equation (5) (assuming a star neighborhood topology).

For BPSO, the velocity update equation changes to

vi,j (t+ 1) ∈ N (ζi,j , φi,j (t)) , (6)

where φi,j (t) = |yi,j(t)− ŷi,j(t)|. The position update equation is changed to

xi (t+ 1) = vi (t+ 1) . (7)

In the standard implementation of BPSO (Kennedy, 2003), c1 and c2 are as-
sumed to be equal resulting in the point of convergence being

yi(t) + ŷi(t)

2
. (8)

For the purposes of this paper, the case where c1 and c2 are equal is treated as a
special case of the BPSO in the convergence analysis.



6 Christopher W. Cleghorn, Andries P. Engelbrecht

3.3 Standard PSO 2011

Clerc (2011) developed SPSO2011 in an attempt to define a new baseline for
future PSO improvements. The two primary benefits of the SPSO2011 are stated
to be rotational invariance and an adaptive topology. The first published work
on SPSO2011 was by Zambrano-Bigiarini and Clerc (2013). The particle velocity
update equation is defined as follows:

vi (t+ 1) = wvi (t) +Hi (gi (t) , ||gi − xi||2)− xi (t) , (9)

where gi is defined as

gi (t) =
xi (t) + αi (t) + βi (t)

3
, (10)

where αi (t) and βi (t) are defined as

αi (t) = xi (t) + c1r1 ⊗ (yi(t)− xi (t)) , (11)

βi (t) = xi (t) + c2r2 ⊗ (ŷi(t)− xi (t)) . (12)

The function Hi (gi (t) , ||gi − xi||2) returns a uniformly sampled random position
from a hyper-sphere centered at gi (t) with a radius of ||gi − xi||2.

The samples from Hi are obtained using the following approach: Construct
a random k dimensional vector, rv, whose scalar components are sampled from
the normal distribution N (0, 1). The random vector must then be normalized,
and multiplied by a random scalar sampled uniformly from 0 to the hypersphere’s
radius. The random vector rv must then be translated to the specified center
point.

In the work of Zambrano-Bigiarini and Clerc (2013), no special consideration
was made for the case where yi(t) = ŷi(t), however, in the original work Clerc
(2011) replaced equation (10) with

gi (t) =
xi (t) + (xi (t) + c (yi(t)− xi (t)))

2
. (13)

This paper uses the following equation for the center of gravity, which applies
the same principle used by Zambrano-Bigiarini and Clerc (2013) for the case where
yi(t) 6= ŷi(t):

gi (t) =
xi (t) + αi (t)

2
. (14)

The topology used by SPSO2011 is a particular case of the stochastic star
topology proposed by Mirinda et al. (2008). On initialization, each particle’s neigh-
borhood is constructed by selecting three particles randomly from the swarm and
the particle itself (the same particle is allowed to be chosen several times). If an un-
successful iteration occurs, the neighborhoods are reconstructed. An unsuccessful
iteration is defined as an iteration where no new position was found that improved
the previous best objective evaluation obtained by the whole swarm.

In the work of Zambrano-Bigiarini and Clerc (2013), the SPSO2011 algorithm
prevents particles from leaving the search space by setting the component of the
particle that breached the search space boundary to the boundary value and the
particle’s whole velocity to zero. This addition is not present in the original work
of Clerc (2011).
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4 Theoretical Particle Swarm Optimization Background

This section briefly presents the relevant theoretical findings for the CPSO, FIPS,
BPSO, and the SPSO2011 algorithms in subsections 4.1, 4.2, 4.3, and 4.4 respec-
tively. Each subsection focuses specifically on the theoretical convergence results
of each PSO variant.

The primary assumptions that occur in the theoretical PSO research are as
follows:

Deterministic assumption: It is assumed that θ1 = θ1(t) = c1r1(t), and
θ2 = θ2(t) = c2r2(t), for all t.

Stagnation assumption: It is assumed that yi(t) = yi, and ŷi(t) = ŷi, for
all t sufficiently large.

Weak chaotic assumption: It is assumed that both yi (t) and ŷi (t) will
occupy an arbitrarily large finite number of unique positions (distinct positions),
ψi and ψ̂i, respectively.

Weak stagnation assumption: It is assumed that yî (t) = yî, for all t

sufficiently large, where î is the index of the particle that has obtained the best
objective function elevation.

For a more detailed discussion of when and why each assumption was made
in the theoretical literature, the reader is referred to the article by Cleghorn and
Engelbrecht (2014a).

4.1 Theoretical Results for Canonical PSO

This subsection presents each theoretically derived region that is sufficient for
particle convergence in the CPSO algorithm, along with the corresponding as-
sumptions utilized in the region’s derivation.

Under the deterministic and weak chaotic assumptions, Cleghorn and Engel-
brecht (2014a) derived the following region for particle convergence:

c1 + c2 < 2 (1 + w) , c1 > 0, c2 > 0, −1 < w < 1, (15)

which generalized the work of Van den Bergh and Engelbrecht (2006); Van den
Bergh (2002), and that of Trelea (2003). Equation (15) is illustrated in figure 2,
as the triangle AFB.

Under the stagnation assumption only, Kadirkamanathan et al. (2006) derived
the following region for particle convergence:{

c1 + c2 < 2 (1 + w) for w ∈ (−1, 0]

c1 + c2 <
2(1−w)2

1+w for w ∈ (0, 1) .
(16)

Still under the stagnation assumption, Gazi (2012) expanded the derived region
of equation (16), resulting in the region{

c1 + c2 <
24(1+w)

7 for w ∈ (−1, 0]

c1 + c2 <
24(1−w)2

7(1+w) for w ∈ (0, 1) .
(17)

The regions corresponding to equations (16) and (17) are illustrated in figure 2
as triangle like regions ADB and AEB respectively. Unfortunately, both equations
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Fig. 2: Theoretically derived regions sufficient for particle convergence

(16) and (17) are very conservative regions, as they were derived utilizing the
Lyapunov condition (Kisacanin and Agarwal, 2001).

Lastly, without the use of the Lyapunov condition, Poli (2009) and Poli and
Broomhead (2007) derived under stagnation the following region:

c1 + c2 <
24
(
1− w2

)
7− 5w

for w ∈ [−1, 1] . (18)

The region defined by equation (18) is illustrated in figure 2 as the curved line
segment AB. The region defined by equation (18) was also independently derived
by Jiang et al. (2007) under the stagnation assumption. More recently, Liu (2014)
was able to obtain the region defined by equation (18) using only the weak stagna-
tion assumption. The work of Liu (2014) also implies that the convergence region
of equation (18) is the same irrespective of the social network topology utilized by
CPSO.

The choice of which region to use in practice is difficult, as each region’s deriva-
tion relies on at least one simplifying assumption. As a result, a study was done by
Cleghorn and Engelbrecht (2014b), which showed with the support of empirical
evidence that the region of equation (18) derived by Poli matched almost perfectly
with the convergence behavior of a non-simplified Gbest CPSO, making the re-
gion defined by equation (18) the best choice in practice when utilizing the star
topology.

It should be made clear that selecting parameters from a convergent parameter
region does not necessarily guarantee higher quality solutions. That said, it is
unlikely to experience fruitful searches with divergent parameters, as the rate
of particle velocity increase under a divergent parameter configuration is near
exponential, with particles traveling at each iteration distances orders of magnitude
greater than the initial search space (Cleghorn and Engelbrecht, 2014b). Even if
a technique is utilized to prevent particles from leaving a predetermined search
space, particles will forever be colliding with the search space boundaries instead
of exploring the search space.
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4.2 Theoretical Results for Fully Informed PSO

The FIPS algorithm has undergone far less theoretical investigation than CPSO.
The two primary contributions with regard to convergence analysis are discussed
in this subsection.

Poli (2007) was the first to analyze the FIPS algorithm from a theoretical
perspective. The analyses was performed under the stagnation assumption, and
focused on the case where the neighborhood size was three (i.e. FIPS3). The
analysis compared the order 1, 2, 3 and 4 (mean, deviation, skewness, kurtosis)
stability of the social-only and canonical PSO with that of FIPS3. It was found that
FIPS3 was surprisingly the most stable of the three, despite the FIPS3 algorithm
containing more sources of randomness. No general region of convergence was
provided for an arbitrary choice of neighborhood size.

In the study performed by Montes de Oca and Stützle (2008), it was shown that
particles are attracted to the centroid of its neighborhood best found positions,
given that coefficients where selected that satisfy the constriction conditions as
defined in (Clerc and Kennedy, 2002). The centroid is defined as the average over
all the neighborhood best positions. The study was performed under the stagnation
and deterministic assumptions, where γm in equation (4) was replaced with the
expected value (c1 + c2) /2. A general region for particle convergence was not
presented. The study did, however, empirically determine that a more connected
swarm topology resulted in a smaller region of the search space being explored. It
was also found that the FIPS algorithm has a very strong bias to the centroid of
each particle’s previously found neighborhood best positions.

4.3 Theoretical Results for Bare Bones PSO

Despite the BPSO algorithm being well supported by theoretical convergence re-
sults of CPSO, the algorithm itself has not undergone much theoretical study. The
primary contribution is that of Blackwell (2012). The study focused on a gener-
alized class of PSO update equations. The class of PSOs considered were those
with update equations that could be applied component wise, and that can be
rearranged to the form

xij(t+ 1) + a(t)xij(t) + b(t)xij(t− 1) = c(t,Ni), (19)

were a(t) and b(t) are random variables, and c(t,Ni) is a random variable that also
depends on constant neighborhood positions. Blackwell (2012) was able to show
that, under the stagnation assumption, the sequence of particle positions is weakly
stationary for BPSO. If a series is weakly stationary it is by implication order-2
stable as shown by Kendall and Ord (1990). Alterations of the BPSO algorithm
with theoretically derived non-collapse conditions were also presented.

Blackwell (2012) used the same approach to derive the convergence criteria
for CPSO, which matched the earlier derived convergence criteria of Poli (2009).
However, the technique used by Blackwell (2012) is computationally simpler than
that used by Poli.
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4.4 Theoretical Results for Standard PSO2011

The only theoretical work to date on SPSO2011 is by Bonyadi and Michalewicz
(2014). The analysis was completed under the stagnation assumption, and without
the special treatment of gi (t) when yi(t) = ŷi(t) as defined by equation (14). It
was shown that SPSO2011 was not locally convergent to an optimum. However,
SPSO2011 was shown to be rotationally invariant. The convergent (stable) region
of SPSO2011 was plotted using an empirical technique under forced stagnation,
with each particle’s personal best and neighborhood best positions set to be equal.
Forced stagnation is a situation when either the personal and neighborhood best
positions are not allowed to update, or the objective function is a constant. The
former was used in the study by Bonyadi and Michalewicz (2014). It was shown
that the size of the convergent region appeared to decrease as the dimensionality
of the problem increased. However, no explicit conditions for convergence were
presented.

5 Experiments

This section provides an empirical analysis of the proposed objective function for
use in empirical convergence analysis, in addition to the empirical analysis of PSO
variants.

The first experiment, presented in section 5.1, aims to empirically justify the
effectiveness of the proposed objective function (for use in empirical convergence
analysis). The second experiment (section 5.2) analyzes the impact that the social
topology has on the convergence criteria of CPSO. The three remaining exper-
iments focus on empirically analyzing the criteria necessary for particle conver-
gence in PSO variants using the objective function defined in section 5.1. The
FIPS, BPSO, and SPSO2011 algorithms are analyzed in sections 5.3, 5.4, and
5.5 respectively. It should be noted that for all the PSO variants considered no
boundary checking or particle correction is performed, so as to prevent adding
unnecessary noise to the behavior of the algorithms.

5.1 Objective Function Proposed for Convergence Analysis

There is an inherent difficulty in empirically analyzing the convergence behavior
of PSO particles, specifically with regards to understanding the influence of the
underlying objective function’s landscape on the PSO algorithm. It is proposed
that the following objective function can be used as the reference function for
convergent region analysis:

CF (x) ∼ U (−1000, 1000) , (20)

as originally presented in (Cleghorn and Engelbrecht, 2014a).
The value of CF , for each x in the domain of CF , is calculated and stored

the first time it is required in the execution of the PSO algorithm. The calculated
value for each x in the domain of CF remains static after its initial computation.
Objective function values are generated anew for each independent run of the PSO
algorithm. In other words, for each evaluated x in the domain of CF a unique
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random value from the uniform distribution U (−1000, 1000) is assigned. What
the objective function in equation (20) provides is an environment that is rife with
discontinuities and completely unstructured, resulting in a search space in which
the PSO algorithm will be highly unlikely to enter a state of full stagnation.

The aim of most theoretical convergence research performed on PSO and PSO
variants (Blackwell, 2012; Poli and Broomhead, 2007; Poli, 2009; Jiang et al.,
2007) is to prove a simplified version of the following theorem for a specific set of
parameter configurations, with the hope that the derived results are applicable to
the unsimplified version:

Theorem 5.1. There exists a set C of PSO parameter values such that if param-
eters are selected from C then for all objective functions f : Rn → R there exists
an iteration T such that for all iterations t > T each particle’s position is order-2
stable.

The objective function in equation (20) is designed to be an ideal counter
example to theorem 5.1. The premise is that if a PSO variant can converge for a
given parameter configuration using equation (20) as an objective function, then
the parameter configuration is very likely to be a truly convergent parameter
configuration for all objective functions.

The experiment conducted in this subsection aims to justify the use of a specifi-
cally designed objective function for the convergent parameter region analysis. The
experimental setup and results are presented in sections 5.1.1 and 5.1.2, respec-
tively.

5.1.1 Experimental Setup

The measure of convergence used in this paper is:

∆ (t+ 1) =
1

N

N∑
i=1

‖xi (t+ 1)− xi (t) ‖2. (21)

Equation (21) is chosen as the measure of convergence because if any particle
is divergent, the convergence measure value will reflect this divergence within the
swarm. A swarm can only be classified as convergent if every particle in the swarm
exhibits convergent behavior.

The experiment utilizes the following static parameters: Swarm size of 64 par-
ticles, 5000 iterations, and a 50-dimensional search space. A swarm size of 64
particles is utilized to allow for all the social topologies tested to be complete
structures. Particle positions are initialized within (−100, 100)k and velocities are
initialized to 0.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 4.3] , (22)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The experiment
is performed for each of the following neighborhood topologies: star, ring, 2-D and
3-D von Neumann. The experiment is conducted using CF and 11 base objective
functions from the CEC 2014 problem set (Liang et al., 2013). The functions are
as follows: Ackley, High Conditioned Elliptic, Bent Cigar, Discus, Rosenbrock,
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Griewank, Rastrigin, HappyCat, HGBat, Katsuura, and Expanded Griewank plus
Rosenbrock. The region of equation (22) contains exactly 504 points that satisfy
equation (18). A total of 989 sample points from the region defined in equation
(22) are used per objective function and topology pair. The results reported in
Section 5.1.2 are the averages over 35 independent runs for each sample point. It
should be noted that, for all PSO variants used in this paper, no form of search
space bounding is performed. Any attempt to force particles to remain within a
given bounded area would seriously hinder the ability to perform an empirical
analysis, and implicitly impose a form of order-2 stability on the swarm.

In order to allow for a sensible comparison of convergence properties, the con-
vergence measure values are bounded as follows: If [l, u]k is the initial domain of
the objective function, then

∆max =

√
k (l − u)2, (23)

where l and u are the lower and upper bound of the domain per dimension respec-
tively. ∆max is the maximum distance of two points in the initialized search space.
For this subsection, ∆max = 1414.214. Utilizing ∆max to bound the presented re-
sults is reasonable as any swarm that has the average particle movement exceeding
the maximum initial distance possible between two particles in the search space
after 5000 iterations cannot be thought of as convergent in a practical context. The
convergence measure values are bounded instead of log scaled as multiple param-
eter configurations resulted in particle movement so extreme that a 64-bit floating
point number was experiencing overflow. The value of ∆max also has a secondary
purpose as the classification boundary between convergent and divergent particle
movement. While ∆max appears to be a large allowance for convergence, it will
aid in the correct classification of particles that are converging at a very slow rate.
Utilizing ∆max will in addition still correctly classify particles that are slowly di-
verging, as it is easy for particles to exceed ∆max after swarm initialization, due
to the well know phenomenon of particle velocity explosion (Engelbrecht, 2013b).

5.1.2 Experimental Results and Discussion

This subsection presents a table per PSO social topology containing the following
measurements per objective function:

• Measurement A: The number of CPSO parameter configurations that resulted
in a final convergence measure value less than or equal to the final convergence
measure obtained if the CF objective function was used instead.

• Measurement B: The number of CPSO parameter configurations that resulted
in a final convergence measure value greater than the final convergence measure
obtained if the CF objective function was used instead.

• Measurement C: The number of CPSO parameter configurations that resulted
in a final convergence measure greater than or equal to ∆max.

• Measurement D: The number of CPSO parameter configurations that resulted
in a final convergence measure less than ∆max.

• Measurement E: The number of CPSO parameter configurations that satisfied
equation (18) and resulted in a final convergence measure less than ∆max.

• Measurement F: The number of CPSO parameter configurations that satisfied
equation (18) and did not result in a final convergence measure less than ∆max.
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• Measurement G: The average convergence measure value across all parameter
configurations, with all elements bounded at ∆max. It should be noted that
reported averages for this measurement are calculated after bounding of the
convergence measure has occurred, so as to prevent divergent configurations
from radically affecting the results.

Measurements A and B provide a concise way of seeing, per objective function,
how much better or worse the CF objective function performs as a reference con-
vergence analysis function. An ideal convergence analysis function is one that,
in general, will yield the highest resulting convergence measure for all possible
parameter configurations. The higher the resulting convergence measure value is,
the harder it was for the PSO to have converged under a given objective function.
Measurements C and D give a clear picture of how effectively the underlying ob-
jective function highlights possible divergent particle behavior. Given the tested
region of equation (22), there are a total of 504 parameter configurations that
satisfy equation (18), leaving 485 parameter configurations that should produce
divergent behavior. Ideally, an objective function utilized for convergence analysis
should result in a value for measurement C as close as possible to 485, and a value
for measurement D as close as possible to 504. Measurements E and F are an
extension of measurements C and D, in that an objective function should have
at most 504 parameter configurations that both satisfy equation (18) and have
a convergence measure value not exceeding ∆max. An objective function with a
measurement E value smaller than 504 is more conservative in assigning the label
of a convergent particle. A slightly conservative assignment is a positive feature
of an objective function being used for convergence analysis, as falsely classify-
ing a parameter configuration as convergent could lead to a PSO user obtaining
radically unexpected results when utilizing the parameter configuration in prac-
tice. Measurement G provides an overall view of how difficult the used objective
function has made it for the CPSO algorithm to converge.

A snapshot of the convergence measure values are presented for three cases:

• Case A: For each parameter configuration the maximum convergence measure
value across all 11 objective functions and topologies is reported.

• Case B: For each parameter configuration the maximum convergence measure
value across all topologies using only the CF objective function is reported.

In order to deduce the convergence region from the empirical data of all 11 base
functions and all topologies, the largest recorded convergence measure value of each
parameter configuration is reported in case A. Case B is presented to illustrate
the similarity between the mapped out convergence region of the CPSO algorithm
using the CF objective function to the mapped out convergence region of the CPSO
algorithm in case A, which is constructed using the complete pool of gathered data
of the 11 objective functions.

• Cases C and D: For each parameter configuration the maximum convergence
measure value across all topologies using the two objective functions which
have the most similar resulting measurements to case B is reported.

Cases C and D are presented to illustrate that the mapped out convergence region
of cases A and B are not identical to the convergence regions of any arbitrary
objective function. In particular, cases A and B should result in a subset of the
region produced by an arbitrary objective function.
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Measurements A and B in table 1 show that the Gbest CPSO applied to the
CF objective function resulted in a higher convergence measure evaluation than
9 of the 11 other objective functions for nearly all parameter configurations. For
the two remaining objective functions, Katsuura is the only objection function
close to the CF objective function in terms of measurement A. However, Kat-
suura has an average convergence measure of 49.672 less than CF has, making CF
the better objective function for convergence analysis. The CF objective function
also obtained the largest number of parameter configurations that resulted in a
convergence measure that exceeded the bound of ∆max, and the highest average
convergence measure evaluations. These measurements indicate the effectiveness
of CF as an objective function for convergence analysis. The CF objective function
under the star topology provides an environment that is much harder for CPSO
particles to converge in than using any of the other objective functions.

Measurements A and B in table 2 show that the Lbest CPSO applied to the
CF objective function resulted in a higher convergence measure evaluation than 9
of the 11 other objective functions for nearly all parameter configurations. Once
again, Katsuura provided the second lowest value for measurement A, while CF
provided the best results for all other measurements, applying the same analysis
logic used for the star topology. Though inferior, Ackley resulted in values for C,
D and G very close to that obtained by the CF objective function. However, CF
provided far better results in terms of measurement A, making CF the best choice
as an objective function for convergence analysis.

Table 1: Convergence properties per objective function under the Star topology

hhhhhhhhhhhFunction

Measurement
A B C D E F G

CF – – 467 522 504 0 683.437
Ackley 879 110 464 525 502 2 676.293
High Conditioned Elliptic 989 0 400 589 504 0 573.601
Bent Cigar 989 0 412 577 504 0 598.593
Discus 989 0 409 580 504 0 592.545
Rosenbrock 988 1 424 565 504 0 622.009
Griewank 989 0 412 577 504 0 596.772
Rastrigin 989 0 411 578 504 0 596.909
HappyCat 989 0 411 578 504 0 595.375
HGBat 989 0 412 577 504 0 595.366
Katsuura 507 482 416 573 504 0 623.765
Expanded Griewank plus Rosenbrock 989 0 416 573 504 0 603.981

Table 2: Convergence properties per objective function under the Ring topology

hhhhhhhhhhhFunction

Measurement
A B C D E F G

CF – – 473 516 503 1 690.797
Ackley 912 77 469 520 504 0 682.570
High Conditioned Elliptic 989 0 400 589 504 0 574.659
Bent Cigar 989 0 415 574 504 0 602.194
Discus 989 0 414 575 504 0 597.668
Rosenbrock 989 0 417 572 504 0 613.094
Griewank 989 0 412 577 504 0 603.304
Rastrigin 989 0 412 577 504 0 601.111
HappyCat 989 0 415 574 504 0 603.536
HGBat 989 0 414 575 504 0 601.403
Katsuura 509 480 413 576 504 0 623.710
Expanded Griewank plus Rosenbrock 989 0 416 573 504 0 609.277
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Measurements A through G in tables 3 and 4 show for both the 2-D and 3-D
von Neumann topologies that the results remain almost identical to those of the
ring and star topologies. This provides evidence that the topology has a negligible
impact on the effectiveness of CF as an objective function for convergence analysis.

For case A, the convergent region as illustrated in figure 3a matches the derived
region of equation (18) almost perfectly, as does the region seen in figure 3b for
case B. While there exists a slight difference between figures 3a and 3b in terms
of convergence measure values, the overall convergent regions are nearly identical.
The similarity observed between figures 3a and 3b indicates that the utilization
of the CF function is sufficient for the purpose of empirical convergence analysis.
The similarity between figures 3a and 3b is not observed for the other objective
functions. For example in case C, the Katsuura function, when used with CPSO,
resulted in properties similar to the CPSO using CF in tables 1 through 4. How-
ever, Katsuura has a substantially different convergent region to both figures 3a
and 3b, with an apex extending past c1 + c2 = 4.5, as illustrated in figure 3c. For
Case D, the convergent region obtained when using the Ackley objective function
is illustrated in figure 3d. The obtained convergent region is substantially closer
to the convergent region obtained in case A and B, however that apex of the con-

Table 3: Convergence properties per objective function under the 2-D von Neu-
mann topology

hhhhhhhhhhhFunction

Measurement
A B C D E F G

CF – – 480 509 500 4 704.946
Ackley 915 74 475 514 501 3 692.301
High Conditioned Elliptic 989 0 402 587 504 0 577.036
Bent Cigar 989 0 413 576 504 0 600.998
Discus 989 0 414 575 504 0 598.234
Rosenbrock 988 1 415 574 504 0 616.365
Griewank 989 0 414 575 504 0 600.839
Rastrigin 989 0 412 577 504 0 597.999
HappyCat 989 0 414 575 504 0 600.869
HGBat 989 0 413 576 504 0 599.576
Katsuura 525 464 415 574 504 0 622.108
Expanded Griewank plus Rosenbrock 988 1 416 573 504 0 608.545

Table 4: Convergence properties per objective function under the 3-D von Neu-
mann topology

hhhhhhhhhhhFunction

Measurement
A B C D E F G

CF – – 479 510 500 4 704.173
Ackley 925 64 473 516 503 1 691.705
High Conditioned Elliptic 989 0 401 588 504 0 576.575
Bent Cigar 989 0 415 574 504 0 601.344
Discus 989 0 416 573 504 0 600.027
Rosenbrock 989 0 416 573 504 0 615.662
Griewank 989 0 417 572 504 0 602.236
Rastrigin 989 0 413 576 504 0 601.200
HappyCat 988 1 415 574 504 0 603.712
HGBat 988 1 415 574 504 0 600.504
Katsuura 532 457 417 572 504 0 624.483
Expanded Griewank plus Rosenbrock 988 1 418 571 504 0 610.503
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(a) Case A: Optimal region
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(b) Case B: CF region
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(c) Case C: Katsuura region
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(d) Case D: Ackley region

Fig. 3: Convergence measure values at the 5000th iteration

vergent region obtained when using the Ackley objective function is quite jagged
in comparison to case A and B.

A very promising feature of the convergence analysis approach presented in
this paper is the high level of accuracy that can be obtained when using CF as
an objective function and ∆max as a classification boundary. Specifically, with the
CPSO algorithm, if every parameter configuration with a convergence measure
value below ∆max is classified as convergent and every parameter configuration
with a convergence measure value above or equal to ∆max is classified as divergent,
a total accuracy of 98.79% is obtained when compared to the region derived by
Poli (2009), with only 12 of the 989 parameter settings misclassified (10 falsely
classified as divergent, and 2 falsely classified as convergent).

5.2 Canonical PSO, Convergence Analysis of Topological Influence

This subsection aims to verify that the theoretically derived region of Poli (2009)
remains valid under multiple social topologies. Considering the results of subsec-
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tion 5.1, it is clear that the topology does not have a very meaningfully impact on
the convergence results. This is seen in the similarity between tables 1 to 4 where,
under all measurements, there is minimal to no change, implying that the topology
has no real influence on the parameter region needed for particle convergence.

A snapshot of all parameter configurations’ resulting convergence measure val-
ues is presented for the following situation:

Topology influence: The optimal convergence region is constructed for each
investigated topology, using the same method as explained in case A of section
5.1. The resulting optimal region that has the greatest distance in terms of
convergence measure values from case A is reported.

The snapshot is presented to illustrate the maximum deviation between the con-
vergent parameter region under multiple topologies. If the convergent parameter
regions between the presented snapshot and that of case A from subsection 5.1 are
identical, then the topological choice has no influence on the convergent parameter
regions.

For the case investigating the topological influence, the ring topology had the
greatest Euclidean distance from the optimal region of case A from subsection 5.1.
The convergent region is illustrated in figure 4. Despite the ring topology having
the greatest Euclidean distance from the optimal region of case A, figure 4 appears
identical to the region of figure 3a, as the difference in convergence measure values
are very small. The close similarity between figures 3a and 4 is a clear indication
that the topology used within the CPSO algorithm has no meaningful impact on
the convergent region of a CPSO. The conclusion that CPSO’s convergent region
is independent of the social topology used is supported by the analysis done by
Liu (2014).
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Fig. 4: Topology influence: Ring topology region. Convergence measure values at
the 5000th iteration
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5.3 Fully Informed PSO Convergence Analysis

This subsection aims to empirically obtain the convergence criteria for FIPS uti-
lizing the proposed objective function of subsection 5.1.

The FIPS algorithm is implemented using the CPSO description in algorithm
1 with the velocity update equation 3 replaced with equation 4. The experimental
setup and results are presented in sections 5.3.1 and 5.3.2 respectively.

5.3.1 Experimental Setup

Upon inspection of the FIPS update equations defined in equation (4), it is clear
that the neighborhood size might be a contributing factor in the convergence crite-
ria of FIPS. As a result, the convergence criteria is investigated for neighborhood
sizes 2, 4, 8, 16, 32, and 64.

The experiment utilizes the same static parameters as subsection 5.1, except
that the LBest topology is used. The analysis is done in one dimension as the
update equations operate on the particles position and velocity components inde-
pendently, resulting in ∆max = 200 for this subsection. The experiment of this
subsection utilizes the convergence measure of equation (21) and the objective
function defined in equation (20). The use of only the objective of equation (20)
is validated by the experimental results of subsection 5.1, which proved the effec-
tiveness of the objective function for convergence analysis.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 7] , (24)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The parameter
region was empirically determined by increasing the values of c1+c2 and w until the
complete convergent subregion was contained. A total of 1610 sample points from
the region defined in equation (24) are used. The results reported in subsection
5.3.2 are the averages over 35 independent runs for each sample point.

5.3.2 Experimental Results and Discussion

A snapshot of the resulting convergence measure values across the region defined
in equation (24) under varying neighborhood sizes is presented in figure 5, for 2,
4, 8, 16, 32, and 64 dimensions.

The convergence region obtained in figure 5a is very similar to the convergent
region found for the CPSO algorithm in subsection 5.1. The similarity of the
convergent regions is to be expected given that if the neighborhood size of 2 is
used and c1 = c2, FIPS can be shown to be the CPSO algorithm assuming that
each particle is within its own neighborhood.

The convergent region found for FIPS with a neighborhood size of 4, as seen in
figures 5b, is larger than that of FIPS with a neighborhood size of 2. The general
form of the convergent region is close to that of FIPS with a neighborhood size of
2.

Upon inspection of FIPS with the neighborhood sizes of 8 and 16 in figure
5c and 5d, it is clear that the neighborhood size has a meaningful effect on the
convergent region. The convergent region continues to allow for greater values of
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(a) FIPS with neighborhood of size 2.
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(b) FIPS with neighborhood of size 4.
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(c) FIPS with neighborhood of size 8.
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(d) FIPS with neighborhood of size 16.
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(e) FIPS with neighborhood of size 32.
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(f) FIPS with neighborhood of size 64.

Fig. 5: Fully Informed PSO convergence results

c1 +c2 as the neighborhood size increases. There is also a clear favoring of positive
inertia coefficients the larger c1 + c2 gets.
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The increase in the size of the convergent region continues with neighborhood
sizes 32 and 64, as is seen in figures 5e and 5f. The convergent region’s shape is
substantially different from the convergent region obtained when a small neigh-
borhood size is utilized. The convergent region in figure 5f is almost triangular in
shape.

It is clear that the larger the neighborhood size, the larger the convergent re-
gion becomes. The region also appears to extend indefinitely while simultaneously
becoming more triangular in shape. This finding is inline with the observation
made by Poli (2007) that the FIPS algorithm appears to be more stable with the
larger neighborhood size of 3 than if a neighborhood size of 2 was used. The idea
of increased stability of FIPS is empirically supported in this subsection for larger
neighborhood sizes.

From a practical perspective, it is informative to note that the convergent re-
gion for FIPS with neighborhood size n is a subset of the convergent region for
FIPS with neighborhood size n + 1. Given this knowledge, if the neighborhood
size changes over time, convergent parameters should be selected from the re-
gion matching the lowest possible neighborhood size, if the PSO user wished to
guarantee convergent particle behavior.

5.4 Bare Bones PSO Convergence Analysis

This subsection focuses on the convergence criteria for the BPSO algorithm. The
experimental setup and results are presented in sections 5.4.1 and 5.4.2 respec-
tively.

5.4.1 Experimental Setup

The experiment utilizes the same static parameters as subsection 5.3, except that
the star topology is utilized.

The experiment is conducted over the following parameter region:

c1 ∈ (0, 7] and c2 ∈ (0, 7] , (25)

with a sample point every 0.1 along c1 and c2. The parameter region was selected
as it allows for values of c1 and c2 twice as large as the region needed to contain
all of FIPS’s convergent regions, as determined in section 5.3. The theoretical
work of Blackwell (2012) predicts that at least the line where c1 = c2 should
exhibit convergent particle behavior. A meaningful segment of this line is therefore
included in the investigated parameter region. A total of 4900 sample points from
the region defined in equation (25) are used.

The results reported in subsection 5.4.2 are obtained from averaging over either
35, 70, or 1000 independent runs for each sample point. A differing number of
independent runs are used to illustrate the amount of noise present in the BPSO
experimentation.
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5.4.2 Experimental Results and Discussion

A snapshot of the resulting convergence measure values across the region defined
in equation (25) using a convergence measure bound of ∆max and 5 ∗∆max , and
varying sample runs, are presented in figures 6, 7, and 8, respectively for 35, 70
and 1000 sample runs.

Figure 6a reports the convergence measure values bounded at ∆max based
on 35 independent runs. The convergence results of BPSO are somewhat surpris-
ing, as there are very few parameter choices that potentially indicate some level of
convergent behavior. Further more, there are no parameter configurations that are
clearly convergent, with the smallest reported convergence measure being 52.32.
BPSO is actually divergent regardless of parameter choice. If one considers param-
eter settings where c1 is larger than c2, then more divergent behavior is indicated.
When the bound on the reported convergence measure is increased to 5 ∗ ∆max

(see figure 6b), it is more clearly seen that greater divergence occurs when c1 is
larger than c2. The results of both figures 6a and 6b have a large degree of noise
present despite being the result of 35 independent runs on each sample point.
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(a) BPSO: 35 samples, bounded at 200.
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(b) BPSO: 35 samples, bounded at 1000.

Fig. 6: BPSO convergence results for 35 samples.

In an attempt to reduce the level of noise, the same experiment was run 70
independent times as illustrated in figures 7a and 7b. In figure 7a, the number
of parameter choices that do not result in the bound of ∆max to be exceeded
has been reduced slightly. Despite the increased number of independent runs, the
results clearly still contain a large amount of noise, indicating a large level of unpre-
dictability in BPSO’s behavior between runs. This unpredictability is attributed
to the heavy reliance of BPSO on the normal distribution as defined in subsection
3.2.

The results presented in figures 8a and 8b are the result of 1000 independent
runs. In figure 8a, there are only 3 parameter settings that did not exceed the
convergence measure bound, ∆max. There is substantially less noise present in
figure 8b, making the early mentioned trend that the divergent behavior is more
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(a) BPSO: 70 samples, bounded at 200.
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(b) BPSO: 70 samples, bounded at 1000.

Fig. 7: BPSO convergence results for 70 samples.

severe if c1 is greater than c2 clearer. It is also seen in figure 8b that, while the
divergent behavior is more severe if c1 is greater then c2, the amount by which
this affects the divergent behavior decreases as c1 and c2 increase.

∆

 0  1  2  3  4  5  6  7
c1

 0

 1

 2

 3

 4

 5

 6

 7

c 2

 182

 184

 186

 188

 190

 192

 194

 196

 198

 200

(a) BPSO: 1000 samples, bounded at 200.
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(b) BPSO: 1000 samples, bounded at 1000.

Fig. 8: BPSO convergence results for 1000 samples.

The convergence measure values are also not remaining constant over the latter
part of the search. In fact, the convergence measure values increase with respect
to the increase in t, as illustrated in figure 9 where the convergence measure is
reported over the course of 5000 iterations of a BPSO algorithm with c1 = c2.

From the presented results it is clear that BPSO is in fact not guaranteed to
converge. Even for the standard BPSO model, where it is assumed that c1 and
c2 are equal, convergence does not occur. If convergence were to occur when c1 is
equal to c2, a straight line (c1 = c2) of low convergence measures values would have
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been present in figure 8b. It is also worth noting that BPSO’s particle movement
is fairly unpredictable given how much noise is present in the results even with
1000 independent runs, which implies a large amount of unpredictability in the
behavior of BPSO.

The theoretical finding of Blackwell (2012) that BPSO is order-2 stable is
clearly not an accurate representation of the algorithm as the increase in the
convergence measure over time in figure 9 implies that convergence in standard
deviation to a fixed value is not occurring in practice. The nature of the normal
distribution may well imply that very high, though statistically unlikely, particle
movement will be seen periodically. However, if this was the sole reason for high
convergence measure values, the continued increase of the convergence measure as
seen in figure 9 would not have occurred. Even if particles’ personal and neigh-
borhood positions stagnated at a great distance form each other, the convergence
measure would only be high, and not increasing.

Given the simple structure of the BPSO’s update equation (6), it is easy to see
that at least one of the following two particle interactions occurs if the convergence
measure is increasing:

– The midpoint between the personal best and the neighborhood best positions
is moving through the search space at an increasing velocity. This implies that
at least one of the personal best or the neighborhood best is moving at an
increasing velocity.

– The component wise distance between the personal best and the neighborhood
best positions is increasing. This implies that at least one of the personal best
or the neighborhood best is moving.

From this analysis it is clear that the swarm is not entering a state of stagnation.
The only possible justification for the discrepancy between the theoretical find-

ings and the empirical results of this subsection is due to the theoretical work being
performed under the stagnation assumption. In order to verify that the discrep-
ancy is in fact caused by the stagnation assumption, the BPSO was rerun, but
with stagnation forced from iteration 20 onwards, by not updating any personal or
neighborhood best positions. The results are illustrated in figure 10. When stag-
nation is forced the results match the theoretical derivations of Kennedy (2003)
perfectly. The difference between figure 9 and 10 shows that the stagnation as-
sumption resulted in an inaccurate theoretical model for the BPSO algorithm.
The reason why stagnation is not occurring is not immediately apparent, and
warrants further investigation.

5.5 Standard PSO 2011 Convergence Analysis

This subsection focuses on the convergence criteria for the SPSO2011 algorithm.
The experimental setup and results are presented in sections 5.5.1 and 5.5.2, re-
spectively.

5.5.1 Experimental Setup

The SPSO2011 algorithm’s velocity update equation (9) cannot be analyzed in
one dimension and then generalized to an arbitrary dimension as in the CPSO,
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Fig. 9: BPSO average change in particle position (1000 samples).
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Fig. 10: BPSO average change in particle position (1000 samples) with forced
stagnation from iteration 20.

FIPS, and BPSO algorithms, since the function that generates a random point in
a hypersphere cannot be investigated component wise (Bonyadi and Michalewicz,
2014). As a result, the convergence criteria is investigated for dimension sizes 1,
10, 20, and 50.
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The experiment utilizes the same static parameters as in subsection 5.3 ex-
cept that the SPSO2011 topology, as defined in subsection 3.3, is utilized. The
SPSO2011 algorithm is analyzed with and without the special treatment of the
center of gravity calculation.

• Case 1 uses only the center of gravity equation (10), as suggested by Zambrano-
Bigiarini and Clerc (2013).
• Case 2 uses the center of gravity equation (10) if the particle’s personal best

and neighborhood best positions are different. If the particle’s personal best
and neighborhood best positions are the same, the center of gravity equation
(14) is used.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 13] , (26)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The parameter
region of equation (26) was selected as it contains the convergent parameter regions
reported by Bonyadi and Michalewicz (2014). A total of 1610 sample points from
the region defined in equation (26) are used. The results reported in subsection
5.5.2 are the averages over 35 independent runs for each sample point. Analysis
is done with convergence measure bounded at the corresponding ∆max values,
namely 200, 632.456, 894.427, and 1414.214, respectively.

5.5.2 Experimental Results and Discussion

Snapshots of the resulting convergence measure values across the region defined in
equation (26) for SPSO2011 are presented under varying dimensionality for cases
1 and 2 in figures 11, 12, 13, and 14, respectively for 1, 10, 20 and 50 dimensions.

The convergent region for SPSO2011 in 1 dimension is presented in figures
11a and 11b. SPSO2011 has a clear boundary between convergent parameter set-
tings and divergent parameter settings, unlike BPSO. In figure 11a, the convergent
region is symmetrical around w = 0, which is substantially different from the con-
vergent regions of FIPS and CPSO where there is a preference towards a positive
inertia weight selection for particle convergence. The convergent regions for both
cases 1 and 2, as seen in figures 11a and 11b, are very similar. However, the con-
vergent region for case 2 is slightly larger. Note that, with or without the special
treatment of the center of gravity calculation, there is no substantial change in the
convergent region. The found convergent regions in both figures 11a and 11b are
substantially different in size from the found region of Bonyadi and Michalewicz
(2014). The convergence region found by Bonyadi and Michalewicz (2014) has its
apex at c1 +c2 = 12 as opposed to the apex in figure 11a at around 8.5. At present
it is not completely clear what the exact source of the discrepancy is. However,
possible sources present in the work of Bonyadi and Michalewicz (2014) are as
follows:

– the study is performed under the presence of forced stagnation;
– the particles’ personal and neighborhood best positions are set to be equal;
– there is a linear increase in the number of iterations used based on the di-

mensionality of the search space; however, the maximum distance between two
points in a search space only increases sublinearly; and
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(a) SPSO2011: 1 dimension, case 1.
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(b) SPSO2011: 1 dimension, case 2.

Fig. 11: SPSO2011 convergence results for 1 dimension.
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(a) SPSO2011: 10 dimensions, case 1.
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(b) SPSO2011: 10 dimensions, case 2.

Fig. 12: SPSO2011 convergence results for 10 dimensions.

– it is not stated how the spherical distribution, H, is calculated.

The analysis done in this paper made use of neither of the two mentioned
simplifications. As a result, the regions presented in figures 11a and 11b should be
a more accurate representation of SPSO2011’s convergent behavior.

The convergent regions for SPSO2011 in 10 and 20 dimensions are presented
in figures 12a, 12b, 13a and 13b. In both 10 and 20 dimensions, the difference
in the convergent regions for case 1 and case 2 is relatively minor. However, the
convergent regions for case 2 are slightly larger than those of case 1. The convergent
regions appear to be stable under an increase in dimension, as the regions plotted
for 1, 10, and 20 dimensions appear unchanged for both cases 1 and 2.

The finding that the convergent region of SPSO2011 does not depend upon
the dimensionality of the search space is in opposition to the results of Bonyadi
and Michalewicz (2014). Even in 50 dimensions, as seen in figure 14a and 14b,
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(a) SPSO2011: 20 dimensions, case 1.
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(b) SPSO2011: 20 dimensions, case 2.

Fig. 13: SPSO2011 convergence results for 20 dimensions.
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(a) SPSO2011: 50 dimensions, case 1.
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(b) SPSO2011: 50 dimensions, case 2.

Fig. 14: SPSO2011 convergence results for 50 dimensions.

the convergent region does not appear to change. In the work of Bonyadi and
Michalewicz (2014), the apex of the found convergent region decreases by 33.3%
with the increase from a 1 dimensional search space to a 50 dimensional search
space. This trend is clearly not present in the results of this subsection.

6 Conclusion

This study had two primary aims: The first was to show that the objective function,
CF (x) ∼ U (−1000, 1000), is an effective objective function to utilize for conver-
gent region analysis. The second was to analyze the parameter region needed to
ensure convergent particle behavior of particle swarm variants utilizing the pro-
posed objective function, CF .
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It was found that the CF objective function was able to capture the convergent
behavior of the CPSO, as the found convergent regions matched both the theoret-
ically derived region of Poli (2009) and the “optimal” region, where the “optimal”
region was constructed using the maximum convergence measure value across all
topologies and objective functions used (excluding CF). It was also found that
the social topology used by CPSO had no meaningful impact on the convergent
region.

Using the CF objective function, the convergent region was empirically ob-
tained for FIPS, BPSO, and SPSO2011. It was observed that FIPS’s convergent
region grows with an increase in neighborhood size. It was shown that BPSO
does not converge for any choice of c1 and c2. More specifically, in practice it was
shown that BPSO is not order-2 stable, despite theoretical findings (Blackwell,
2012). The discrepancy is linked to the theoretical work being performed under
the stagnation assumption. For SPSO2011 it was found that the convergent region
does not dependent on the dimensionality of the problem, as previously observed
by Bonyadi and Michalewicz (2014). The region needed to ensure convergent par-
ticle behavior in SPSO2011 is also different from those obtained by Bonyadi and
Michalewicz (2014). The discrepancies are attributed to the simplifications used
by Bonyadi and Michalewicz (2014).

Potential future work will include utilizing the empirical techniques of this
paper to obtain the convergence regions for other PSO variants. Another direction
for future work is the automation of an approach to extract from empirical analysis
the equations that describe the approximate convergent regions.
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