
FrogCOL and FrogMIS: New Decentralized

Algorithms for Finding Large Independent Sets in

Graphs∗

Christian Blum†1,2, Borja Calvo‡1 and Maria J. Blesa§3

1University of the Basque Country, San Sebastian, Spain
2Ikerbasque, Basque Foundation for Science, Bilbao, Spain

3Universitat Politécnica de Catalunya, Barcelona, Spain

September 2015

Abstract

Finding large (and generally maximal) independent sets of vertices in
a given graph is a fundamental problem in distributed computing. Appli-
cations include, for example, facility location and backbone formation in
wireless ad hoc networks. In this paper we study a decentralized (or dis-
tributed) algorithm inspired by the calling behaviour of male Japanese tree
frogs, originally introduced for the graph coloring problem, for its poten-
tial usefulness in the context of finding large independent sets. Moreover,
we adapt this algorithm to directly produce maximal independent sets
without the necessity of first producing a graph coloring solution. Both
algorithms are compared to a wide range of decentralized algorithms from
the literature on a diverse set of benchmark instances for the maximal in-
dependent set problem. The results show that both algorithms compare
very favorably to their competitors.

Keywords: Swarm intelligence; self-desynchronization; maximal inde-
pendent set; decentralized algorithms

∗This work was supported by projects TIN2012-37930, TIN2013-41272P and TIN2007-
66523 of the Spanish Government, and project SGR 2014-1034 of the Generalitat de
Catalunya. In addition, support is acknowledged from IKERBASQUE (Basque Foundation for
Science) and the Basque Saiotek and Research Groups 2013-2018 (IT-609-13) programs. Our
experiments have been executed in the High Performance Computing environment managed
by RDlab (http://rdlab.lsi.upc.edu) and we would like to thank them for their support.
xx
† christian.blum@ehu.es
‡ borja.calvo@ehu.es
§ mjblesa@cs.upc.edu

1

1 Introduction

The maximal independent set problem can be described as follows. Given an
undirected graph G = (V,E), an independent set VIS ⊆ V is a subset of the
vertices of G such that no two vertices of VIS are adjacent, that is, connected
by an edge. A maximal independent set (MIS) VMIS ⊂ V is an independent set
to which no other vertex from V \ VMIS can be added without destroying the
property of being an independent set. Finally, a maximum independent set is a
MIS of maximum size. Both problems—that is, the maximal and the maximum
independent set problems—are fundamental in computer science and related
fields (see, for example, [8]). It is well known that, from the perspective of
centralized algorithms, the maximum independent set problem is NP -hard [13],
while the maximal independent set problem is in P . In fact, various—rather
unsophisticated—greedy algorithms for the generation of maximal independent
sets have been presented in the related literature (see, for example, [15]). As
a side comment, note that a maximum independent set in a given graph G
corresponds to a maximum clique in graph G’s complement.

Another well-known problem, with strong relations to the maximal indepen-
dent set problem, is graph coloring [19]. Given an undirected graph G = (V,E),
the goal is to find a mapping c : V → N assigning to each vertex v ∈ V
a label c(v) such that no two adjacent vertices have the same label—that is,
c(u) 6= c(v),∀ (u, v) ∈ E—and the number of different labels used is minimal.
Vertex labels are also called colors. From the perspective of centralized algo-
rithms the graph coloring problem is NP -hard [20]. By definition, given a valid
graph coloring solution, subsets of vertices with the same label (or color) form
independent sets.

7

3 4

6 1 2 8

5

(a) An optimal graph coloring
solution.

7

3 4

6 1 2 8

5

(b) The maximum indepen-
dent set (black vertices).

Figure 1: Example for the relation between graph coloring and independent
sets.

Figure 1 presents an illustrative example. Subfigure 1a shows an optimally
colored graph. Observe that vertices 1, 2, 3, and 4 form a fully connected
subgraph. This is why four different colors are needed for coloring this subgraph.
The same four colors can be used to color the rest of the vertices. Each subset
of vertices that have the same color forms an independent set. Therefore, the
largest independent set of vertices that can be extracted from this coloring
solution is of size two. Henceforth, given a coloring solution of a graph, we will
regard the largest subset of vertices with the same color as the corresponding
independent set solution. This means that, given a coloring solution of a graph,

2

we also have a well-defined independent set solution. However, subfigure 1b
shows that an optimal coloring solution does not necessarily provide a high-
quality independent set solution, because the maximum independent set shown
in 1b—formed by the black vertices—is of size four.

1.1 Contribution of this work

In this work we consider the problem of, given an undirected graph, finding
large independent sets of vertices in a decentralized (or distributed) way. This
problem will henceforth be labelled MIS. It has applications, for example, in the
context of facility location and backbone formation in wireless networks [10, 21].
In a first step, we study a recently proposed (decentralized) algorithm for graph
coloring, which will be labelled FrogCOL in the context of this paper [16, 17, 1].
This algorithm, which is inspired by the self-desynchronization of the calls of
male Japanese tree frogs, has the inconvenience that it requires to translate
graph coloring solutions into independent set solutions. Moreover, it makes use
of a mechanism in which a master node is used to identify and store the best
solution of a run and to communicate this solution to the other vertices. With
the goal of developing a less sophisticated algorithm which is able to maintain
a reasonably high solution quality, this paper proposes a cut-down version of
FrogCOL labelled FrogMIS. This algorithm directly computes independent
sets. Moreover, it does not make use of the mechanism for identifying and
storing the best solution of a run. Instead, the last solution generated before
convergence is taken as the output of the algorithm. Finally, this paper provides
an exhaustive experimental evaluation of the two proposed algorithms, in com-
parison to a wide range of decentralized independent set algorithms from the
literature. To our knowledge, such an experimental comparison of decentralized
independent set algorithms has never been done in the related literature.

The results show, first of all, that FrogCOL significantly outperforms de-
centralized competitor algorithms from the literature. An exception arises in
the context of rather large and dense graphs. However, the algorithms that are
able to outperform FrogCOL in this setting, require an unpractically large
number of communication rounds in order to obtain their results. As a conclu-
sion we can state that FrogCOL has a strong tendency to generate coloring
solutions in which the nodes associated to the most-used color correspond to
large independent sets. The results also show that—as expected—FrogCOL
is generally superior to FrogMIS. However, even though FrogMIS is less so-
phisticated than FrogCOL, FrogMIS is able to significantly outperform all
the other decentralized algorithms from the literature concerning three of the
four considered graph types.

Finally, note that the work presented in this paper is an extension of [4]. The
extension consists in the introduction of the FrogMIS algorithm, in considering
a larger benchmark set containing different types of graphs, and in a comparison
to most of the decentralized competitor algorithms from the literature.

1.2 Organization of the paper

The reminder of this article is organized as follows. In Section 2, a short de-
scription of FrogCOL is provided. Then, in Section 3, the adaptation to the
independent set problem, FrogMIS, is outlined. The experimental evaluation

3

is documented in Section 4. Finally, conclusions and an outlook to future work
can be found in Section 5.

2 The FrogCOL algorithm

In the following we provide a concise description of the FrogCOL algorithm
in order for the paper to be self-contained. A more detailed description can be
found, for example, in [16]. In the context of the description provided in the
following, we assume that the algorithm is implemented in a static wireless ad
hoc network with n nodes equipped with homogeneous radio antennas. The
type of antennas used implies a communication graph, that is, an undirected
graph in which the vertices correspond to the network nodes, and in which
two vertices are connected by an edge in case the corresponding network nodes
can communicate with each other via their radio antennas. Note that this
communication graph, henceforth denoted by G, is the graph to be colored by
FrogCOL.

2.1 A preliminary step

Before the start of the algorithm, it is actually necessary—for several reasons, as
outlined below—that the wireless ad hoc network is organized in the form of a
rooted tree. The decentralized algorithm from [5], which generates a minimum-
diameter tree, may be used for this purpose. This algorithm requires O(|V |)
communication rounds. The root (or master) node of this tree will have some
additional tasks to fulfill. It initiates, for example, a short process in order to
calculate the height of the tree. Moreover, the master node initiates the start
of the FrogCOL algorithm by means of a broadcast message. Additionally,
the height of the tree will be communicated to the remaining network nodes
by this broadcast message. As explained further down, the tree is used during
the execution of the FrogCOL algorithm for passing the information of the
color-to-node assignments to the master node and for calculating the state of
convergence which will be used to stop the algorithm.

2.2 Main algorithm

FrogCOL works in communication rounds, each having a length of one time
unit. A network node i maintains, at all times, a value θi ∈ [0, 1) and the
current color ci ∈ N+.1 The θi value determines, at each communication round,
the precise moment at which a network node executes the short program shown
in Algorithm 1. More precisely, assuming that the current communication round
starts at time t, node i executes its program at time t + θi. The execution of
Algorithm 1 includes sending one message. In order to store these messages
received from neighboring network nodes, each network node i maintains a
message queue Qi. A message m ∈ Qi has the following format:

m =< thetam, colorm > , (1)

1Note that, for simplicity and without loss of generality, natural numbers greater than zero
are used to uniquely identify colors.

4

Algorithm 1 Program of each node i ∈ V
1: θi := calculateNewThetaValue()
2: ci := minimumColorNotUsed()
3: sendColoringMessage()
4: clearMessageQueue()

where thetam ∈ [0.1) contains the θ value of the sender and colorm is the
color currently used by the sender. In the following we provide a technical
description of the functions of Algorithm 1.

The first step of Algorithm 1 consists in the adaptation of θi in function
calculateNewThetaValue(). More in detail, θi is changed on the basis of the
messages received from neighboring nodes, that is, the messages from Qi. Note
that only one message from each possible sender node is considered. In the case
that Qi contains two or more messages from the same sender node, the newest
one is chosen and the others are discarded. The adaptation of θi is done as
follows:

θi := θi − α
∑
m∈Qi

sin(2π · (thetam − θi))
2π

, (2)

where α ∈ [0, 1] is a parameter used to control the convergence of the system. In
general, the lower the value of α the smaller the change applied to θi. Parameter
α will be subject to tuning.2

The second step of Algorithm 1 consists in the choice of a (possibly new)
color for network node i. This is done in function minimumColorNotUsed().
Formally, the new color is determined as follows:

ci := min{c ∈ N+ | ∀m ∈ Qi: colorm 6= c} (3)

In other words, network node i chooses the color with the lowest identifier that
is not already chosen by one of its neighbors, that is, the lowest index color that
does not appear in any of the messages m ∈ Qi. Before finalizing its program,
a network node i must communicate its new color to its neighbors (see function
sendColoringMessage()). This function is responsible for sending the following
message m:

m =< thetam := θi, colorm := ci > (4)

To conclude the description of network node i’s program, the message queue Qi
is cleared by removing all messages (see function clearMessageQueue()). As a
final note, observe that it is ensured that the colorings produced at each com-
muncation round are valid, because the θ-values are used to make nodes choose
colors at different times. Moreover, after choosing a color, a node communicates
this choice to its neighbors (see step 3 of Algorithm 1). Therefore, a node never
chooses a color which is already chosen by one of its neighbors that have already
chosen a color in the same communication round.

2Note that Eq. (2) is strongly inspired by a model of Japanese tree frogs’ de-synchronization
behaviour from [3]. We refer the readers interested in the biological background of the Frog-
COL algorithm to [16].

5

2.3 Identifying the best coloring and detecting conver-
gence

The way in which the algorithm identifies a new best coloring and detects con-
vergence is based on the use of the minimum-diameter tree which was generated
in a preliminary step (see Section 2.1). In the following we provide a short de-
scription of this mechanism. A complete technical description, which is out of
the scope of this paper, can be found in [16, 17].

Henceforth, let h refer to the height of the minimum-diameter tree. Note that
h corresponds to the maximum number of communication rounds necessary for
the master node to pass information to the rest of the nodes, and vice versa. In
the following we assume that the master node knows about the number of nodes
in the network. At each communication round, each network node i is required
to communicate the following information to its parent node in the minimum-
diameter tree: (1) a real number corresponding to the sum of the distances
between the old theta values and the new ones concerning all nodes included in
the subtree of which it acts as root, (2) the index of the largest color used by
itself and all nodes included in the subtree of which it acts as root, and (3) an
integer indicating the corresponding communication round number. Note that
(3) is necessary because the information from the different nodes about their
color choice at a specific communication round will not arrive all at the same
time to the master node. Note also that no extra messages are required for
passing this information. This is because the corresponding information can be
added to the coloring messages of Algorithm 1. Even though these messages will
be received by all neighboring nodes, only the parent nodes in the minimum-
diameter tree will care about this information.

Note that, in the first communication round, the only nodes that report the
above-described information to their parents are the leaf-nodes of the minimum-
diameter tree. This is because they are the only ones without children, that is,
the subtree of which they act as root only contains themselves. In the second
communication round, the parents of the leaves will be able to report the ag-
gregated data to their respective parents. Given the height h of the tree, h
communication rounds are needed for all the information regarding a specific
communication round to reach the master node. This means that the network
nodes must store the differences between their old and new theta values, and
the information about color use, during h communication rounds. Once the
master node has received all the necessary information concerning a specific
communication round, it is able to derive the following information. First, it
knows the maximum index of any color used at the corresponding communica-
tion round. This information can be used to determine if a new best coloring
has been found. Second, by dividing the sum of all theta-differences by the size
of the network it obtains the average change of the theta values in the corre-
sponding communication round. In case this average change is below a certain
threshold value (we used 0.0001 in all experiments), the master node broadcasts
a stopping message to all nodes, which terminates the algorithm.

2.4 Initial setting of the θ values

In the original version of the algorithm as described in [16] the initial θ values are
chosen at random. In this work, we also tested a second option, which depends

6

on the number of neighbors with which a network node is able to communicate.
This measure is known as the degree of a vertex in graph theoretical terms.
In particular, we aim for the θ values to be proportional to the degree of the
corresponding network node. The motivation for this choice is as follows. One
of the best centralized greedy heuristics lets vertices decide if (or not) to be a
member of the maximal independent set depending on their (current) degree.
Vertices with lower (current) degrees may choose first. In the setting of a wireless
ad hoc network it is easy for each node to determine its degree. This can be
done by each node sending a hello message and by counting the number of hello
messages received. Let di ≥ 0 denote the degree of network node i. We used
the following function for determining the initial θi of node i:

θi := 1− 1.1−di+ε , (5)

where ε is a uniform random number from (0, 0.01]. The small perturbation
caused by ε is to try to avoid that two (or more) network nodes have the same
initial value.

3 The FrogMIS algorithm

The motivation for the development of the FrogMIS algorithm—described
below—is as follows. Real-world applications which require the computation of
(large) independent sets in graphs may have very different needs. Some algo-
rithms from the literature are developed for applications which ask for a solution
of reasonable quality in very few communication rounds. Other algorithms such
as FrogCOL are more sopisticated and spend more communication rounds
for producing their solutions. However, the solutions produced by these algo-
rithms are usually of higher quality than the ones produced by unsophisticated
algorithms. The introduction of FrogMIS is an intent to develop a less sophis-
ticated algorithm than FrogCOL without loosing too much solution quality.

In FrogMIS, all aspects concerning the θ values remain unchanged, that
is, FrogCOL and FrogMIS are exactly the same for what concerns the use
and the adaptation of the θ values. However, instead of a current color ci ∈ N+,
each network node i maintains a variable mis statusi, which may take values
zero or one. If mis statusi = 0, network node i has chosen not to be part of the
independent set solution. Otherwise, if mis statusi = 1, network node i forms
part of the independent set solution. Due to this change, the structure of the
messages sent by the network nodes in the course of the algorithm changes. A
message m ∈ Qi has now the following format:

m =< thetam,mis statusm > , (6)

where thetam ∈ [0.1) contains the θ value of the sender and mis statusm contains
the value of the mis status variable of the sender.

The last change concerns function minimumColorNotUsed(). Instead of
choosing a new color, in FrogMIS this function examines all messages in Qi.
In case there is at least one message m ∈ Qi with mis statusm = 1, the value
of mis statusi is set to zero. In other words, if there is just one neighbor that
already forms part of the independent set solution, network node i cannot be
part of the indepenent set solution itself. Otherwise, the value of mis statusi is
set to one.

7

Another important difference between FrogCOL and FrogMIS is the
following one. While the minimum-diameter tree is used in FrogCOL for
identifying and storing the best coloring solution (respectively, independent set
solution) found during the course of the algorithm, the solution provided by
FrogMIS is simply the solution of the last communication round at the time
of convergence.

Concerning the relation between FrogCOL and FrogMIS, note that
FrogMIS is—basically—a cut-down version of FrogCOL. The modification
of the θ-values is done, in both algorithms, in the same way. However, instead
of choosing a new color at each communication round (remember that in Frog-
COL a node chooses the smallest color index that has not yet been chosen by
any of its neighbors) a node in FrogMIS simply chooses if to be part of the
independent set, or not. This corresponds to choosing color 0, if possible, and
not choosing any color, in case color 0 cannot be chosen. However, note that
color class 0 is not necessarily the largest one, that is, the set of nodes that have
color 0 is not necessarily larger than the set of nodes having a different color x.
Therefore, it is clear that FrogMIS cannot perform better than FrogCOL.
Even more, in many cases the performance of FrogMIS can be expected to
be worse than the one of FrogCOL. On the other side, FrogMIS has the
advantage that, at the end of a communication round, each node already knows
if it belongs to the current independent set, or not. In the case of FrogCOL,
the master node determines (with some delay) for each communication round
the largest color class, and informs the remaining nodes. Finally, another dif-
ference between FrogCOL and FrogMIS concerns the fact that FrogCOL
always returns the best independent set encountered, while FrogMIS returns
the one from the last communication round, which is not necessarily the best
one encountered throughout a run.

4 Experimental evaluation

FrogCOL and FrogMIS were implemented in C++ without the use of any
external libraries. Experiments were performed by means of discrete event sim-
ulation. In the following we first describe the set of benchmark instances that
we generated to test both algorithms. Then, we describe the tuning experiments
that were performed in order to determine the setting of parameter α (which
determines the convergence speed) and the initial setting of the θ-values in the
context of the FrogCOL and FrogMIS algorithms. Finally, after a short
description of the chosen competitor algorithms, an exhaustive experimental
evaluation is presented.

4.1 Benchmark instances

With the aim of testing our algorithms in different scenarios we have created
four different sets of graphs: random geometric graphs (RGG), random graphs
(RG1), clusterized random graphs (RG2) and random evolving graphs (REG).
Figure 2 shows examples of these graphs. In each of the four cases, graphs of
different properties—for what concerns, for example, the density—and different
sizes have been created. In particular, for each type we generated graphs of

8

100, 1000 and 5000 nodes, that is, n ∈ {100, 1000, 5000}. Finally, note that 30
random graphs were created for each combination between graph characteristics
and size.

The random geometric graphs were created as follows. First, the nodes are
assigned to random coordinates from the unit square. Then, a ‘radius’ (r) is
fixed and each pair of nodes at a distance smaller or equal than the radius is
connected by an edge. The radius controls the density of the graph, that is, the
larger the radius the denser the resulting graph is. In order to find a reasonable
range for the r-values for each graph size n, the following experiments were
performed. For each combination of r ∈ [0.01, 0.3] (by steps of 0.01) and n we
generated 100 random geometric graphs and recorded the number of times (out
of 100) these graphs were connected. Based on these results we determined the
smallest r-values to be considered for the three graph sizes to be r = 0.14 (in case
n = 100), r = 0.049 (in case n = 1000) and r = 0.024 (in case n = 5000). With
these values of r, the generated random geometric graphs have a probability of
approx. 5% to be connected. Moreover, the resulting graphs are rather sparse. In
order to find suitable upper ranges for the r-values, we examined the (relative)
average degrees of the generated graphs. Hereby, the term (relative) average
degree refers to the average degree of a node expressed in terms of the fraction
of all nodes to which the respective degree corresponds. For example, assume
that n = 100 and that a node is, on average, connected to 10 neighbors. In this
case the relative average degree is 0.1. In particular, we decided that the densest
graphs to be considered in this study should have a (relative) average degree
of 0.05. Our experiments have shown that such graphs can be generated with
r = 0.169 (in case n = 100) and r = 0.134 (in case n ∈ {1000, 5000}). Finally,
we decided to generate 30 random geometric graphs for 10 different r-values
between the previously determined lower and upper ranges. Figure 2 (a) shows
an example of random geometric graph with 100 nodes.3

The second and third types of graphs that we generated are random graphs.
These graphs are created adding edges between nodes totally at random, with
a given probability. This probability controls the density of the graph. The
main difference between random geometric graphs and random graphs is that
in the former ones only nodes that are placed close together may be connected
while in the latter ones any two nodes may be connected. Two different types
of random graphs were generated: (1) standard random graphs where any two
nodes have the same probability of being connected and (2) clusterized random
graphs, where nodes are divided into two groups and the probabilities of being
connected in each cluster and between clusters are different. Regarding the
standard random graphs, we have selected the probability of connecting two
nodes (p) from {0.03, 0.04, 0.05} in graphs of size 100 and from {0.01, 0.03, 0.05}
for the remaining graph sizes. The case of two-cluster graphs is more complex.
We have used two different probabilities, henceforth labelled low and high, for
the generation of these graphs. In the case of n = 100, low and high correspond
to 0.06 and 0.1, and for the remaining graph sizes, low and high correspond
to 0.02 and 0.1. Then, graphs with the following three configurations were
generated: (1) both clusters have a low inner connection probability, (2) both
clusters have a high inner connection probability, and (3) one cluster had a low

3Note that although in these graphs the nodes have spatial coordinates, these have not
been used to plot the graph. Indeed, all the graphs in the figure have been created using the
‘neato’ layout of the dot software

9

1

59

62

98

80

2

4

8

19

23

24

90

91

47

54

61

68

85

32

56

60

75

87

3

14

49

71

46

89

92

77

5

13

15

63

69

73

82

76

42

51

67

6

20

26

64

93

95

65

88

81

7

40

43

66

70

9

28

29

55

72

78

10

21

37

44

50

58

100

30

35

48

79

96

74

11

27

33

53

97

99

94

52

12

39

57

16

18

25

34

38

17

22

31

83

41

86

84

36

45

(a) Random geometric graph

1

2

3

4

7

8

14

17

18

19

20

22

24

28

29

30

33

34

35

36

37

38

40

41

42

43

44

46

47

49

51

53

54

55

56

58

61

62

66

67

68

69

70

72

74

76

77

78

79

81

82

83

85

86

87

91

94

95

96

97

100

5

6

10

11

13

15

16

21

25

27

32

39

45

48

52

57

60

64

65

71

73

80

84

88

90

92

93

99

98

9

75

50

59

63

12

31

26

23

89

(b) Random evolving graph

1

79

87

98

2

8

96

9

28

37

43

100

3

35

65

67

85

88

61

66

70

94 4

15

57

69

90

89

64

80

83

5

26

41

62

78

86

40

53

99

75

97

76

84

95

93

6

27

92

54

33

7

47

50

91

38

55

72

10

52

68

11

18

39

60

36

59

12

24

46

13

22

14

16

17

44

45

73

19

20

48

21

23

25

49

81

58

29

30

77

31

56

32

71

34

74

82

42

51

63

(c) Random graph

1

41

43

47

49

76

2

48

64

95

77

3

6

31

83

10

19

22

68

4

11

21

84

69

5

33

59

24

30

51

96

35

32

44

73

81

63

7

27

58

88

8

9

14

25

52

80

17

38

55

66

70

28

61

79

93

89

99

42

94

40

54

90

46

62

75

97

12
100

13

85

72

71

15

34

86

16

53

57

87

56

18

82

78

67

20

23

36

65

26

98

92

29

37

39

45

91

50

60

74

(d) Clusterized random graph

Figure 2: Examples of the types of generated graphs. Displayed graphs consists
of 100 nodes.

10

and the other one a high inner connection probability. In all cases the probability
of connecting nodes from different clusters was set to 0.005. Figures 2(c) and (d)
show examples of random graphs and clusterized random graphs, respectively.

The last type of graph we have created are random evolving graphs. These
graphs are constructed adding nodes one by one. Every time a node is added,
it can be connected to any of the existing nodes with a probability that de-
pends on the degree of that node and a parameter, the preferential attachment
exponent (pa). The values used for the pa parameter are {0.5, 1.5}. The maxi-
mum number of such connections is limited by a second parameter (arcmax) for
which the values used are from {3, 6}. Therefore, a total of four combinations
of parameters have been used for each graph size. Depending on the parame-
ters, this procedure creates graphs made of star-like structures, as can be seen
in Figure 2(b). In general, the higher the pa parameter the bigger the star
structures.

In summary, our benchmark is made of four types of graphs: 900 random
geometric graphs, 270 random graphs with one cluster, 270 random graphs
with two clusters, and 360 random evolving graphs. All the graphs, with the
exception of the random geometric graphs, have been created using R and the
igraph package [6]. In particular, the preference.game function was used to
create random graphs while random evolving graphs were generated using the
aging.prefatt.game function. Finally, note that during the generation of the
graphs, non-connected graphs were discarded. In other words, all the graphs in
the benchmark set are connected graphs.

4.2 Algorithm tuning

Both FrogCOL and FrogMIS have two parameters whose values need to be
determined. The first one is parameter α from Eq. (2) affecting the update of
the θ values. This parameter basically determines the magnitude of the θ value
update, and has, therefore, an influence on the convergence speed. The range of
possible values for α that we selected is {0.01, 0.1, 1.0}. The second parameter
concerns the initial setting of the θ values. The first option, henceforth labelled
random, assigns values chosen uniformly at random from [0, 1) to all the θ’s.
The second option, henceforth labelled heuristic, was described in Section 2.4.

We decided to make use of the automatic configuration tool irace [22] for
the tuning of the two parameters. More specifically, irace was applied to tune
both FrogCOL and FrogMIS separately for each of the four types of graphs
and for each instance size from {100, 1000, 5000}. Concerning the random
geometric graphs, 10 graphs per instance size—one graph for each considered
value of the radius r—were randomly generated for tuning purposes. Similarly,
12 graphs for tuning were randomly generated per instance size—four graphs
for each of the three considered (combinations of) edge probabilities—in the
context of the random (evolving) graphs. Finally, each run of FrogCOL and
FrogMIS was given a budget of maximally 1000 communication rounds, and
irace was given a budget of 120 algorithm runs for each tuning process.

The applications of irace produced the configurations of FrogCOL and
FrogMIS as shown in Table 1. The following trends can be observed. First
of all, in both cases the best value of α decreases with growing graph size.

11

Table 1: Parameter settings produced by irace for the 12 combinations of graph
type and instance size. See the first paragraph of Section 4.1 for the definition
of the graph type abbreviations.

(a) Tuning results for FrogCOL

graph type instance size α setting of θ’s

RGG
100 1.0 random

1000 0.01 heuristic
5000 0.01 random

REG
100 1.0 heuristic

1000 0.1 heuristic
5000 0.1 heuristic

RG1
100 1.0 heuristic

1000 0.01 heuristic
5000 0.01 random

RG2
100 1.0 heuristic

1000 0.1 heuristic
5000 0.01 heuristic

(b) Tuning results for FrogMIS

graph type instance size α setting of θ’s

RGG
100 0.1 heuristic

1000 0.1 random
5000 0.01 random

REG
100 0.1 random

1000 0.01 random
5000 0.1 heuristic

RG1
100 0.1 random

1000 0.1 random
5000 0.01 random

RG2
100 0.1 random

1000 0.1 random
5000 0.01 heuristic

Second, the heuristic setting of the θ-values seems to be the prefered choice in
the context of FrogCOL, while the random setting seems to be the preferable
choice for FrogMIS. Finally, in the context of all four types of graphs, the
obtained settings concerning the largest graphs (size of 5000) is identical for
both FrogCOL and FrogMIS.

4.3 Competitor algorithms

A very recent general survey on decentralized algorithms for finding maximal in-
dependent sets is provided in [9]. However, up to date no experimental compar-
ison between these algorithms has been published in the literature. Therefore,
we decided to implement most of the algorithms mentioned in [9]. On one side,
there are algorithms belonging to the class of self-stabilizing algorithms, where

12

self-stabilization refers to an optimistic fault tolerance approach for distributed
systems that was initially introduced by Dijkstra in [7]. Three self-stabilizing
algorithms for the maximal independent set problem were proposed in the lit-
erature (see also [14]). The first one was proposed by Shukla et al. in [24], the
second one by Ikeda et al. in [18], and the third one by Turau in [25]. Hence-
forth we will refer to these algorithms as Shukla, Ikeda and Turau. Apart
from these three algorithms we also implemented the two randomized algorithms
mentioned in [9], which are labelled Rand1 and Rand2 (in the same way as
described in [9]). Finally, we also implemented an optimized version (from [23])
of a very recent algorithm published in the Science journal [2]. As this algo-
rithm is inspired by the development of the nervous system of fruitflies, this
algorithm is henceforth labelled FruitFly. Note that all these algorithms are
free of parameters. Therefore, no parameter tuning is necessary.

Apart from the decentralized algorithms mentioned above, we implemented
the best-known (centralized) greedy algorithm for the MIS problem. This al-
gorithm works as follows: at each iteration, first, it identifies the node with
minimal degree and adds it to the maximal independent set under construc-
tion. Afterwards, this node—together with all its neighboring nodes—is re-
moved from the input graph. This procedure stops once the input graph is
empty. Henceforth, this algorithm is referred to by Greedy. Finally, the stan-
dard integer linear program (ILP) for the maximum independent set problem
was implemented and solved by Cplex (with a computation time limit of 3600
CPU seconds per graph). Both Cplex and Greedy were applied in order to
study the differences in the quality of the solutions obtained by centralized and
decentralized approaches.

Concerning the stopping criteria used for the considered algorithms, note
that the application of CPLEX to the maximum independent set problem must
be given a computation time limit. For this purpose we decided for a limit of
3600 CPU seconds. The output provided by CPLEX is the best, if not optimal,
solution found within the allowed computation time. Greedy simply finishes
once a solution is generated. Both FrogCOL and FrogMIS, and all the
remaining algorithms included in the comparison, are decentralized algorithms.
In the group of decentralized algorithms, FrogCOL, FrogMIS, FruitFly,
Shukla, Rand1 and Rand2 are randomized approaches, while the remaining
ones are deterministic approaches. Instead of computation time—as in the
case of centralized algorithms—the main resource requirement of decentralized
algorithms is measured by the number of required communication rounds. For
FrogCOL and FrogMIS it was decided, quite arbitrarily, that more than
1000 communication rounds would be unpractical. Therefore, this limit was
used as stopping criterion for both algorithms. However, in the case of the
other decentralized approaches it was decided to provide them with as many
communication rounds as necessary in order for them to reach their natural
stopping criterion. In all cases, apart from FrogCOL and FrogMIS, the
natural stopping criterion is that all nodes have decided if to form part of the
independent set, and no conflicts remain. However, for practical reasons we
decided to stop the algorithms after 100000 communication rounds, in case the
natural stopping criterion was still not reached.

13

4.4 Statistical assessment of the results

As described in more detail below, the results are generally presented in each
row of the result tables in terms of averages over 30 graphs that were ran-
domly generated with the same parameter settings. The results obtained by
the considered decentralized algorithms concerning each table row were statis-
tically tested in order to determine the significance of the differences among
them. This was done by comparing the results of all decentralized algorithms
with the results of the decentralized algorithm obtaining the best performance.
As an example, for random geometric graphs of size 5000 and a radius of 0.024
(see Table 2) the best performing algorithm is FrogCOL, as marked by bold
font. The results obtained by each decentralized algorithm for the 30 graphs
generated using these parameters (n = 5000, r = 0.024) are compared with the
results obtained by FrogCOL to determine the significance of the differences.
In fact, the results of FrogMIS are statistically equivalent, as indicated by the
F symbol (significance level of 0.05). The differences have been assessed using
Wilcoxon’s signed rank test and the p-values have been corrected for multiple
comparison using Finner’s procedure [11].

Additionally, we aimed for detecting the differences between the algorithms
(if any) for each of the four considered types of graphs. First, all the al-
gorithms have been compared simultaneously using Friedman’s test. Then,
given that in all the cases the test rejects the hypothesis that all the al-
gorithms perform equally, all the pairwise comparisons have been tested us-
ing the Nemenyi post-hoc test [12]. Finally, note that all the tests, ta-
bles and plots have been generated using R’s scmamp package, available at
https://github.com/b0rxa/scmamp.

4.5 Comparison

The numerical results are shown in Table 2 (random geometric graphs), in Ta-
ble 3 (random evolving graphs), and in Table 4 (standard and clusterized random
graphs). The first two columns of each table indicate the parameters of the cor-
responding graphs, that is, the graph size (n) and parameters that depend on
the graph type. In the case of random geometric graphs the second table column
provides the radius r, in case of random evolving graphs it provides information
on parameters pa and arcmax, and in the case of standard (respectively, clus-
terized) random graphs the second table column provides the probability of an
edge to exist (respectively, the corresponding probabilities for the edges to exist
in the two clusters). Each table row provides average results for 30 graphs. Note
that each algorithm was applied exactly once to each graph. For most of the
algorithms the results are presented in two table columns, where the first one
(with heading avg.) provides the average result obtained for the corresponding
30 graphs, and the second one (with heading rounds) indicates the average
number of communication rounds needed. Exceptions are Greedy and Cplex,
which are centralized algorithms for which we only provide the average results
obtained. Other exceptions are Rand1 and Rand2 which, for simplicity rea-
sons, were implemented in a sequential way (without all the message passing
necessary in distributed systems). Therefore, in the case of Rand1 and Rand2
only the average results obtained are given. The last exception concerns Frog-
COL, where an additional third column (with heading rbf) is provided which

14

indicates the average communication round number at which the best solution
was found. Finally, note that the best results of each table row (obtained by
any of the decentralized algorithms) are marked with bold font. Moreover, those
decentralized algorithms whose performance is not significantly worse than the
one of the best performing decentralized algorithm at a significance level of 0.05
are marked in the table with the F symbol. Additionally, the result obtained by
Cplex is marked with an asterisk in case the optimality of the obtained result
could be proven for all 30 graphs.

Additional statistical information is provided in terms of a comparison be-
tween the algorithms for the four different types of graphs in Figure 3, which
presents the result of the Nemenyi test in a graphical way. Briefly, each algo-
rithm is positioned in the segment according to its average ranking concerning
the respective graph type. Then, the critical difference (CD) is computed for a
significance level of 0.05 and the performance of those algorithms that have a
difference lower than CD are regarded as equal. This is indicated in the graphic
by horizontal lines joining the respective algorithms.
The results allow to make the following observations:

• FrogCOL consistently outperforms all the other decentralized algorithms
concerning all considered graph types and densities. The only exception
occurs in the context of random geometric graphs when both graph size
and graph density become rather large. In these cases, FruitFly is able
to obtain better results than FrogCOL. However, this is at the cost of
a rapidly growing number of communication rounds. In fact, we have
stopped all algorithm runs once a maximum number of 100000 (hundred
thousand) communication rounds was reached, because we considered such
high communication round requirements as rather unpractical. In order
to show when (with growing graph density) the communication round
requirements of an algorithm become rather exaggerated, we underlined
all cases in which the number of needed communication rounds is greater
than 1000. As can be seen, this only happens in the case of FruitFly
and Shukla.

• The more communication rounds an algorithm invests the better are, in
general, its results. In particular, the four algorithms that spend, on aver-
age, more communication rounds than the others (FrogCOL, FrogMIS,
FruitFly, and Shukla) clearly exhibit a higher performance in terms of
the obtained solution quality.

• Concerning the comparison between FrogCOL and FrogMIS, we can
observe that—as expected—FrogCOL consistently outperforms Frog-
MIS. However, remember that FrogMIS has the advantage of not having
to make use of a master node to identify the best solution found during a
run. Moreover, in FrogMIS—at convergence—each node already knows
if it belongs to the independent set. In other words, there is no need for
a master node to communicate the structure of the final solution to the
other nodes. Even though we still used the master node mechanism in
FrogMIS for determining the convergence of the algorithm, it would be
possible to implement FrogMIS without this mechanism by providing a
fixed communication round limit, rather than stopping the algorithm at
convergence.

15

T
ab

le
2:

R
es

u
lt

s
fo

r
ra

n
d

om
ge

om
et

ri
c

g
ra

p
h

s.
T

h
e

ta
b

le
st

ru
ct

u
re

is
d

es
cr

ib
ed

in
th

e
fi

rs
t

p
a
ra

g
ra

p
h

o
f

S
ec

ti
o
n

4
.5

.

n
r

C
p
l
e
x

G
r
e
e
d
y

F
r
u
it
F
ly

S
h
u
k
l
a

Ik
e
d
a

T
u
r
a
u

R
a
n
d
1

R
a
n
d
2

F
r
o
g
C
O
L

F
r
o
g
M
IS

a
v
g
.

ro
u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.

rb
f
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

10
0

0
.1

40
∗ 3

1.
30

3
0.

70
27

.8
0

28
.4

7
25

.6
3

4
2
.6

7
2
5.

70
4
.5

0
25

.9
0

5.
40

26
.1

7
2
6
.1

0
3
1
.0
7

2
0
4.

13
10

0
0.

00
29

.1
0

46
3
.2

7
10

0
0.

1
43

∗ 3
0.

87
3
0.

03
26

.8
0

28
.0

7
25

.4
3

4
3
.7

0
2
5.

60
4
.4

3
25

.5
3

5.
43

25
.1

7
2
5
.7

3
3
0
.5
3

1
2
9.

93
10

0
0.

00
28

.5
7

43
6
.7

0
10

0
0.

1
46

∗ 3
0.

33
2
9.

60
26

.5
7

28
.3

3
24

.9
0

4
2
.1

7
2
5.

37
4
.5

0
25

.8
0

5.
60

25
.0

7
2
5
.3

0
2
9
.9
3

2
4
2.

77
10

0
0.

00
28

.0
3

45
6
.2

7
10

0
0.

1
49

∗ 2
9.

50
2
8.

90
25

.8
0

28
.6

7
24

.4
7

4
3
.9

0
2
3.

97
4
.6

0
24

.4
0

5.
60

23
.8

7
2
4
.4

0
2
9
.1
0

2
7
6.

83
10

0
0.

00
27

.3
3

44
6
.0

7
10

0
0.

1
52

∗ 2
8.

83
2
7.

83
25

.0
3

31
.7

3
23

.7
7

4
3
.1

3
2
3.

57
4
.8

7
23

.5
7

5.
30

23
.8

3
2
3
.8

7
2
8
.4
7

3
3
1.

07
10

0
0.

00
25

.9
7

47
5
.2

0
10

0
0.

1
55

∗ 2
7.

60
2
6.

77
24

.1
3

33
.2

7
23

.2
7

4
3
.8

0
2
2.

87
4
.7

0
23

.0
0

5.
27

22
.6

3
2
2
.9

0
2
7
.3
0

2
4
0.

47
10

0
0.

00
25

.4
7

51
3
.2

7
10

0
0.

1
58

∗ 2
7.

63
2
6.

87
24

.0
3

34
.5

3
22

.4
7

4
5
.5

7
2
2.

63
4
.7

7
22

.5
0

5.
43

22
.4

0
2
2
.9

0
2
7
.3
3

2
6
0.

27
10

0
0.

00
24

.5
7

44
7
.6

0
10

0
0.

1
61

∗ 2
6.

20
2
5.

40
22

.8
0

37
.1

3
21

.7
0

4
5
.4

0
2
1.

03
4
.6

3
21

.9
3

5.
77

21
.5

7
2
1
.4

0
2
5
.8
3

2
7
4.

00
10

0
0.

00
23

.4
0

45
0
.6

0
10

0
0.

1
64

∗ 2
5.

97
2
5.

03
22

.4
0

41
.1

3
20

.8
0

4
3
.5

0
2
0.

67
4
.6

0
20

.9
0

5.
43

20
.9

3
2
1
.4

3
2
5
.5
7

2
3
1.

63
10

0
0.

00
22

.9
3

38
4
.5

0
10

0
0.

1
69

∗ 2
4.

97
2
4.

10
21

.7
3

43
.0

0
20

.5
7

4
5
.0

3
2
0.

10
4
.6

0
20

.0
3

5.
40

20
.1

3
2
0
.1

7
2
4
.5
0

1
8
5.

53
10

0
0.

00
22

.2
0

43
2
.1

3
10

0
0

0.
04

9
∗ 2

63
.7

7
25

5
.0

7
22

6
.2

7
6
9
.6

0
21

2
.4

0
4
3
6.

8
0

2
13

.2
0

6.
17

2
1
1.

90
6
.6

3
21

2
.7

0
2
1
4.

5
3

2
4
7
.6
7

3
2.

00
72

0
.8

3
2
2
7.

60
7
31

.0
7

10
00

0
.0

5
8

∗ 2
08

.9
0

19
8
.2

3
17

4
.9

0
1
1
7.

60
1
6
2.

87
4
58

.8
3

16
2
.0

0
6.

5
0

1
6
2.

7
0

7
.5

3
1
6
1.

4
7

1
63

.4
7

1
8
9
.9
0

3
.4

0
7
33

.6
3

17
6.

9
3

7
67

.1
7

10
00

0
.0

6
7

∗ 1
71

.4
3

16
1
.1

0
14

2
.2

3
2
0
8.

60
1
3
0.

83
4
80

.3
0

13
0
.3

7
6.

7
0

1
2
9.

8
7

7
.6

7
1
2
9.

8
3

1
29

.6
0

1
5
1
.9
3

2
.9

7
7
23

.7
3

14
0.

5
7

7
59

.6
0

10
00

0
.0

7
6

∗ 1
41

.1
3

13
1
.5

3
11

7
.8

0
4
7
8.

87
1
0
5.

30
4
81

.0
0

10
4
.6

0
6.

8
0

1
0
5.

3
0

7
.7

7
1
0
5.

3
0

1
04

.9
0

1
2
2
.8
7

1
.5

3
7
49

.1
3

11
4.

1
3

8
02

.1
7

10
00

0
.0

8
5

∗ 1
18

.9
0

11
0
.9

3
99

.4
3

1
1
3
8
.3
3

8
7
.4

3
4
85

.1
3

8
5
.8

7
6.

7
7

8
6.

7
0

7
.8

0
8
6.

73
87

.0
7

1
0
2
.3
7

1
.3

0
7
51

.3
0

9
4.

3
3

7
49

.5
3

10
00

0
.0

9
4

∗ 1
00

.9
7

93
.9

0
8
5
.8
0

3
1
8
6
.1
3

7
4
.2

0
4
93

.3
7

7
2
.8

7
6.

8
0

7
2.

9
0

8
.0

3
7
2.

63
72

.3
0

8
5.

4
7

1
.1

0
7
61

.5
0

7
9
.3

3
7
7
5.

27
10

0
0

0.
10

3
∗ 8

7.
57

8
0.

63
7
5
.5
7

7
9
3
9
.1
3

6
3
.1

7
4
92

.8
3

6
2
.7

7
7.

0
7

6
2.

1
3

7
.9

0
6
3.

23
62

.3
0

7
4.

2
0
F

1
.0

0
7
6
2.

60
68

.1
3

69
4
.1

0
10

00
0
.1

12
∗ 7

6.
60

7
0.

63
6
6
.9
0

1
9
7
4
9
.6
0

5
4
.5

0
4
97

.6
7

5
4
.0

7
7.

2
3

5
4.

8
3

7
.5

3
5
4.

17
54

.3
7

6
4.

3
7

1
.0

0
7
38

.9
3

5
8
.2

0
6
8
4.

30
10

0
0

0.
12

1
∗ 6

7.
57

6
2.

57
5
9
.5
3

6
0
4
1
7
.1
3

4
7
.9

7
4
98

.9
3

4
7
.4

3
6.

8
3

4
7.

1
7

7
.7

3
4
7.

03
47

.6
0

5
6.

5
0

2
1.

97
7
14

.6
0

5
1
.3

0
6
7
8.

27
10

0
0

0.
13

4
∗ 5

7.
20

5
2.

53
24

.2
7

1
0
0
0
0
0
.0
0

4
0
.7

7
5
03

.8
7

4
0
.0

7
7.

1
0

4
0.

1
0

7
.8

3
3
9.

93
40

.1
0

4
7
.5
3

9
0.

33
72

7
.0

3
4
3.

10
6
67

.5
7

50
0
0

0.
02

4
∗ 1

14
2.

7
7

1
08

9.
0
3

96
4
.5

3
1
2
8.

87
8
9
8.

23
2
2
7
7
.4
3

8
99

.6
0

7.
27

9
0
2.

50
8
.5

3
89

7
.8

3
9
0
5.

3
0

9
7
5
.9
0

5
40

.1
3

7
5
5.

33
9
7
2.

40
F

7
63

.2
0

5
00

0
0.

03
6

62
0
.0

7
57

7
.0

7
5
1
5
.8
3

1
2
7
0
.8
7

45
9
.3

0
2
4
4
7
.7
0

4
53

.8
7

7.
90

4
5
2.

97
8
.8

7
45

5
.5

7
4
5
6.

6
0

5
0
2.

00
37

4
.0

7
7
64

.9
7

49
5
.3

0
7
6
7.

47
50

00
0
.0

4
8

37
3
.1

0
35

7
.1

3
3
3
2
.1
3

3
6
6
8
2
.6
0

27
6
.4

0
2
4
8
9
.1
3

2
73

.6
7

8.
13

2
7
3.

00
9
.2

0
27

5
.2

3
2
7
3.

8
3

3
0
9.

17
41

3
.1

3
7
31

.9
7

29
4
.1

0
7
5
4.

73
50

00
0
.0

6
0

25
2
.1

3
24

3
.2

0
42

.0
3

1
0
0
0
0
0
.0
0

18
5
.6

0
2
4
9
6
.9
3

1
82

.3
0

7.
77

1
8
3.

43
9
.1

7
18

4
.7

3
1
8
3.

0
0

2
1
0
.9
0

3
67

.1
3

7
6
0.

20
1
96

.9
3

74
4
.8

7
50

00
0
.0

7
2

18
4
.0

7
17

7
.3

0
2.

8
0

1
0
0
0
0
0
.0
0

13
4
.9

7
2
5
0
4
.3
0

1
31

.2
0

7.
97

1
3
1.

47
8
.8

3
13

2
.5

0
1
3
1.

9
0

1
5
3
.9
0

3
62

.7
3

7
7
9.

60
1
39

.8
7

71
6
.7

7
50

00
0
.0

8
4

14
0
.9

3
13

4
.9

3
0.

2
7

1
0
0
0
0
0
.0
0

10
2
.0

3
2
5
0
3
.5
0

99
.8

7
8
.1

3
9
9
.6

0
9
.1

7
9
9
.3

7
9
9.

83
1
1
7
.9
0

2
80

.4
3

7
7
4.

10
1
05

.7
3

68
9
.5

3
50

00
0
.0

9
6

11
1
.6

0
10

6
.1

7
0.

0
0

1
0
0
0
0
0
.0
0

7
9
.9

7
2
5
0
4
.6
3

78
.7

7
8
.1

0
7
8
.6

0
8
.7

0
7
8
.7

3
7
8.

20
9
3
.3
0

2
30

.1
3

6
7
8.

50
82

.5
7

70
6
.8

0
50

00
0
.1

0
8

90
.2

3
86

.6
3

0.
0
0

1
0
0
0
0
0
.0
0

6
4
.5

0
2
5
0
4
.3
7

63
.7

3
7
.7

7
6
3
.4

0
8
.4

7
6
3
.3

3
6
3.

10
7
5
.8
3

2
04

.7
7

5
9
8.

07
67

.4
3

69
0
.8

0
50

00
0
.1

2
0

75
.1

3
71

.8
3

0.
0
0

1
0
0
0
0
0
.0
0

5
4
.0

7
2
5
0
4
.8
0

52
.1

0
7
.5

7
5
1
.9

0
8
.7

7
5
2
.6

3
5
2.

60
6
3
.2
7

2
23

.4
3

6
6
8.

20
54

.5
7

71
0
.6

7
50

00
0
.1

3
4

61
.6

0
58

.5
7

0.
0
0

1
0
0
0
0
0
.0
0

4
4
.2

7
2
5
0
5
.0
7

43
.4

3
7
.7

0
4
3
.4

7
8
.6

7
4
3
.1

0
4
3.

07
5
2
.2
0

1
62

.0
3

5
6
8.

17
45

.4
7

61
1
.9

3

16

T
ab

le
3:

R
es

u
lt

s
fo

r
ra

n
d

om
ev

ol
v
in

g
g
ra

p
h

s.
T

h
e

ta
b

le
st

ru
ct

u
re

is
d

es
cr

ib
ed

in
th

e
fi

rs
t

p
a
ra

g
ra

p
h

o
f

S
ec

ti
o
n

4
.5

.

n
(p
re
f
,a
rc
m
a
x
)

C
p
l
e
x

G
r
e
e
d
y

F
r
u
it
F
ly

S
h
u
k
l
a

Ik
e
d
a

T
u
r
a
u

R
a
n
d
1

R
a
n
d
2

F
r
o
g
C
O
L

F
r
o
g
M
IS

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.

rb
f
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

10
0

(0
.5

,3
)

∗ 6
1.

17
52

.0
7

58
.9

7
1
9
.5

3
5
4
.3

0
4
9
.6

0
4
9
.5

0
4
.7

7
5
0
.2

7
5
.4

0
5
4
.9

0
5
6
.6

7
6
1
.1
7

1
1
4
.3

0
1
0
0
0
.0

0
5
5
.0

3
2
7
7
.3

3
10

0
(0

.5
,6

)
∗ 5

3.
40

46
.4

7
50

.1
0

2
0
.2

7
4
6
.5

0
4
9
.7

3
4
2
.5

3
5
.0

0
4
3
.0

3
5
.5

0
4
6
.7

3
4
7
.7

3
5
3
.3
3

1
0
8
.5

7
1
0
0
0
.0

0
4
8
.8

7
2
6
3
.5

0
10

0
(1

.5
,3

)
∗ 8

6.
03

85
.0

3
85

.2
3F

17
.2

7
8
3
.2

7
F

6
5
.9

3
4
6
.5

7
3
.1

7
4
9
.4

7
4
.3

3
8
4
.4

7F
8
4
.8

0
F

8
6
.0
3

3
.2

3
9
7
0
.0

0
8
4
.8

3F
1
0
0
0
.0

0
10

0
(1

.5
,6

)
∗ 8

9.
60

89
.2

0
89

.0
3F

17
.1

3
8
8
.8

0
F

7
5
.9

0
5
1
.9

7
2
.9

7
7
3
.4

7F
4
.0

3
8
8
.6

3
F

8
8
.8

7
F

8
9
.6
0

1
.1

3
9
9
1
.9

3
8
8
.7

7F
1
0
0
0
.0

0
10

00
(0

.5
,3

)
∗ 6

09
.7

3
49

5.
70

58
0.

57
2
5
.1

3
5
4
6
.1

7
4
8
6
.8

3
4
8
8
.2

7
7
.5

0
5
0
6
.0

0
6
.9

0
5
4
0
.1

3
5
6
1
.0

3
6
0
3
.2
0

2
.9

0
4
4
6
.6

0
5
4
7.

7
0

7
2
2
.7

3
10

00
(0

.5
,6

)
∗ 5

41
.5

0
44

9.
27

50
8.

73
2
6
.6

7
4
7
4
.1

7
5
3
3
.4

0
4
2
2
.4

0
7
.8

3
4
3
8
.4

3
8
.0

3
4
7
3
.2

0
4
9
1
.3

0
5
2
6
.5
3

1
.5

3
6
1
8
.3

0
4
8
2.

7
3

7
2
6
.3

3
10

00
(1

.5
,3

)
∗ 9

52
.6

3
95

0.
40

95
0.

73
2
2
.6

0
9
4
8
.7

0
6
6
4
.2

3
6
0
1
.9

7
3
.7

0
7
9
3
.7

3
4
.3

0
9
4
9
.0

7
9
4
9
.1

3
9
5
2
.6
0

3
.5

7
1
0
0
0
.0

0
9
4
8
.8

3
9
1
9
.8

0
10

00
(1

.5
,6

)
∗ 9

62
.3

0
96

1.
77

96
1.

20
F

25
.0

0
9
5
9
.7

3
F

6
9
8
.8

7
3
0
3
.8

0
3
.1

0
6
4
1
.5

7
4
.1

0
9
6
0
.2

3F
9
6
0
.6

7F
9
6
2
.3
0

3
.0

0
1
0
0
0
.0

0
9
6
0
.7

7F
9
3
3
.4

0
50

00
(0

.5
,3

)
∗ 3

05
3.

77
24

84
.1

7
29

08
.1

3
3
0
.4

0
2
7
2
4
.5

0
2
4
0
4
.3
7

2
4
5
6
.3

0
9
.4

7
2
5
3
2
.3

7
7
.9

0
2
7
1
3
.4

7
2
8
1
4
.3

0
3
0
1
9
.3
7

3
.0

0
6
4
7
.1

3
2
8
4
5.

0
3

6
9
3
.4

0
50

00
(0

.5
,6

)
∗ 2

69
2.

77
21

93
.4

0
25

30
.8

7
3
1
.8

0
2
3
5
7
.0

0
2
6
6
4
.6
0

2
0
9
7
.0

7
9
.8

3
2
1
6
5
.5

0
8
.8

3
2
3
3
2
.9

3
2
4
1
7
.5

7
2
6
0
8
.1
0

1
.0

0
9
9
2
.6

0
2
4
3
7.

2
7

9
8
9
.9

7
50

00
(1

.5
,3

)
∗ 4

88
1.

40
48

76
.4

0
48

78
.1

7
2
8
.8

7
4
8
7
6
.4

0
2
6
8
6
.6
0

4
3
1
0
.3

3
3
.8

3
4
6
6
6
.5

3
4
.8

0
4
8
7
5
.2

3
4
8
7
7
.8

7
4
8
8
1
.3
0

3
6
.0

7
7
1
7
.6

0
4
8
7
7
.9

0
6
9
4
.7

3
50

00
(1

.5
,6

)
∗ 4

91
5.

70
49

14
.8

7
49

13
.6

0
2
8
.9

3
4
9
1
1
.8

0
2
4
6
2
.0
0

4
8
9
9
.6

7
3
.5

0
4
9
0
8
.9

3
4
.6

3
4
9
1
1
.7

7
4
9
1
2
.7

3
4
9
1
5
.6
3

1
6
.8

3
3
9
3
.9

7
4
9
1
1
.7

7
4
6
9
.2

7

17

T
ab

le
4:

R
es

u
lt

s
fo

r
st

an
d

ar
d

an
d

cl
u

st
er

iz
ed

ra
n

d
o
m

g
ra

p
h

s.
T

h
e

ta
b

le
st

ru
ct

u
re

is
d

es
cr

ib
ed

in
th

e
fi

rs
t

p
a
ra

g
ra

p
h

o
f

S
ec

ti
o
n

4
.5

.

n
p

C
p
l
e
x

G
r
e
e
d
y

F
r
u
it
F
ly

S
h
u
k
l
a

Ik
e
d
a

T
u
r
a
u

R
a
n
d
1

R
a
n
d
2

F
r
o
g
C
O
L

F
r
o
g
M
IS

a
v
g
.

ro
u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

a
v
g
.

rb
f
ro

u
n
d
s

a
v
g
.
ro

u
n
d
s

1
00

0.
03

0
∗ 5

0.
23

46
.1

0
45

.0
7

1
9
.7

3
4
3
.3

3
4
6
.6

3
42

.8
3

4.
8
7

42
.9

7
5
.2

3
42

.9
0

43
.8

0
4
9
.8
7

2
73

.6
7

10
00

.0
0

45
.2

0
2
23

.3
0

10
0

0.
04

0
∗ 4

5.
67

42
.1

3
40

.8
3

2
1
.2

0
3
7
.9

7
4
9
.9

0
37

.6
7

4.
9
7

38
.6

3
5
.6

7
38

.5
7

39
.4

3
4
5
.3
7

2
76

.8
7

10
00

.0
0

40
.5

3
2
85

.1
0

10
0

0.
05

0
∗ 4

3.
20

38
.6

3
38

.3
0

2
2
.0

0
3
5
.3

3
4
8
.0

3
36

.0
0

5.
2
0

36
.5

0
6
.0

0
34

.7
0

36
.7

7
4
2
.8
0

3
33

.4
0

10
00

.0
0

37
.5

7
3
09

.7
7

10
00

0.
0
10

30
9.

9
7

26
0.

50
26

7.
13

4
0
.3

3
24

2.
1
0

5
48

.9
7

2
39

.0
7

8.
03

24
1
.2

7
8.

47
24

0.
70

24
3.

83
2
7
5
.3
7

1.
00

53
0
.1

3
2
63

.2
7

56
1
.1

7
10

00
0.

0
30

15
1.

6
7

12
3.

83
13

0
.3

0F
2
5
9
4
.6
7

1
14

.4
3

54
6.

1
7

1
13

.0
0

9
.5

0
11

2
.7

7
10

.5
3

11
3
.7

7
11

4.
1
3

1
3
2
.1
7

2
30

.9
7

69
4.

7
7

12
5.

20
62

4.
8
0

10
00

0.
05

0
9
6.

03
83

.9
7

0
.3

0
1
0
0
0
0
0
.0
0

7
7
.9

7
5
4
1
.7

0
7
7.

43
10

.1
7

7
7.

37
11

.4
0

78
.3

3
78

.6
0

9
3
.8
0

4
43

.9
0

10
00

.0
0

86
.5

7
10

0
0.

00
50

00
0.

0
10

40
5.

4
3

42
3.

20
1
.0

7
1
0
0
0
0
0
.0
0

3
96

.5
0

2
6
9
8
.4
3

39
1.

5
3

1
1.

90
39

3
.1

7
12

.8
0

39
4.

60
3
93

.7
7

4
4
1
.1
7

1
24

.2
7

97
2.

7
3

41
8.

10
97

5.
0
7

50
00

0.
03

0
n

/a
17

5
.7

7
0
.0

0
1
0
0
0
0
0
.0
0

1
66

.4
7

2
6
0
2
.1
3

16
6.

0
3

1
3.

10
16

5
.9

7
14

.4
0

16
6.

93
1
65

.4
7

1
8
9
.6
7

4
23

.2
0

96
3.

2
3

17
1.

80
97

0.
0
3

50
00

0.
05

0
n

/a
11

5
.1

3
0
.0

0
1
0
0
0
0
0
.0
0

1
09

.2
7

2
5
7
1
.6
0

10
9.

2
3

1
3.

97
10

8
.0

7
15

.1
3

10
9.

07
1
08

.6
3

1
2
6
.6
0

4
49

.8
7

97
7.

5
0

11
0.

77
98

3.
5
7

1
00

(0
.0

6,
0.

06
)

∗ 4
8.

40
45

.0
7

43
.6

0
1
9
.1

3
4
1
.1

0
4
3
.4

3
41

.7
0

4.
7
3

42
.1

3
5
.3

7
42

.1
7

42
.8

7
4
8
.2
0

2
15

.2
7

10
00

.0
0

43
.1

3
10

0
0.

00
10

0
(0

.0
6,

0.
1
)

∗ 4
5.

43
41

.7
3

40
.6

7
2
0
.8

7
3
8
.3

7
4
9
.1

7
37

.7
7

4.
9
3

37
.8

3
5
.7

3
37

.7
7

38
.6

7
4
5
.2
0

2
80

.5
3

10
00

.0
0

39
.6

3
10

0
0.

00
10

0
(0

.1
,0

.1
)

∗ 4
1.

30
37

.3
7

36
.7

0
2
2
.9

3
3
3
.9

7
4
9
.5

3
33

.9
3

5.
3
3

34
.8

3
5
.8

3
33

.8
7

34
.5

3
4
0
.8
0

3
39

.1
3

10
00

.0
0

35
.1

3
10

0
0.

00
10

00
(0

.0
2,

0.
0
2)

27
2.

8
0

22
4.

20
23

5.
07

5
1
.0

7
20

9.
1
0

5
50

.6
3

2
07

.3
7

8.
57

20
8
.7

0
9.

27
20

8.
30

21
0.

70
2
4
1
.0
0

2.
57

85
0
.7

3
2
28

.8
3

51
3
.0

0
10

00
(0

.0
2,

0.
1)

19
4.

1
0

16
4.

53
16

9.
40

2
3
3
4
.6
7

1
51

.1
0

55
2.

4
7

1
48

.8
0

9
.8

3
14

9
.6

3
10

.6
3

15
0
.2

0
15

0.
0
7

1
7
0
.7
7

6.
80

87
3
.5

7
16

7.
6
7F

10
00

.0
0

10
00

(0
.1

,0
.1

)
9
5.

00
80

.1
3

0
.0

3
1
0
0
0
0
0
.0
0

7
4
.5

0
5
4
2
.3

3
7
2.

40
10

.0
0

7
3.

40
11

.1
3

74
.4

3
74

.4
3

8
4
.6
7

1
77

.0
3

84
0.

8
7

82
.9

7F
1
00

0.
0
0

50
00

(0
.0

2,
0.

0
2)

26
6.

2
0

36
3.

90
0
.0

0
1
0
0
0
0
0
.0
0

3
33

.5
3

2
6
7
8
.9
3

33
0.

1
0

1
2.

23
32

9
.2

0
12

.7
7

33
4.

47
3
32

.8
0

3
6
8
.5
3

2
44

.8
0

96
7.

8
3

35
1.

90
96

3.
9
0

50
00

(0
.0

2,
0
.1

)
n

/a
25

6
.3

3
0
.0

0
1
0
0
0
0
0
.0
0

2
37

.0
3

2
6
3
9
.8
3

23
3.

2
0

1
3.

27
23

1
.8

3
13

.8
0

23
4.

87
2
34

.3
7

2
6
1
.7
7

4
82

.6
7

98
5.

1
3

24
5.

03
98

9.
3
0

50
00

(0
.1

,0
.1

)
n

/a
10

8
.0

3
0
.0

0
1
0
0
0
0
0
.0
0

1
03

.2
7

2
5
7
0
.6
7

10
2.

6
7

1
4.

37
10

2
.1

7
14

.4
7

10
3.

33
1
01

.9
3

1
1
9
.8
7

5
52

.3
0

98
6.

5
7

10
4.

63
96

2.
6
7

18

1 2 3 4 5 6

CD

FʀᴏɢCOL

FʀᴏɢMIS

FʀᴜɪᴛFʟʏ

Sʜᴜᴋʟᴀ

Rᴀɴᴅ2
Tᴜʀᴀᴜ

Rᴀɴᴅ1

Iᴋᴇᴅᴀ

(a) Random geometric graphs.

1 2 3 4 5 6 7 8

CD

FʀᴏɢCOL

FʀᴜɪᴛFʟʏ

Rᴀɴᴅ2
FʀᴏɢMIS

Sʜᴜᴋʟᴀ

Rᴀɴᴅ1
Tᴜʀᴀᴜ

Iᴋᴇᴅᴀ

(b) Random evolving graphs.

1 2 3 4 5 6

CD

FʀᴏɢCOL

FʀᴏɢMIS

Rᴀɴᴅ2
Sʜᴜᴋʟᴀ

FʀᴜɪᴛFʟʏ

Rᴀɴᴅ1
Tᴜʀᴀᴜ

Iᴋᴇᴅᴀ

(c) Standard random graphs.

1 2 3 4 5 6

CD

FʀᴏɢCOL

FʀᴏɢMIS

Rᴀɴᴅ2
Sʜᴜᴋʟᴀ

FʀᴜɪᴛFʟʏ

Rᴀɴᴅ1
Tᴜʀᴀᴜ

Iᴋᴇᴅᴀ

(d) Clusterized random graphs.

Figure 3: Critical difference plots.

19

In order to show the impact of the algorithmic features that are removed
from FrogCOL in order to obtain FrogMIS, we applied an extended
version of FrogMIS, equipped with the master node mechanism for stor-
ing the best solution of each run, to all problem instances. This algorithm
version is henceforth called FrogMIS+. Figure 4a presents the results of
FrogCOL, FrogMIS+ and FrogMIS in terms of their relative perfor-
mance—that is, the best algorithm for a certain setting has always a value
of 100%—for each of the four considered graph types. The difference in
solution quality between FrogMIS+ and FrogMIS shows the impact on
solution quality of not storing the best solution of a run. Moreover, the
difference in solution quality between FrogCOL and FrogMIS+ shows
the impact on solution quality of only using two color classes instead of
using as many colors as required for a coloring solution.

• Except for random geometric graphs of size 1000 and 5000, FrogCOL is
able to achieve results comparable to those obtained by Cplex. Moreover,
remember that Cplex is, in some cases, not even able to provide a feasible
solution within one hour of computation time. This is the case for standard
and clusterized random graphs of medium and high density. In order
to provide a comparison of FrogCOL, which is the best decentralized
algorithm, with Cplex and Greedy, Figure 4b presents the results of
these three algorithms in terms of their relative performance—that is, the
best algorithm for a certain setting has always a value of 100%—for each
of the four considered graph types. It can be observed that, even though
FrogCOL is outperformed by Cplex and Greedy on random geometric
graphs, on average it performs comparable to—or even better than—both
centralized algorithms on the remaining graph types.

• Interestingly, the performance of Turau, Ikeda, Rand1 and Rand2 is
nearly equivalent for what concerns random geometric graphs, standard
random graphs, and clusterized random graphs. However, in the case of
random evolving graphs, the performance of Turau and Ikeda drops
significantly in contrast to the one of Rand1 and Rand2, as can be seen
in Figure 3b.

• The critical difference plots (see Figure 3) illustrate the global performance
of the algorithms. The following can be observed:

– There are statistical differences between the first three algorithms—
according to the average ranking—when applied to random geometric
graphs. In particular, the order of these is FrogCOL, FrogMIS,
and FruitFly. In contrast, no statistical differences can be detected
among the remaining five algorithms.

– Regarding random evolving graphs, the best-performing algorithm
is again FrogCOL. In contrast to the other types of graphs, the
second-ranked algorithm for this type of graphs is FruitFly, fol-
lowed by FrogMIS and Rand2, which have no significant differ-
ences among them. Shukla and Rand1 have a similar peformance
and, thus, are clusterized together. Finally, the worst algorithms,
with statistical significance, are Turau and Ikeda.

20

100
92 96 100 96 97 100

91 95 99
91

99

0

25

50

75

100

RGG
REG

RG1
RG2

Graph type

Re
la

tiv
e

pe
rfo

rm
an

ce
 (%

)
FʀᴏɢCOL
FʀᴏɢMIS
FʀᴏɢMIS+

(a) Comparison between FrogCOL, FrogMIS+ and FrogMIS.

100
95

90
100

91
99

77

89
97

75

90
96

0

25

50

75

100

RGG
REG

RG1
RG2

Graph type

Re
la

tiv
e

pe
rfo

rm
an

ce
 (%

)

Cᴘʟᴇx
Gʀᴇᴇᴅʏ
FʀᴏɢCOL

(b) Comparison between Cplex, Greedy and FrogCOL.

Figure 4: Comparison of different groups of algorithms, averaged over the four
considered types of graphs. Remember that RGG refers to random geometric
graphs, REG to random evolving graphs, RG1 to standard random graphs, and
RG2 to clusterized random graphs. Algorithms are presented in terms of their
relative performance—that is, the best algorithm for a certain setting has always
a value of 100%—for each of the four considered graph types. Note that the
height of the bars (rounded to the closest integers) is displayed within the bars.

– In the context of random graphs—both in the case of standard and
clusterized random graphs—FrogCOL is the best algorithm with
statistical significance, followed by FrogMIS. No significant differ-
ences are detected among the remaining algorithms.

Finally, we aim at confirming the tendency of FrogCOL towards colorings
in which the set of nodes that are assigned to the most-used color corresponds
to a rather large independent set. For this purpose we make use of random geo-
metric graphs, which—among all tested graph types—seem to be most difficult
for decentralized algorithms. In particular, we generated 100 random geometric
graphs for n ∈ {100, 5000} and for the two radius values that correspond to the
lower and upper bounds for the two graph sizes (see also Table 2). In Figure 5,
for each of the resulting four cases we display the average color distribution
after the first communication round in contrast to the color distribution after
convergence. On the x-axis of these graphics we can find the indices of the

21

used colors. The bars (including the standard deviation) indicate for each color
index the number of nodes that are assigned the respective color. For example,
the graphic in Figure 5c shows that—in the case n = 5000, r = 0.024—the
color with the lowest index is used by around 895 nodes (on average) after the
first communication round. In contrast, the same color is used by around 970
nodes (on average) after the last communication round. This clearly indicates
the tendency of the algorithm towards the creation of colorings in which the set
of nodes that are assigned to the most-used color corresponds to a rather large
independent set. Moreover, the four graphics indicate that this is a general
trend, independent of graph size and density, and may serve as an explanation
for the success of the algorithm.

5 Conclusions and future work

In this work we, first, studied an existing decentralized algorithm for graph col-
oring for its ability to generate large independent sets. The algorithm under
consideration (FrogCOL) is a bio-inspired technique whose inspiration is the
self-desynchronization behaviour that can be observed in the calling of male
Japanese tree frogs. In a second step, we have adapted this algorithm in order
to directly produce independent set solutions, without the necessity to first pro-
duce a graph coloring solution. Both algorithms are compared to a wide range
of decentralized algorithms from the literature for the maximal independent
set problem. The experimental evaluation has been performed on a large and
diverse benchmark set. The results show that, as expected, FrogCOL outper-
forms FrogMIS. However, both algorithms compare very favorably against the
competitors from the literature. As part of future work we intent to study if the
FrogCOL algorithm can be applied, respectively adapted, to other problems
with relations to graph coloring.

References

[1] Online scientific news site ScienceDaily : Frog calls inspire a new algo-
rithm for wireless networks (2012). URL http://www.sciencedaily.com/

releases/2012/07/120717100123.htm

[2] Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A
biological solution to a fundamental distributed computing problem. Sci-
ence 331, 183–185 (2011)

[3] Aihara, I., Kitahata, H., Yoshikawa, K., Aihara, K.: Mathematical mod-
eling of frogs’ calling behavior and its possible application to artificial life
and robotics. Artificial Life and Robotics 12(1), 29–32 (2008)

[4] Blum, C., Blesa, M.J., Calvo, B.: Can frogs find large independent sets in a
decentralized way? Yes they can! In: M. Dorigo, M. Birattari, S. Garnier,
H. Hamann, M.A. Montes de Oca, C. Solnon, T. Stützle (eds.) Proceed-
ings of ANTS 2014 – 9th International Conference on Swarm Intelligence,
Lecture Notes in Computer Science, vol. 8667, pp. 74–85. Springer Verlag,
Berlin, Germany (2014)

22

0

10

20

30

3 6 9
Color index

Av
er

ag
e

nu
m

be
r o

f t
im

es
 u

se
d

First round dist.
Last round dist.

(a) n = 100, r = 0.14.

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0 12.5
Color index

Av
er

ag
e

nu
m

be
r o

f t
im

es
 u

se
d

First round dist.
Last round dist.

(b) n = 100, r = 0.169.

0

250

500

750

1000

0 5 10 15
Color index

Av
er

ag
e

nu
m

be
r o

f t
im

es
 u

se
d

First round dist.
Last round dist.

(c) n = 5000, r = 0.024.

0

20

40

0 50 100 150
Color index

Av
er

ag
e

nu
m

be
r o

f t
im

es
 u

se
d

First round dist.
Last round dist.

(d) n = 5000, r = 0.134.

Figure 5: The graphics show the distribution of the use of different colors both
at the start of the FrogCOL algorithm (see First round dist.) and after con-
vergence (see Last round dist.) averaged over 100 random geometric graphs of
sizes 100 and 5000, and different values of r.

23

[5] Bui, M., Butelle, F., Lavault, C.: A distributed algorithm for constructing
a minimum diameter spanning tree. Journal of Parallel and Distributed
Computing 64(5), 571–577 (2004)

[6] Csardi, G., Nepusz, T.: The igraph software package for complex network
research. InterJournal Complex Systems 1695(5) (2006)

[7] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control.
Communications of the ACM 17(11), 643–644 (1974)

[8] Erciyes, K.: Distributed Graph Algorithms for Computer Networks. Com-
puter Communications and Networks. Springer, London, UK (2013)

[9] Erciyes, K.: Maximal independent sets, chap. 10. In: Computer Commu-
nications and Networks [8] (2013)

[10] Erciyes, K., Dagdeviren, O., Cokuslu, D., Yilmaz, O., Gumus, H.: Model-
ing and simulation tools for mobile ad hoc networks, chap. 3. In: Loo et al.
[21] (2011)

[11] Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonpara-
metric tests for multiple comparisons in the design of experiments in com-
putational intelligence and data mining: Experimental analysis of power.
Information Sciences 180(10), 2044 – 2064 (2010)

[12] Garćıa, S., Herrera, F.: An extension on “statistical comparisons of clas-
sifiers over multiple data sets” for all pairwise comparisons. Journal of
Machine Learning Research 9, 2677 – 2694 (2008)

[13] Garey, M.R., Johnson, D.S.: Computers and intractability; A guide to the
theory of NP-completeness. W. H. Freeman (1979)

[14] Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for
independence, domination, coloring, and matching in graphs. Journal of
Parallel and Distributed Computing 70(4), 406–415 (2010)

[15] Halldórsson, M.M., Radhakrishnan, J.: Greedy is good: Approximating
independent sets in sparse and bounded-degree graphs. Algorithmica 18,
145–163 (1997)

[16] Hernández, H., Blum, C.: Distributed graph coloring: An approach based
on the calling behavior of japanese tree frogs. Swarm Intelligence 6(2),
117–150 (2012)

[17] Hernández, H., Blum, C.: FrogSim: distributed graph coloring in wire-
less ad hoc networks — an algorithm inspired by the calling behavior of
Japanese tree frogs. Telecommunication Systems 55(2), 211–223 (2014)

[18] Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algo-
rithm for the maximal independent set problem. In: Proceedings of PD-
CAT 2002 – Third International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 70–74 (2002)

[19] Jensen, T.R., Toft, B.: Graph coloring problems, Discrete Mathematics
and Optimization, vol. 39. John Wiley & Sons (2011)

24

[20] Karp, R.M.: Reducibility among combinatorial problems. Complexity of
Computer Computations 40(4), 85–103 (1972)

[21] Loo, J., Lloret Mauri, J., Hamilton Ortiz, J. (eds.): Mobile ad hoc networks:
Current status and future trends. CRC Press, Boca Raton, FL (2011)

[22] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Tech. Rep.
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium
(2011)

[23] Scott, A., Jeavons, P., Xu, L.: Feedback from nature: An optimal dis-
tributed algorithm for maximal independent set selection. In: P. Fatourou,
G. Taubenfeld (eds.) Proceedings of PODC 2013 – ACM Symposium on
Principles of Distributed Computing, pp. 147–156. ACM Press (2013)

[24] Shukla, S.K., Rosenkrantz, D.J., Ravi, S.S.: Observations on self-stabilizing
graph algorithms for anonymous networks. In: Proceedings of WSS 1995 –
The Second Workshop on Self-Stabilizing Systems (1995)

[25] Turau, V.: Linear self-stabilizing algorithms for the independent and dom-
inating set problems using an unfair distributed scheduler. Information
Processing Letters 103(3), 88–93 (2007)

25

