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Abstract This article investigates various aspects of angle modulated particle
swarm optimisers (AMPSO). Previous attempts at improving the algorithm have
only been able to produce better results in a handful of test cases. With no clear
understanding of when and why the algorithm fails, improving the algorithm’s per-
formance have proved to be a difficult and sometimes blind undertaking. Therefore,
the aim of this study is to identify the circumstances under which the algorithm
might fail, and to understand and provide evidence for such cases. It is shown that
the general assumption that good solutions are grouped together in the search
space does not hold for the standard AMPSO algorithm or any of its existing
variants. The problem is explained by specific characteristics of the generating
function used in AMPSO. Furthermore, it is shown that the generating function
also prevents particle velocities from decreasing, hindering the algorithm’s ability
to exploit the binary solution space. Methods are proposed to both confirm and po-
tentially solve the problems found in this study. In particular, this study addresses
the problem of finding suitable generating functions for the first time. It is shown
that the potential of a generating function to solve arbitrary binary optimisation
problems can be quantified. It is further shown that a novel generating function
with a single coefficient is able to generate solutions to binary optimisation prob-
lems with fewer than four dimensions. The use of ensemble generating functions
is proposed as a method to solve binary optimisation problems with more than 16
dimensions.
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1 Introduction

The earliest use of angle modulated particle swarm optimisation (AMPSO) is
found in (Franken, 2004). However, the technique was formally introduced by Pam-
para et al (2005). AMPSO employs a particle swarm optimiser (PSO) (Kennedy
and Eberhart, 1995) to optimise the four coefficients of a trigonometric function,
known as the generating function. The generating function is then sampled at reg-
ular intervals and each sample value is mapped to a binary digit. The resulting bit
string is interpreted as a potential solution to some binary optimisation problem.

Although other algorithms exist to solve binary-valued optimisation problems®
(e.g. Holland, 1975; Kennedy and Eberhart, 1997), Pampara (2013) pointed out
that these binary algorithms are susceptible to problems like hamming cliffs, loss
of precision, search space discretisation, and the curse of dimensionality. Because
AMPSO is able solve problems with binary-valued solutions using a PSO (with
no modifications to the algorithm), which is defined in a four-dimensional contin-
uous search domain, the algorithm is not prone to the same issues noted above. In
addition to PSO, Pampara et al (2006), and Pampara (2013) also successfully com-
bined angle modulation with genetic algorithms (GA), evolutionary programming
(EP), differential evolution (DE), and artificial bee colonies (ABC).

Leonard and Engelbrecht (2014) identified a number of potential problems
with AMPSO and introduced three variants to attempt to overcome these prob-
lems. Two of the variants, called Amplitude AMPSO (A-AMPSO) and MinMax
AMPSO (MM-AMPSO), introduced additional complexity in terms of dimension-
ality to the PSO algorithm, but showed performance improvements in a handful
of problem cases. The remaining variant, called Increased-Domain AMPSO (ID-
AMPSO) showed no statistically significant improvement over AMPSO.

Although previous work (Leonard and Engelbrecht, 2014) has succeeded at
making some improvements to the AMPSO algorithm in specific cases, the ap-
proach followed to identify potential flaws in the algorithm has, thus far, not been
backed by empirical or theoretical evidence. As a result, there is no clear under-
standing of when or why the AMPSO algorithm (or any of its existing variants)
might fail to produce good results. Therefore, the aim of this work is to study
various aspects of the AMPSO algorithm in order to identify and provide evi-
dence for any effects or characteristics that may have a negative influence on the
performance of AMPSO.

The study begins with an analysis of the periodicity of the standard generating
function that is used in AMPSO. The periodicity of the generating function has
never been considered as a point of concern in existing literature. It is shown that
the periodicity of the standard generating function is not problematic in AMPSO.
However, it is discovered that the roots of the generating function increase in fre-
quency along the z-axis. This characteristic is discovered to have potentially severe
consequences on the algorithm’s performance. To illustrate the potential problem,
an empirical analysis is performed. It is shown that — because of the increasing fre-
quency of the roots of the generating function — the distance between solutions in
the coefficient space (where PSO is defined) is not linearly correlated with the dis-

1 This article henceforth refers to algorithms that are defined for binary search domains as
binary algorithms. Likewise, algorithms that are defined for continuous search domains are
called continuous algorithms.
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tance between solutions in the solution space (where the solution to the arbitrary
binary problem exists). That is, the assumption made by PSO that good solutions
are grouped together is violated. This problem is henceforth referred to as spatial
disconnect. Spatial disconnect manifests as a result of the generating function and
is therefore relevant to anybody using the AMPSO algorithm, regardless of the
specific binary problem being optimised.

The study continues with the first ever empirical analysis of particle conver-
gence in AMPSO. It is discovered that particles in AMPSO tend to stabilise at
high velocities, relative to the size of the search domain. This problem is referred
to as inadequate convergence and can also be explained by spatial disconnect. Ad-
ditional methods are suggested to confirm that spatial disconnect is indeed the
underlying cause of inadequate convergence.

A novel approach to finding suitable replacement generating functions is then
introduced. A definition is provided to quantify the ability of an arbitrary gener-
ating function to generate all possible solutions to any arbitrary binary problem.
This new quantity is referred to as generating function potential. This definition is
applied to construct a new generating function, with a single coefficient, to solve
arbitrary binary problems with fewer than four dimensions using AMPSO. Until
now, applying AMPSO to binary problems with fewer than four dimensions actu-
ally caused an increase in dimensionality, because the standard generating function
has four coefficients that need to be optimised.

Unfortunately, calculating the potential of a generating function to solve high-
dimensional binary problems proves to be a difficult task. Indeed, the best potential
that has been calculated for the standard generating function shows that it is able
to solve binary problems with up to 16 dimensions. As a workaround to this
problem, the concept of ensemble generating functions is introduced. An ensemble
generating function refers to the use of many generating functions in AMPSO,
where each generating function generates part of the overall binary solution. The
new definition of generating function potential is then used to show that ensemble
generating functions are able to generate all possible solutions to arbitrarily high-
dimensional binary problems.

The rest of this article is structured as follows: section 2 gives a brief overview
of the PSO algorithm. Section 3 provides an explanation of AMPSO, while the
AMPSO variants that have been introduced in previous work are discussed in
section 4. Analyses and discussions of various aspects of angle modulated particle
swarms are presented in section 5. A novel approach to quantify the ability of
arbitrary generating functions to solve arbitrary binary problems is given in section
6. The study is concluded in section 7.

2 Particle Swarm Optimsation

Particle swarm optimisation is a stochastic, population-based search algorithm.
A population of candidate solutions, called particles, is maintained throughout
the search process. Each particle ¢ has a position x; and a velocity v; in an ng-
dimensional search space. The best position that a particle ¢ has found during the
search process is referred to as the particle’s personal best position, y;. The best
position found by any particle is known as the global best position, ¥, assuming a
star neighbourhood topology. At each time step t + 1, every particle updates its
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velocity using the following equation:
vi(t+1) = wvi(t) + i1 (B)]yi () — xi ()] + cor2 () [§ () — xi(t)], (1)

where w is an inertia weight, ¢1 and c2 are acceleration coefficients, and r1;(t) and
ro;(t) are random values, sampled from U(0,1) in each dimension j = 1,...,n,.
Each particle’s position is then updated using

Xi(t—l—l) :Xi(t)-i-vi(t-‘rl). (2)

The resulting behaviour is that particles stochastically return to regions of the
search space where good solutions have previously been found.

3 Angle Modulated Particle Swarm Optimisation

Angle modulated particle swarm optimisation makes use of a PSO algorithm to
optimise the coefficients (a, b, ¢, and d) of the following trigonometric function:

g(x) = sin[2n(x — a)b cos(2m(x — a)c)] + d. (3)

This function is known as the generating function, because it is used to con-
struct (or generate) a binary solution. The resulting PSO maintains a swarm of
4-dimensional particles with position vectors of the form

x; = (a,b,¢,d). 4)

To evaluate a particle, the coefficients from the particle’s current position are
substituted into g. The generating function is then sampled at regular intervals
r=0,1,2,...,np — 1, where n; is the length of the required binary solution. Each
sample value is mapped to a binary digit as follows:

if g(x) > 0 — 1, otherwise

if g(z) <0—0. 5)

Thus, the optimisation problem presented to PSO is to find the optimal coef-

ficients (a, b, ¢, and d) for the generating function, such that the optimal binary

solution may be obtained by sampling the generating function at regular intervals.

In this way, an ny-dimensional binary problem can potentially be solved using PSO

in a 4-dimensional continuous search domain. Figure 1 illustrates the generation
of a 5-dimensional binary string from g.

4 Angle Modulated Particle Swarm Variants

Leonard and Engelbrecht (2014) identified the following potential problems that
were thought to cause the standard AMPSO algorithm to perform poorly:

— the absence of a parameter to control the amplitude of the generating function,
— the small size of the initialisation domain that was used in the original AMPSO
algorithm, and
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Fig. 1 An example 5-dimensional binary solution is constructed from g with a = 0, b = 0.5,
c¢=0.8, and d = 0.

— the predefined sampling positions at which the generating function was sampled
to produce a bit string.

In order to alleviate the identified problems, three variants of AMPSO were intro-
duced. This section provides an overview of the three AMPSO variants.

A-AMPSO is explained in section 4.1. Section 4.2 describes the ID-AMPSO
variant, and MM-AMPSO is discussed in section 4.3.

4.1 Amplitude AMPSO

The first variant that was proposed by Leonard and Engelbrecht (2014) is A-
AMPSO. This variant adds an additional amplitude coefficient e to the generating
function:

g(z) = e sin[2n(x — a)b cos(2m(x — a)c)] + d. (6)

The additional coefficient implies that the dimensionality of particles increases to
five dimensions when implementing this variant:

x; = (a,b,c,d, e). (7)

The amplitude of g amplifies the effect of the vertical shift coefficient d: the smaller
the amplitude, the greater the effect of d on the generated solution. Results indi-
cated that the e coefficient allows the algorithm to find better solutions faster in
only a few problem cases.

4.2 Increased-Domain AMPSO

In the ID-AMPSO variant, no modifications to the AMPSO algorithm was made,
other than increasing the initialisation domain of particles in the PSO algorithm
from [—1,1]* to [~1.5,1.5]*. The motivation for this variant was that initial coef-
ficients that allowed the vertical shift d to exceed the amplitude of the generating
function could potentially be beneficial to the search. However, the results showed
no improvement over normal AMPSO. The lack of improvement can be ascribed
to the roaming behaviour of particles in the PSO algorithm (Engelbrecht, 2012):
because particles in PSO already have a tendency to exit the initialisation domain
during the first few iterations of the search process, no benefit is gained by slightly
increasing the initialisation domain.
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4.3 Min-Max AMPSO

The final variant is MM-AMPSO. In this variant, the position vectors of particles
are augmented with two additional dimensions to control the sampling range of
the generating function. A particle’s position is then given by

xi = (a,b,¢,d, a1, a2), (8)

where a1 and a2 are the bounds of the sampling domain. Let oy = min{a1, a2},
and o, = maz{ai,az}. Then, the generating function is sampled at every sth
position in the range [o;, ), where

Oy — ()]

5= 9)

np
Results showed that MM-AMPSO outperformed AMPSO for some binary prob-
lems with 225 to 432 dimensions. However, the additional complexity in terms of
particle dimensions had a negative influence on performance in lower dimensions.

5 Analysis of Angle Modulated Particle Swarm Optimisation

While the variants that were discussed in section 4 showed improved performance
in some specific problem cases, none of them yielded improvements across a wide
range of problems. A better understanding of why and when the AMPSO algorithm
might fail is clearly required in order to truly improve the performance of AMPSO.

This section aims to scrutinise various aspects of angle modulated particle
swarm optimisers in an effort to understand why the algorithm might fail to solve
arbitrary binary problems.

Section 5.1 investigates the periodicity of the generating function. The relation-
ship between the binary- and coefficient spaces in AMPSO is studied in section 5.2,
and section 5.3 presents the first empirical analysis of the convergence behaviour
of angle modulated particle swarms.

5.1 Periodicity of the generating function

To begin, consider the periodicity of the generating function. A periodic function
is a function whose values repeat at some fixed interval T'. Formally, if f(z) is
periodic, then there exists a T' # 0, such that

fle+T) = f(z), Vz € R. (10)

The use of a periodic generating function in AMPSO raises the concern that
it could cause repetition in the generated bit string. The interval of repetition in
the resulting binary solution is not necessarily the same as the period T of the
generating function, but rather depends on T, as well as the sampling domain.
Nevertheless, as the dimensionality n, of the binary problem increases, so does
the probability of producing solutions that contain repetition, if the generating
function is periodic.



Critical Considerations on Angle Modulated Particle Swarm Optimisers 7

Of course, in order to know whether this problem is a valid concern in AMPSO,
it is necessary to know if g (equation (3)) is periodic. One might easily make the
assumption that g is periodic, because it is a sin wave. However, closer inspection
of the function reveals that it is, in fact, not periodic, as long as bc # 0.

5.1.1 Proof that g is aperiodic
In the case where b = 0, equation (3) reduces to a constant value:
g(z) = sin(0) + d = d. (11)

When ¢ =0,
g(x) = sin[2n(z — a)b] + d, (12)

which clearly is periodic. Now, consider the case where bc # 0. Without loss of
generality, let

g9(x) = sin[f(z)], (13)
where
f(x) = bz cos(cx). (14)

Now, sin(x) =0 < x = 7n, n € Z. Therefore,
g(z) =0« f(z) =mn. (15)

Consider the function f on any interval

2k L’ 2k if ¢ > 07
I, = [QTCrk 27r2kc_cl] 1 ‘ (16)
[ c ? ¢ 26] 1fC<0,

where k € NT. Observe that cos(x) has roots at © = 7n — 5 - Therefore,

2rk T 2k T T
/ (T - ?) =0 <7 - ?) cos (2~ 3) (17)
=0.

Furthermore, observe that cos(2wn) = 1. Therefore,

f <%> _ bk cos(27k)

c c
2mwbk
o

(18)

Figure 2 illustrates the relevant intervals of f for k =1,...,6, b =1, and ¢ = 1.
From the observations above, it is evident that the range of f on I is [0, @] if
bc > 0, or [QWCbk , 0] if be < 0. In either case, the length of this range is |¥ — O|)
Now, because f is continuous, there exists a value x* € [ such that f(z*) = 7n

for every 7mn in the range of f on . Furthermore, f is monotonic on any interval
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Fig. 2 The range of f on I is |0, @] when bc > 0. In this figure, every interval Iy is
highlighted in bold for k = 1,...,6, b = 1, and ¢ = 1. Note that the range of f on every
2bk
(&

highlighted interval contains { J + 1 multiples of 7, including 0.

I, because cos(z) is monotonic on any interval [27rk — g,Qﬂk]. Therefore, the
number of multiples of 7 contained in the range of f on I is given by

(k) = M%cbk_O’J +1

™

(19)
H 20k J
= |2 + 1.
c
Note that II(k) is equal to the number of roots of g in the interval Ij,. Now,
lim I1(k) = oc. (20)

k— o0

The same argument can be used for the sequence of intervals (J;), where

U =®"u{oh) - I (21)

JEN keN

Then, by simple inductive argument, it is clear that I1(k) also diverges over larger,
consecutive intervals. Therefore, the roots of g become more frequent as * — oo.
The same is true for x — —oo, because g is a sin wave, which is symmetrical.
Because the number of roots of g increases indefinitely over consecutive inter-
vals as |z| — oo, there can be no sequence of intervals (K}) such that the length
of any interval K} is equal to the period T, and the number of roots of g in every
interval K} is the same, and
U Kr =R, (22)

keN

That is,
gz +T) # g(x) Vx € R. (23)

I.e. g is aperiodic if bc # 0.
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Fig. 3 The roots of g increase in frequency as |z| — co.

5.2 Spatial Disconnect

While the problem with periodic generating functions has now been ruled out for
the specific case of g, it is clear from section 5.1.1 that the roots of g increase in
frequency as |z| — co. This effect is illustrated in figure 3. The rate at which the
frequency of roots increases is dependent on the c coefficient of g. The perpet-
ual increase in the frequency of roots of g may seem harmless, but it has severe
consequences for the algorithm, as explained next.

The angle modulated particle swarm algorithm is concerned with two spaces:
the continuous coefficient space, where the PSO algorithm is defined, and the
binary solution space, wherein the solution to the arbitrary binary problem exists.
The PSO algorithm works in two primary phases, known as the exploration and
exploitation phases. During the exploration phase, particle step sizes are relatively
large so that many parts of the search space are sampled sparsely in order to
determine which regions in the search space are likely to contain good solutions.
During the exploitation phase, particle step sizes become smaller so that the good
regions that were found during the exploration phase can be thoroughly searched
in an attempt to find the best solution. When solving continuous problems (which
is what PSO was designed for), the magnitude of the velocity of a particle is the
distance between its current and previous position. This distance is generally also
an indication of how similar two solutions are. The assumption is that if some
arbitrary solution in the continuous search space is good, then other close-by
solutions are probably also good. However, when particle positions are mapped
to binary solutions using angle modulation, it may happen that two solutions
which are close to each other in the coefficient space are actually far apart in the
solution space. When this happens, the ability of PSO to exploit the solution space
is hindered. This problem is henceforth referred to as spatial disconnect.

Note that the assumption that good solutions are grouped together is an as-
sumption made by PSO, but not necessarily by all optimisation algorithms. That
is, other optimisation algorithms may not be influenced by the spatial disconnect
problem. One example of such an algorithm is Simulated Annealing (SA) (Kirk-
patrick et al, 1983), where new solutions are not necessarily generated close to
the current best solution. The use of SA and other similar algorithms with angle
modulation will be investigated in future work.

One way of measuring the similarity between two binary solutions is to cal-
culate the hamming distance between them. The hamming distance between two
binary strings of equal length is the number of corresponding bits in the two binary
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strings that differ in value. Figure 4 illustrates the concept of hamming distance.
The problem of spatial disconnect can be demonstrated by the following process:

Determine a step size s.

Uniformly initialise a random vector p1 in the range [—1,1]*.

Substitute the coefficients of g with the elements of p;.

Generate an 100-dimensional bit string, using g. Call the bit string b;.
Create a uniform random vector s with length s.

Let p2 = p1 +s.

Substitute the coefficients of g with the elements of pa.

Generate an 100-dimensional bit string, using g. Call the bit string b2.
Divide each bit string (b1 and b2) into 25 groups of 4 bits.

Determine the hamming distance between each of the corresponding 4-bit
groups of b1 and ba.

Repeat steps 2 to 10 n times, and calculate the average hamming distance
between the corresponding 4-bit groups of b; and bs.

© L XN CE LN

—_

—_
—_

The process outlined above simulates the movement of a particle from a random
point p; in the coefficient space to another point p2, with velocity s. Note that
the length s of s is the amount of change in the coefficient space. By repeating
the entire process for decreasing values of s, the average amount of change in the
binary solution can be measured and compared to s. By dividing the binary strings
b1 and bz into blocks, the amount of change in lower- and higher dimensions of the
binary solution can also be compared. For PSO to be able to successfully exploit
the binary solution, there must be a direct correlation between the amount of
change in the coefficient space and the amount of change in the solution space.
Furthermore, because s is chosen uniformly, and s is constant while repeating steps
2 to 10, the amount of change measured should, on average, be uniform across all
dimensions of the solution space.

Figures 5 to 9 show the average hamming distances across all dimensions of
the solution space for various values of s. All averages were measured by repeat-
ing steps 2 to 10 thirty times. Figure 5 shows that, when s = 0.1, the average
hamming distance is more or less uniform across all dimensions of the solution
space. However, in figures 6 to 9, it is observed that as the value of s is decreased,
the distribution of change in the solution space becomes increasingly non-uniform.
In particular, while there is a correlation between the amount of change in the
coefficient space and the amount of change in the solution space, the correlation
is stronger for lower dimensions of the solution space. Hence, a spatial disconnect
exists.

The spatial disconnect is caused by a combination of the increasing frequency
of roots of g (see section 5.2) and the manner in which g is sampled to generate
binary solutions. The original AMPSO algorithm samples g on integer intervals
x =0,1,2,...,n, — 1. This relatively fast increase in the value of x means that

010010101000101
00j1(1/0010/0100100101
Fig. 4 There are five corresponding bits with different binary values in these two binary
strings, so the hamming distance between them is 5.
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Averge Hamming Distance for Random Particle Position Changes
step size = 0.1; 100 dimensians
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Fig. 5 For particle step sizes of 0.1, the amount of change is uniform across all dimensions of
the binary solution.

Averge Hamming Distance for Random Particle Position Changes
step size = 0.01; 100 dimensions
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Fig. 6 For particle step sizes of 0.01, the amount of change is low in the first four dimensions
of the binary solution.

the frequency of roots of g at the sample positions also increases quickly (albeit,
depending on the value of ¢), as can be seen in figure 3. The higher the frequency
at a given sampling position x, the higher the probability that the sign at x
will change when the coefficients of g change by a small amount. Recall from
section 3 that change in sign at x is equivalent to a bit flip in the binary solution.
It is important to realise that the results reported here are independent of any
specific binary problem, and that the spatial disconnect is caused by the generating
function. Note the absence of a binary problem in steps 1 to 11 above.

The problem of spatial disconnect can be partially overcome by MM-AMPSO,
which has the ability to decrease the sampling domain, and thereby the sampling
interval, so that x does not increase as fast. This provides an explanation for MM-
AMPSO’s good performance in some high-dimensional problem cases that were
studied in (Leonard and Engelbrecht, 2014). However, this problem persists in
both the ID-AMPSO and A-AMPSO variants. Another way to circumvent this
problem is to replace the generating function with one whose frequency does not
increase with |z|.
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Averge Hamming Distance for Random Particle Position Changes
step size = 0.001; 100 dimensions
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Fig. 7 For particle step sizes of 0.001, the amount of change is low in the first four dimensions
of the binary solution, slightly higher in dimensions four to eight, and high in the remaining
dimensions.

Averge Hamming Distance for Random Particle Position Changes
step size = 1x104; 100 dimensions

3.5

Harnming Distance

P PR

o
o f—

EH—
o=
===
P
o ==
e
P i ——— B
PR s s
P
o TE———
o [E————
o ==
o =g
P
e
o [
o =
o
o TTE————

05 %
I

Dimensions

Fig. 8 For particle step sizes of 1 x 10~4, there is no change in the first four dimensions of
the binary solution. The amount of change increases gradually from dimensions five to 40, and
remains high in the remaining dimensions.

Another question that arises from the results presented in this section is: do
particles in AMPSO eventually slow down sufficiently to exploit the higher dimen-
sions of the solution space? Note that even if particles do slow down sufficiently,
the non-uniform distribution of change is still detrimental to performance if the
optimal values of lower dimensional bits are in any way dependent on the values
of higher dimensional bits. Nonetheless, the question remains interesting. Section
5.3 analyses the velocities of particles in AMPSO throughout the duration of the
search process.

5.3 Particle velocities in angle modulated particle swarms

This section presents the first empirical investigation into the behaviour of angle
modulated particle swarms, with respect to particle velocities.
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Averge Hamming Distance for Random Particle Position Changes
step size = 1x103; 100 dimensions
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Fig. 9 For particle step sizes of 1 x 10~2, there is no change in the first 16 dimensions of the
binary solution. The amount of change increases gradually from dimensions 17 to 100.

Section 5.3.1 gives an overview of the theoretical aspects of PSO that are of
interest to this study. The experimental setup is outlined in section 5.3.2, while
the results are presented in section 5.3.3. Section 5.3.4 discusses the implications
of the results in terms of the spatial disconnect that was discovered in section 5.2.

5.3.1 Particle swarm optimisation theory

In PSO, a particle i is said to be order-1 stable when the expected position E[x;(t)]
of the particle converges to some point g (Poli, 2009). That is,

lim E[x;(t)] = p. (24)

t— o0

Poli (2009) also showed that PSO is order-2 stable. That is, the standard deviation
o; of the particle’s sampling position around g converges, such that

. 1 clw+1)
1 i(t) = = |y (t) — yi(t)], 25
im0 (1) 2\/c(5w—7)—12w2+12 9(0) ~ yi(0) (25)
where ¢ = ¢1 = c2. Consequently, a particle ¢ will continue searching within a
region bounded by o;, unless y;(t) = §(¢). Using the parameter values in table 1,
the standard deviation for a particle ¢ at time step ¢ is calculated as follows:

i) = 1.0432 - |§(t) — yi(t)]. (26)

When o; remains stationary, the particle is said to be order-2 stable. The standard
deviation o;(t) can be interpreted as the expected magnitude of the velocity of
particle i at time ¢ 4 1, if the particle is order-1 stable. The expected average
magnitude of particle velocities in the swarm at time ¢ 4 1 is then given by

Yo ou(t)
N b

where N is the number of particles in the swarm, and the particles in the swarm
are order-1 stable.

Evavg(t +1)] = (27)
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Table 1 PSO parameter values.

Parameter Value
w 0.729844
c1 1.496180
c2 1.496180

5.8.2 Experimental setup

In order to analyse particle velocities in angle modulated particle swarms, ex-
periments were constructed using AMPSO, A-AMPSO, and MM-AMPSO. ID-
AMPSO was not considered further in this study, because there is no difference in
performance between ID-AMPSO and AMPSO (see section 4.2).

All algorithms were executed on the same set of problems used in (Leonard
and Engelbrecht, 2014), with the exception of the deceptive problems, which were
showed to be easily solvable by AMPSO and all three variants. The following
problems were evaluated:

— N-Queens (64-, 100-, 400-, and 625 dimensions),
— Knight’s Tour (48-, 108-, 300-, and 432 dimensions), and
— Knight’s Coverage (64-, 100-, 400-, and 625 dimensions).

In every case, the parameter values in table 1 were used, and the algorithm was
allowed to execute for 1000 iterations. The swarm consisted of 20 particles, and
the following measurements were recorded at every iteration:

— expected average magnitude of particle velocities (equation (27)),
— actual average magnitude of particle velocities, and
— whether the global best fitness has changed since the previous iteration.

Because the purpose of these experiments is to gain insight into the behaviour of
angle modulated swarms by analysing particle velocities during the search process,
it does not make sense to average the measurements over a number of indepen-
dent runs. Thus, although the experiments were performed for 30 independent
runs, each of the graphs that are reported section 5.3.3 shows the behaviour of a
single execution. However, unless stated otherwise, the results are representative
of the kind of behaviour that was observed across independent executions of the
experiments.

5.3.8 Results

Figures 10 to 12 show the three most typical cases of the behaviour of angle
modulated swarms with respect to average particle velocities. Interestingly, with a
few exceptions, these three cases were observed throughout all experiments, across
all problems and dimensions. The most typical cases are depicted in figures 10 and
11. The graphs show the actual- and expected average particle velocities in the
swarm at each iteration. The intermittent vertical lines indicate when changes in
the global best fitness occurred.

In figure 10, particle velocities initially decrease. Changes in the global best
fitness are also initially frequent, as expected. However, the average velocity quickly
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stagnates (after about 100 iterations) at a value between 0.1 and 1. The stagnation
is evident from the fact that the expected average velocity E[vavg] converges to
a constant value, indicating that the swarm is order-2 stable at this point. Minor
fluctuations in E[vg.g] are still caused by changes in the particles’ personal best
positions, but it is not until a change in the global best fitness occurs (around
iteration 280 in this case) that the swarm destabilises momentarily. Unfortunately
the swarm stabilises at a higher velocity after this event occurs. From equations
(26) and (27), it is evident that the global best position has, on average, shifted
further away from the particles’ personal best positions, causing an increase in
average particle velocity.

Another common case is shown in figure 11, where particle velocities initially
decrease, until the swarm stabilises, as in the previous case. However, in this case,
subsequent changes in the global best position do not destabilise the swarm. The
fact that the swarm remains stable sometimes, even though the global best fitness
has changed, indicates that the global best position in those cases did not change
by a lot. That is, in those cases, the new global best position is relatively close to
the old global best position in the coefficient space.

Another, less common, scenario is shown in figure 12. In this case, the initial
decrease in average velocity is especially short-lived, while a number of consecutive
destabilising changes in the global best position cause the average particle velocity
to grow progressively. This indicates that the global best position gradually shifts
further away from the particles’ personal best positions as the search continues.
In these cases, the average velocity of the swarm generally eventually stabilises at
a value between 1 and 10.

Finally, figure 13 depicts an uncommon scenario that was only observed for
MM-AMPSO in a handful of cases. In this graph, it is observed that the average
velocities of particles can grow to values as high as 100 if destabilising changes in
the global best position keep occurring.

Particle Velocities
10

Average Particle Velocity +
Expected Average Particle Velacity O
gbest change

Average Velodty

O l 1 1 L 1
0 200 400 600 800 1000

Iterations

Fig. 10 Particle velocities initially decrease, but stabilise after about 100 iterations. After
around 280 iterations, a change in the global best position destabilises the swarm. The swarm
then becomes stable at a higher average velocity.
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Fig. 11 Particle velocities initially decrease, but the swarm stabilises after a few hundred

iterations, with an average particle velocity of between 0.1 and 1.

Particle Velocities

100 T T T T
Average Particle Velocity +
Expected Average Particle Velodty [
gbest change
> 10
T
o
3 i
Y |
=} I
o
$
s 1 E
Ol 1 1 L 1
0 200 400 600 800

lterations

1000

Fig. 12 Particle velocities do not get a chance to decrease, because a number of consecutive
changes in the global best position causes the two attractors to become more separated over

time.

In a few cases the average velocities of particles were observed to drop below
0.1. However, there were no cases were the average particle velocities ever dropped
below 0.01. Henceforth, the phenomenon where particle swarms become order-2
stable at high average velocities will be referred to as inadequate convergence.

5.3.4 Discussion

The results shown in section 5.3.3 indicate that particle velocities in AMPSO
tend to stabilise at relatively high values. In the most common scenarios, particle

velocities stabilised at values between 0.1 and 1.
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Fig. 13 Particle velocities escalate to extremely high values as the global best position moves
very far from the particles’ personal best positions, on average.

When these results are compared to those reported in section 5.2, it becomes
clear that neither AMPSO, nor any of the variants ever progresses to the exploita-
tion phase of the search process. Recall from figure 5 that a step size as small as
0.1 in the coefficient space causes, on average, 1.5 out of four bits to flip across all
dimensions of the binary solution.

While spatial disconnect (see section 5.2) highlights the severity of the prob-
lem, it also offers an explanation for inadequate convergence in the case of angle
modulated swarms. When a particle ¢ in PSO is attracted towards § and y;, the
assumption is that good solutions are likely to be found around other previously-
found good solutions. In moving towards those previously-found locations, the
particle progressively discovers better solutions, and ¥ and y; move closer to-
gether. The effect is that the particle progressively stabilises at lower velocities,
until |y; — §| becomes sufficiently small, so that o; also becomes very small, rela-
tive to the search domain. However, in the case of angle modulated swarms, the
generating function may cause spatial disconnect, nullifying the assumption that
good solutions are grouped together. In this case, while a particle is still attracted
towards previously-found good solutions, it is unlikely to find better solutions in
those regions, so the distance between § and y; does not decrease enough, relative
to size of the coefficient space. As a result, the particle becomes order-2 stable at a
high velocity. Essentially, a particle in this state indefinitely explores the coefficient
space in a region of size o; around u. If, by chance, any particle in the swarm does
find a better global best solution, the other particles may become destabilised if
the global best position moves by a large enough distance. However, the desta-
bilised particles will yet again stabilise as they fail to find better solutions near
the new point of attraction, ad infinitum.

The explanation above makes sense, given the evidence presented in this study.
However, to confirm that spatial disconnect causes inadequate convergence, a num-
ber of additional studies can be performed, for example:
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— Investigate the velocities of angle modulated swarms, where the generating
function is replaced with one that does not cause spatial disconnect.

— Design a continuous function, where good solutions are deliberately scattered
across the search space. If spatial disconnect is the cause of the problem, inad-
equate convergence should also be observed when using PSO to optimize this
function.

A potential solution to the problems that have been discovered so far is to
replace the generating function. The problem of finding a new generating function
is addressed in section 6.

6 The potential of the generating function

The generating function presented by Pampara et al (2005) was chosen seem-
ingly arbitrarily and without justification. Indeed, the only justification to be
found in literature is from Franken (2004), when he postulated the possibility of a
... mathematical function that will allow for more intricate arrangements of 0’s
and 1’s, and adapting this function through the use of PSO.”

While all the problems that have been discovered in section 5 have to be con-
sidered when choosing a new generating function, another very important question
has eluded researchers thus far: can one produce every possible bit string of length
np by varying the coefficients of the generating function? Or, stated differently,
does the generating function have the potential to produce any arbitrary bit string
of length ny? This question is of paramount importance, because if the generating
function cannot produce any arbitrary bit string, AMPSO might, in some cases,
never be able to produce optimal solutions.

A formal definition of generating function potential is given is section 6.1.
Section 6.2 demonstrates the use of generating function potential by construct-
ing a novel generating function that can solve simple binary problems. Section
6.3 discusses the implication of generating function potential for lower-than-ng-
dimensional problems once a suitable generating function has been found. Section
6.4 addresses the problem of finding a generating function that has the poten-
tial to solve arbitrarily high-dimensional binary problems. Section 6.5 discusses
the applicability of generating function potential to AMPSO variants. The section
concludes in section 6.6 with a note on the distribution of binary solutions in the
search landscape.

6.1 Definition of generating function potential

The following definition assumes that sample values are mapped to binary digits
using equation (5).

Given an arbitrary generating function 77, the potential of 7" to generate any
arbitrary bit string of length n; by varying the coefficients of 7 and sampling the
function at regular, fixed intervals is given by

IBY’|
2ny

Pyt = (28)
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where |BY"| is the cardinality of the set of binary strings of length ns that 7" can
generate. Equation (28) will henceforth simply be referred to as the ny-potential of
T. An np-potential of 1 indicates that it is possible to generate every possible bit
string of length n; by varying the coefficients of 1. Lower values of Py’ indicate
that there are bit strings of length n; that can never be generated by the function.

Note that the np-potential of 1" says nothing about the likelihood of generating
any specific bit string of length ny.

To demonstrate the usefulness of generating function potential, an example is
given below.

6.2 Example of finding an appropriate generating function

One of the motivations for introducing angle modulation, was the fact that the
method reduces the dimensionality of the problem. However, for very low-dimen-
sional binary problems (three dimensions or lower), the dimensionality of the prob-
lem actually increases when angle modulation is applied (assuming that g is used
as the generating function), because g has four coefficients. This example will
show that it is possible to replace the generating function with one that has fewer
coefficients to prevent the increase in dimensionality for simple binary problems.
Consider a binary problem with a 3-bit solution, and a simple generating func-
tion:
hi(z) = sin(x). (29)
This generating function has no coefficients and will therefore always produce the
same bit string, assuming that hy is sampled at x = 0,1,2. Table 2 lists all the
possible solutions to a 3-dimensional binary problem. Column 2 indicates that hi
always produces the bit string ‘011’:

bit 1: sin(0) = 0.0 — 0
bit 2: sin(1) ~ 0.8 — 1 (30)
bit 3: sin(2) = 0.9 — 1,
which means that \IB%%J = |{*011’}| = 1. Therefore, the 3-potential of hq(x) is
3
s _ Byl
P, = 231
_1 (31)
-8
= 0.125.

The low 3-potential of h; indicates that this function would be a very poor choice
of generating function to use with angle modulation. Of course, h; is clearly a toy
example, because there are no coefficients to optimise.

Consider a slightly more complicated function:

ha(z) = sin(vx). (32)

Adding the v coefficient means that the function can now produce different bit
strings by varying v. It also implies 1-dimensional particles in the case of AMPSO:

x; = (v). (33)
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Table 2 Different binary solutions are obtained by varying the value of v. Assuming that
z € {0,1,2}, a ‘- indicates that it is not possible to generate a particular solution. A *’
indicates that a particular solution is always generated.

Solution | hi(z) = sin(z) ha(z) :Usin(v:v) hs(z) = si;z(v(a: + 1))
000 - 5 5
001 - 4 5
010 - 9 h
011 * 1 17
100 - — 2
101 - _ 3
110 — _ 14
111 — _ 1

Table 2 shows that there exist four values for v that produce the first four possible
solutions, respectively. These values were found empirically, assuming the same
sampling positions as for hi. However, no values for v could be found to produce
the remaining four solutions. The fact that no values for v could be found to
produce the last four solutions does not necessarily imply that it is impossible to
produce those solutions. However, in this case it is easy to show that ha cannot
generate solutions whose first bit is ‘1’. Indeed, consider the calculation of the first
bit:

h2(0) = sin(v(0)) = 0.0 — 0, (34)

regardless of the value of v. Therefore, |IIB§’L2| =4, and Pg’z = 0.5. The 3-potential
of ha is a significant improvement over the 3-potential of hi, but still not good
enough.

The problem with ho can easily be corrected by adding a constant horizontal
shift term to prevent the first bit from always being sampled at sin(0):

h3(z) = sin(v(z + 1)). (35)

Table 2 shows that, for hs3, there exist values for v to generate every possible 3-bit
binary solution. Hence, P;?s = 1, meaning that hz a generating function, with a
single coefficient, that has the potential to solve any 3-dimensional binary problem.
Table 2 also shows that all the possible solutions exist for 1 < v < 17. Therefore, a
suitable initialisation range for particles in the PSO algorithm has also been found
(although a smaller range that is equally suitable might exist).

A point of concern, regarding hs, is that the function is clearly periodic and
may therefore give rise to repetition in the binary solution. However, as indicated
in section 5.1, periodic generating functions are of greater concern for higher values
of ny. In the case where n, = 3, a periodic generating function is not problematic.

6.3 Implication for lower-than-n;-dimensional binary problems

Another useful observation to make from table 2 is that the solutions to every 2-
bit binary problem are contained in the 3-bit solutions. That is, if one ignores the
final bit of every 3-bit solution in table 2, then every 2-bit binary string is present
in the list. The implication is that if a generating function is able to generate all
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3-bit binary strings, then it is also able to generate all 2-bit binary strings, simply
by not sampling the final bit. By the same reasoning, it then follows that all 1-bit
solutions can also be generated. This implication necessarily holds for any value
of np and can be formally stated as follows:

PP =1 = PP l=ppr 2= =Pr=1 (36)

Therefore, if Py* =1, then 7 is a generating function with the potential to solve
any binary problem with dimensionality n; or lower.

6.4 Finding generating functions to solve high-dimensional binary problems

It has now been shown that generating function potential can be used to quantify
the usefulness of any arbitrary generating function. However, up to this point,
only very simple functions were considered. This section investigates the use of
generating function potential to find appropriate generating functions to solve
high-dimensional binary problems.

Section 6.4.1 presents an empirical approach to estimate the potential of an
arbitrary generating function. Section 6.4.2 introduces the use of multiple gener-
ating functions as an alternative approach to solving arbitrarily high-dimensional
binary problems.

6.4.1 An empirical approach to estimate generating function potential

The most challenging aspect of determining the n,-potential of a generating func-
tion 7", is finding the set B} of bit strings that 7" can generate. One conceivable
way of generating B}" is to sample 1" at = 0,1,2,...,np — 1 for every possible
permutation of the coefficients of 7" and recording which bit strings get generated.
Of course, this is impossible, because the coefficients of 1" are continuous. However,
the values of the coefficients can be limited to some finite subset S of R. Let Cy
denote the number of coefficients of 7. By limiting the values that the coefficients
may assume, a set Pc,. of all possible permutations of the coefficients of 1" can be
generated. The number of permutations |Pc,.| is given by

IPe | =187 (37)

For example, if 7" has two coefficients whose values are limited to 0.0,0.1, and 0.2,
then the permutations listed in table 3 are possible, and

|]P>CT| = |S|CT
— 32 (38)
=09.

The complexity of generating a bit string of length n; from 7", using every possible
permutation in Pc,. is

O(ny - |Pcy]) = O(ns - [S|7), (39)

which increases exponentially with the number of coefficients Cy-.
If the method described above is used to calculate the n,-potential of an arbi-
trary generating function, the following should be noted:
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1. Because S is a finite subset of R, the calculated n;-potential is only an estimate
of the function’s true n;-potential.

2. The true np-potential of the function is necessarily greater than or equal to the
estimated value. Therefore, if the estimated n-potential of T equals 1, then
PRt =1.

3. To obtain the best estimate of the true ny-potential of the function, [S| should
be as large as possible.

4. Because any given permutation will always generate the same binary solution,
S must be chosen such that

[Poy,| =27, (40)
Without this constraint, an estimated n,-potential of 1 can never be obtained.

The n,-potential of g (equation (3)) was estimated using the approach outlined
above, with § = {—1.000, —0.975, —0.950, . . ., 0.00, 0.025, 0.050, . . ., 1.000}, and
np = 16. Therefore, from equation (38),

Po,| = 18|
= 81* (41)
— 43 046 721,
which satisfies the constraint in equation (40):
Pc,| > 2"
43 046 721 > 2'° (42)
= 65 536.
Generating a bit string from g for each of the 81* permutations of the coefficients

of g, yielded an estimated 16-potential of 1. That is, every possible bit string of
length 16 could be generated. Therefore,

P%=1. (43)

Increasing mp to 17 still satisfied the constraint in equation (40), but yielded an
estimate of P;7 > 0.99932. In order to prove that Pg17 =1, |S| needs to be further
increased. Unfortunately, this approach quickly becomes infeasible, because of the
increasing computational complexity to estimate |BY’

6.4.2 Ensemble generating functions

An alternative method to solve arbitrarily high-dimensional binary problems is to

make use of multiple generating functions to solve parts of the binary solution

independently. A separate generating function would then be used for each %—bit

group of bits in the binary solution, where ¢ is the total number of generating

functions. Together, the ¢ generating functions are referred to as an ensemble

generating function ©. Assuming that the ¢ generating functions are all the same
np

function 6, and that Pg7 =1, it follows that Pg* = 1. The PSO that results from
using © as the generating function has dimensionality

3 (44)
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Table 3 Each line in this table represents one possible permutation of the coefficients of 1.
Each permutation can potentially generate a different binary solution.

Coefficent 1 | Coefficient 2
0.0 0.0
0.0 0.1
0.0 0.2
0.1 0.0
0.1 0.1
0.1 0.2
0.2 0.0
0.2 0.1
0.2 0.2

The position of a particle i is then given by

Xi = (,(/)91171/"91% s ,1#910971/)921,1#022, cee 71/)9209a

(45)
S Pe,1,%0,2, -5 %0,0,),
where g, ; is the §t" coefficient of the i*" 6 function.
In the specific case of hs, this implies that an np-dimensional binary problem
can be solved using an “:-dimensional PSO, with particle positions of the form

xi = (v1,v2,03,...,0p). (46)

Of course, g is also a potential candidate to replace 6. In the case of g, the resulting
PSO has dimensionality %, from equations (43) and (44). However, recall from
figure 7 that the problem of spatial disconnect already manifests when g is used
to solve 16-dimensional binary problems.

6.5 Using generating function potential with AMPSO variants

One point of concern regarding generating function potential is whether it is appli-
cable to the AMPSO variants, described in section 4. In the case of ID-AMPSO,
no modifications were made to the algorithm, so generating function potential
automatically applies. In the case of A-AMPSO, an additional coefficient was
introduced, but the definition of generating function potential is not dependent
on the number of coefficients, so generating function potential also applies to A-
AMPSO. The only point of possible confusion is MM-AMPSO (refer to section
4.3). The MM-AMPSO algorithm has the ability to vary its sampling domain.
More precisely, the way in which MM-AMPSO calculates the sample positions
might cast some doubt regarding the applicability of the implication for lower-
than-ny-dimensional problems, discussed in section 6.3.

Consider the case where o; = 0, o, = 5, and np = 5. From equation 9, § = 1 for
this particular configuration. Further assume that a = 0, b = 0.5, ¢ = 0.8, d = 0.
When a bit string is generated, the scenario depicted in figure 1 is obtained. Thus,
the generated bit string is ‘01100’. Now, according to section 6.3, the bit string
‘0110’ should be obtainable by neglecting to sample the final bit. To do so, we
reduce the value of np to 4. But reducing the value of n; changes the value of 6,
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and therefore also the sampling positions. This means that some bits in the newly
generated 4-dimensional bit string might change. The concern in this case is that
it is no longer guaranteed that the generating function will be able to produce
all lower-dimensional bit strings. Fortunately, this effect is easily corrected by
adjusting the value of «,,. In this particular case, the value of o, can be set to 4
to obtain the correct value for § to produce the desired bit string.

From the example above, it is clear that by making the necessary adjust-
ment to a,, MM-AMPSO can also generate any lower-than-n,-dimensional bit
string, assuming that the generating function has an n,-potential of 1. Thus, the
concept of generating function potential, including the implication for lower-than-
np-dimensional problems, is equally applicable to AMPSO and all the AMPSO
variants contained in this study.

6.6 Distribution of Binary Solutions

As a final thought on generating function potential, note that Py* says nothing
about the distribution of solutions in the search space. Consider again the illus-
tration given in figure 1. In that illustration, the values a = 0, b = 0.5, ¢ = 0.8,
and d = 0 produced the binary solution “01100”. However, it is trivial to see that
choosing a sufficiently small, but non-zero positive value for a would produce the
exact same binary solution.

The fact that different permutations of the coefficients can produce the same
binary solution has two obvious effects. Firstly, the search space contains plateaus,
and, secondly, all solutions are not guaranteed to exist in the search space with
the same frequency. That is, even if PY* = 1, meaning that every possible binary
solution exists in the search space, some solutions may be much more common
(and therefore easier to find) other solutions.

This problem would be difficult to overcome by simply replacing the generating
function with some new function, since every continuous function would conceiv-
ably present the same problem. A thorough investigation into the implications of
this problem is left for future work.

7 Conclusion and Future Work

This study investigated various aspects of angle modulated particle swarm opti-
misers in order to understand why the algorithm might fail to optimise arbitrary
binary problems.

The periodicity of the generating function was investigated and found not to
be a problem in the standard AMPSO algorithm or any of its existing variants.
However, it was discovered that the roots of the generating function increase in
frequency along the z-axis. This characteristic was shown to cause a basic assump-
tion made by PSO (that good solutions are grouped together in the search space)
to be violated. The problem is referred to as spatial disconnect, and was shown to
manifest in all existing AMPSO variants, regardless of which binary problem is
being optimised. Thus the problem is applicable to anyone who uses AMPSO or
any of its variants.
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The study also provided the first empirical analysis of particle convergence in
angle modulated particle swarm optimisers. It was shown that particles in AMPSO
tend to stabilise at high velocities, with respect to the size of the search domain.
This problem is referred to as inadequate convergence. The most important con-
sequence of inadequate convergence is that particles in AMPSO are not able to
exploit good solutions in the search space, because their step sizes remain too high.
The problem was explained in terms of the spatial disconnect that was discovered
earlier.

In general, the problems discovered with AMPSO in this study were all asso-
ciated with the generating function. In particular, spatial disconnect seemed to be
the cause of these problems. Thus, the best way to address the problems found
in this study would be to replace the generating function with one that does not
cause spatial disconnect.

To this end, the study outlined the first formal definition to quantify the ability
of arbitrary generating functions to solve arbitrary binary problems. This quantity
is referred to as the potential of the generating function. Using the definition of
generating function potential, a new generating function was constructed to solve
binary problems with fewer than four dimensions. This new generating function
has a single coefficient, meaning that a reduction in dimensionality when solving
simple binary problems using AMPSO was made possible for the first time. Fur-
thermore, the use of multiple generating functions in AMPSO was proposed as a
method to solve arbitrarily high-dimensional binary problems. Generating func-
tions consisting of multiple functions that solve parts of the binary problem are
referred to as ensemble generating functions.

The insights gained from this study pave the way for various additional studies,
as well as potential improvements to angle modulated particle swarm optimisers.
In future work, studies will be carried out to test the various hypotheses that were
formulated in this article. Such studies will include tests to confirm that spatial
disconnect is the cause of inadequate convergence in angle modulated particle
swarms, as well as empirical analyses comparing the use of a single generating
function with the use of ensemble generating functions.
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