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Abstract Developing self-organized swarm systems capable of adapting to envi-
ronmental changes as well as to dynamic situations is a complex challenge. An
efficient labour division model, with the ability to regulate the distribution of
work among swarm robots, is an important element of this kind of system. This
paper extends the popular Response Threshold Model (RTM) and proposes a new
Adaptive Response Threshold Model (ARTM). Experiments were carried out in
simulation and in real-robot scenarios with the aim of studying the performance
of this new adaptive model. Results presented in this paper verify that the ex-
tended approach improves on the adaptability of previous systems. For example,
by reducing collision duration among robots in foraging missions, our approach
helps small swarms of robots to adapt more efficiently to changing environments,
thus increasing their self-sustainability (survival rate). Finally, we propose a min-
imal version of ARTM, which is derived from the conclusions obtained through
real-robot and simulation results.
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1 Introduction

Division of labour is one of the fundamental problems that must be solved for
swarm or multi-agent systems. In multi-agent systems a straightforward approach
is centralised workload distribution: a main controller collects all required data,
such as robots’ positions and sensor readings, then allocates scheduled tasks to
the most suitable robots (Keshmiri and Payandeh, 2011; Liu and Kroll, 2012)
in order to achieve the goal. Despite the simplicity of this approach and recent
breakthroughs within indoor environments (D’Andrea, 2012), there are several
well-known challenges related to the accuracy and availability of global informa-
tion; precise information is not always possible to obtain, especially within large
domains, for instance outdoor (Reggente and Lilienthal, 2009) or unstructured
scenarios (Chitta et al., 2012). In addition, the robustness of such systems might
be compromised when a problem or failure affects the central controller, which
could lead to a halt in overall system operation. Therefore, increasing attention
has been paid to swarm systems that do not rely on centralised controllers and
treat division of labour in a distributed fashion.

Searching for a technique that could address the problems of centralised con-
trollers led to research in which robots coordinated their actions through intensive
communication and negotiation (Jin et al., 1994; Jun et al., 1999). These models
were mainly applied in small teams of robots due to bandwidth limited com-
munication (Parker, 1994; Gerkey and Matarić, 2000). As the number of robots
increases within the swarm, the design complexity of the controller also increases
(Stergiopoulos and Tzes, 2011; Escobedo et al., 2014) due to high communica-
tion bandwidth requirements or to the limited computational power of the simple
robots normally used in robotic swarm studies. Therefore, a new approach to
labour division and task allocation, which improves upon centralised controllers in
terms of robustness and at the same time avoids the complexity issues of classical
distributed models, is needed for the next generation of swarm robotics systems.

The most prominent work within task allocation and division of labour research
involves foraging tasks (regarded as one of the main benchmark problems of swarm
robotics (Winfield, 2009)), with very limited (Lerman et al., 2006; Liu and Win-
field, 2010) or no communication among the robots (Yongming et al., 2010), mak-
ing systems extremely scalable. Within the broad field of robot foraging, the topic
of sustainable foraging has gained popularity among roboticists in the last decade
(Song and Vaughan, 2013; Ashikaga et al., 2007). However, previous approaches
are mostly centralised and too sensitive to specific food distributions (Song and
Vaughan, 2013). Moreover, they do not consider the requirements of satisfying an
external system with changing needs (Ashikaga et al., 2007), as needed for promis-
ing real-world applications for robotic swarms such as agriculture or mining. This
paper aims to fill the gap existing in the field.

Numerous studies (Yang et al., 2009; Yongming et al., 2010; Bailong et al.,
2008) have applied simple algorithms based on Fixed Response Threshold Models
(FRTM) (Bonabeau et al., 1998) to robotic foraging swarms. These models have
shown similar behaviours to the mechanisms that regulate labour in insect colonies
such as worker specialisation (Labella et al., 2006) or hierarchical differentiation
(Theraulaz et al., 1990).

Despite its simplicity, FRTM is still very interesting because of the ability to
adapt to changing situations (Yongming et al., 2010; Bailong et al., 2008) and
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different scenarios (Bonabeau et al., 1998; Yang et al., 2009). The fixed response
threshold (θ) is an internal FRTM variable that determines the tendency of a robot
to respond to a given stimulus in the environment and perform an associated task.
In foraging scenarios, θ has a great influence on the robot’s behaviour, because
it determines when the robot goes foraging (i.e., to expend energy looking for
food within the environment), or rest (and conserve energy by staying in the
nest) in case its work is not needed at that specific moment (Labella et al., 2006;
Krieger et al., 2000). On one hand, prior work in the field has shown that a
high value of θ can decrease interference among robots and therefore increase the
system’s performance (Zhang and Zeng, 2012), while on the other hand lower
values of θ can beneficially affect the adaptation in response to abrupt changes
in the availability of food in the environment (Castello et al., 2013). Tuning and
optimising θ according to different environmental conditions in order to make a
robot swarm adapt to dynamical situations is therefore not straightforward.

This paper analyses the results of simulation and real-robot experiments using
our proposed algorithm: the Adaptive Response Threshold Model (ARTM), with
the purpose of confirming the adaptability of ARTM in stochastic environments
such as the real-robot scenarios within Section 2.3. This is motivated by the fact
that experiments with real hardware always suffer from stochasticity given by
noisy sensor readings or unpredictable interference among robots.

Preliminary simulation results obtained with ARTM were presented in Castello
et al. (2013) and Castello et al. (2014). In addition to the more extensive results
included in this paper, we demonstrate that ARTM can achieve adaptive division
of labour in a small size robot swarm in an efficacious and robust way. It is also the
purpose of this paper to show that simple modifications ( e.g., dynamic calculation
of θ) of already known algorithms such as FRTM, can usefully improve upon
the original model and lead to simpler and more adaptive systems which can be
efficient both in simulated and real-robot scenarios.

Previous works in the fields of threshold-based division of labour and adaptive
foraging show fundamental differences with respect to the model presented in this
paper.

Firstly, Agassounon and Martinoli (2002) propose a private variable threshold
worker allocation algorithm (PrVT), which averages a robot’s successful searching
times in order to compute an optimal searching time-out threshold in static clus-
tering missions. Unlike our approach, the algorithm proposed in Agassounon and
Martinoli (2002) requires robots to gradually store additional information such as
previous successful searching times. This information is then used to re-calibrate
the threshold parameter. This approach might be a limitation for swarm systems
that need to be deployed in long-term missions and are composed of relatively sim-
ple robots due to memory constraints. Furthermore, the parameters are modified
only when a search mission is successfully completed. This episodic type of update
may be insufficient if the environment is dynamic and changes abruptly during the
mission. In contrast, our approach proposes an ongoing adaptation process, which
takes place during robot idle time — the wait action — making the robot swarm
more reactive against those changes.

Secondly, unlike Lee and Kim (2014), our approach does not require memory
based lists in order to adapt robots’ thresholds over time. This point is particularly
important, since it has been proved that the size of lists requires optimisation in
order to cope with certain dynamical situations (Lerman et al., 2006).
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Thirdly, even though a well-known model such as FRTM is used as the basis
for many works in the field, the analysis of parameters relevant to adaptation such
as the slope of response curves has not been addressed in previous literature, with
the exception of Kanakia et al. (2014). In Kanakia et al. (2014), certain predefined
values for parameters such as the response threshold — θ — or the slope of the
response curve — n — were analysed for a specific swarm collaborative mission.
Unlike our approach, Kanakia et al. (2014) do not propose a model in which the
dynamical adaptation of these parameters takes place in a reactive manner given
the environmental conditions.

Several reference works have conducted similar foraging experiments (Krieger
and Billeter, 2000; Song and Vaughan, 2013; Theraulaz et al., 1990) to the ones
presented in the present research. However, they all assumed fixed values for the
stimulus variables (such as constant consumption rates (Beshers and Fewell, 2001))
or incremental success/failure rates (Labella et al., 2006), where adaptation to en-
vironmental conditions might take a long time. In contrast, our proposed model is
tested under different values for the swarm’s stimulus (time-changing consumption
rates) with the purpose of proving its use in time-critical foraging.

Finally, few of the aforementioned works, with the notable exceptions of Labella
et al. (2006) and Krieger and Billeter (2000), present data obtained from real-robot
experiments in order to corroborate findings discovered in simulation. This paper
aims to provide a clear comparison between simulation and real-robot results.

2 Methods

2.1 Adaptive Response Threshold Model (ARTM)

The Adaptive Response Threshold Model (ARTM), first described in Castello et al.
(2013), is an extension of the classical Fixed Response Threshold Model (FRTM),
in which the response threshold (θ) is calculated dynamically instead of remaining
fixed. ARTM, like other response threshold methods, strongly relies on the concept
of stimulus:

S(t) = F(t0) − F(t) (1)

Equation (1) provides the definition of stimulus (S(t)) used throughout this
research, in which F(t) corresponds to the amount of food within the swarm’s nest
(regarded as the robot’s headquarters in every foraging mission) at time t, and
F(t0) to the amount of food found in the nest at the beginning of the foraging
mission. F(t0) is regarded as the optimal level of food robots should maintain at
the nest. F(t0) is arbitrarily chosen at the beginning of each experimental run. The
response curve Pf (i.e., the probability of leaving the nest area to start foraging)
is defined as:

Pf =

{
0 if S(t) ≤ 0
S(t)

n

S(t)
n+θn if S(t) > 0

(2)
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In addition to the stimulus variable (S(t)) and the threshold parameter (θ), the

variable n is shown in equation (2). n determines the slope of the response curve 1.
Diversity of n values is regarded as one of the main forms of emergent behaviour
within swarms of robots using Response Threshold Models (RTM) (Kanakia et al.,
2014), since robots with the same θ threshold but different n values might produce
different responses given the same stimulus S(t). Typically n is randomly generated
from a predefined range and remains fixed for the whole experiment.

Fig. 1 Response curves for several θ and n values. θ represents the location of the 0.5 point
for each corresponding response curve. n represents the slope of each corresponding response
curve

Fig. 1 shows different response curves for θ = 5, θ = 10 and θ = 15 as well
as several values of n. Fig. 1 suggests that robots with a smaller θ tend to react
faster to small stimulus (S(t)) values. Conversely, robots with a high θ will not
be so likely to react to small stimulus values and will have a tendency to remain
out of action for longer. As it was explained previously, n represents the slope of
each corresponding response curve. Robots with a smaller n will have a “flatter”
response curve, showing moderate progressions of their Pf values as S(t) increases.
In contrast, robots with a higher n will have a “steeper” curve that will abruptly
increase their probability of going foraging as S(t) increases.

1 The response curve corresponds to the plot of the response probability Pf as a function
of the stimulus S(t).
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2.2 ARTM foraging framework

Fig. 2 shows a general overview of the ARTM foraging framework. The major
difference with previous fixed response threshold models is the Discrete Attractor
Selection Model (DASM), represented by a rectangular box with dashed bound-
aries. DASM is the algorithm first introduced in Castello et al. (2013), which
dynamically calculates the θ threshold according to different environmental con-
ditions. Once the process of updating θ is over, robots are able to calculate their
response curve (defined in equation (2)) according to the new conditions and de-
cide whether to begin the foraging process or wait, in standby mode, near the
nest.

Fig. 2 Flow chart of the Adaptive Response Threshold Model (ARTM) framework

The ARTM algorithm in Fig. 2 relies on 3 basic actions:

– Wait: At the start of each experiment all robots run the Wait action, which
could be regarded as a type of standby mode. As can be seen in Fig. 2, at
the start of the experiment each robot randomly generates a value for n from
a predefined range in order to calculate Pf and then starts a timer. When
the timer expires, the robot senses the current amount of stimulus at that
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particular moment (S(t)) and calculates Pf . If Pf is high, the transition to
the Search action is likely to occur, if not, the robot starts another wait cycle.
Every robot needs to perform the Wait action near the nest since once its timer
expires, it needs to sense the current amount of food at the nest (F(t)) in order
to calculate the new stimulus (S(t)) value.

– Search: The robot performs a random walk searching for food tokens. If the
robot detects a food token within its sensor range, it executes the Collect action,
otherwise it continues searching. During the execution of this action the robot
is able to detect obstacles such as walls or other robots and avoid them.

– Collect: Once the robot has moved close to the food token and grabbed it, it
moves to the swarm’s nest and deposits the food token inside it. After placing
the food token in the nest the Wait action is triggered again.

2.2.1 Discrete Attractor Selection Model (DASM)

The Attractor Selection Model (ASM) is one of the simplest ways of describing
biological fluctuations (Kashiwagi et al., 2006). Despite its simplicity, this model
can provide adaptation capabilities in unknown and dynamical environments.

In previous research works (Shimizu et al., 2011; Nurzaman et al., 2008), ASM
has been formalised by one of the most popular equations in biology, namely the
Langevin equation (3):

dx

dt
= −∇U(x)A+ ε (3)

Equation (3) is composed of three main elements. x represents the state of
the system. x is calculated after multiplying a variable called activity (A) by a
potential field (U(x)) with several attractors (local minima). A describes how well
suited the current state x is to the current environment. A is designed in a way
that a high value is given when x is well suited and a low value when x is not
suited to the environment. Therefore, A drives the behaviour of the whole model.
For instance, when A becomes large (x is suited for the current environment),
the term −∇U(x) becomes dominant in equation (3) and a transition between
attractors is not likely to occur. However, if A is small, the noise parameter ε

becomes dominant in equation (3) starting a random search procedure that looks
for a more suitable attractor.

As its name suggests, the Discrete Attractor Selection Model (DASM) is the
discrete version of the above explained ASM. DASM is used throughout this paper
because of its simplicity and low computational cost which makes it ideal for swarm
robotics research.

Parameter Description
W Set of states
w(t0) Initial state of the system
Σ(t) System’s input
δ State transition function, where δ : p(w(t+1), w(t), Σ(t))

Table 1 DASM’s parameter table
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Fig. 3 Overview of DASM. DASM is a PFSM (Probabilistic Finite State Machine) in which
each system state — W1 and W2 — is bound to two probability values. Ps determines the
probability of remaining in the current state of the system (w(t)). This probability is updated
based on equation (4). The complement 1 − Ps determines the probability of changing state
in the next time step.

Rule Number DASM Input Behavioural Rules DASM Output
Σ(t) w(t) S(t−1) ≥ S(t) θ

I 1 ∆ true ↑
II 0 −∆ true ↑
III 0 ∆ false ↓
IV 1 −∆ false ↓

Table 2 DASM’s input and output table according to several behavioural rules. Rules I and
II make a robot increase its θ threshold. Rules III and IV trigger a decrement in a robot’s θ
threshold.

DASM is defined by the tuple (W,w(t0), Σ(t), δ) whose parameters are given
in table 1. Fig. 3 shows a typical DASM’s structure composed of a two state set
W = {W1,W2}. W1 and W2 represent a constant value ∆ chosen at the start of the
experiment. DASM’s current state (w(t)) is in charge of increasing or decreasing
the θ threshold parameter by the value ∆ at every time step, and therefore make it
fluctuate. In this paper, W1 is assigned to ∆ and W2 is assigned to −∆. The initial
state of the system (w(t0)) is randomly chosen from these two states at the start of
each experiment. w(t0) and w(t) could be regarded as two “pointers”, which always
point to one of the states in W at certain points in time: w(t0) in t = 0 and w(t)

at time step t. Therefore, the expression w(t) = ∆ means that the current state of
the system at time step t has the value of ∆, which analogously means that the
current state of the system is bound to W1.

DASM’s input variable is Σ(t) = {0, 1}. The behavioural rules behind this
variable are shown in table 2. Σ(t) is set to 1 in two cases. In the first case (see line
corresponding to rule I), when there is a reduction or no change in the level of the
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stimulus variable between the current time step (S(t)) and the previous time step
(S(t−1)), and DASM’s current state (w(t)) is assigned to ∆. The reason behind
this behavioural rule is that if robots are capable of increasing their θ threshold
(w(t) = ∆), because more food is being placed within the nest (S(t−1) ≥ S(t)), then
the θ threshold should be increased. As a consequence of this, robots tend to keep
running the Wait action.

In the second case (see line corresponding to rule IV), when there is an increase
in the stimulus variable between S(t) and S(t−1) and w(t) is assigned to −∆. The
reason behind this rule is that if robots are capable of decreasing their θ threshold
(w(t) = −∆) and less food is being placed within the nest (S(t−1) ≤ S(t)), then
the θ threshold should be decreased. Σ(t) is bound to 0 in case neither of these
conditions are met (table 2 rule II, and table 2, rule III). The mapping of Σ(t)

represents how well suited the current state of each robot’s DASM (w(t)) is to the
condition of the food dynamics (S(t−1) ≥ S(t)) at the swarm’s nest.

As shown in Fig. 3, every W state is connected to two probability values.
Ps(w(t))

represents the probability of remaining in the current state for one more

time step. On the other hand, (1−Ps(w(t))
) represents the probability of swapping

state.

The state transition function p involves the calculation of Ps. The p function
is defined in equation (4):

p(w(t+1), w(t), Σ(t)) = Ps(w(t))
=

{
Ps(w(t−1))

+ α, if Σ(t) = 1

Ps(w(t−1))
− α, if Σ(t) = 0

(4)

Equation (4) shows how, in case the system’s input variable Σ(t) is bound to
1, a predefined constant value α is added to the previous probability Ps(w(t−1))

of

staying in the current state, resulting in a higher probability Ps(w(t))
of staying

in the current state. In contrast, if Σ(t) is bound to 0, α will decrease Ps(w(t−1))
,

resulting in a lower Ps(w(t))
for the next time step.

After the state transition function is calculated for the current time step
(p(w(t))), a random number with uniform distribution is generated in the range
[0,1], and compared to the updated transition function. Once a new state is selected
for the current time step (w(t)), equation (5) is used:

θ(t) = θ(t−1) + w(t) (5)

Equation (5), which could be regarded as an update rule, is used to obtain the
value of the threshold parameter θ(t).

DASM provides a decentralised way to update each robot’s θ threshold, ex-
ploiting features only present in the environment (contact with the associated
stimulus S(t) in the nest). No direct communication with a centralised controller
is required in order to assist robots to adapt to the environment.

Finally, with the purpose of making a comparison between ASM (equation (3))
and its discrete version (DASM), W could be compared to the set of attractors
(local minima) within the potential field U(x), while Σ(t) plays the same role as the
activity value (A) in equation (3), and δ (and its probabilistic transition function
p) is analogous to the noise distribution ε.
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2.2.2 ARTM’s typical behaviour

Fig. 4 The Swarm Foraging Process using ARTM. When the food level (F(t)) at the swarm’s
nest is low, the stimulus (S(t)) value will eventually increase, biasing the DASM to decrease
the θ threshold and therefore making more robots go foraging. Due to the increased number
of working robots, the amount of food (F(t)) at the swarm’s nest will increase, making the
stimulus (S(t)) values decrease, therefore DASM will tend to increase the θ threshold, causing
fewer robots to go foraging in the next running cycle.

Fig. 4 shows the behaviour of a foraging swarm using the ARTM process. This
diagram describes the chain of events that occur once we employ ARTM as a
division of labour mechanism. For instance, if the amount of food (F(t)) at the
swarm’s nest becomes smaller, due to the action of the consumption rate (Crate)
(an agent that extracts food from the swarm’s nest, simulating an external sys-
tem), the stimulus (S(t)) value gradually increases. This effect causes the DASM
to decrease the θ threshold and therefore more robots to go foraging in the follow-
ing time steps. Because of the increased number of working robots, the amount of
food (F(t)) at the swarm’s nest tends to increase, causing the system’s stimulus
(S(t)) values to become smaller. This effect biases DASM to increase the θ thresh-
old, therefore causing fewer robots to go foraging in the next running cycle. Fig.
4 presents a decentralised feedback-based approach, since it only relies on local
information and no single entity is choosing θ for each robot.
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2.3 Real-robot experiments

The benefits of using dynamical threshold models (such as ARTM), in terms of
increase of the survivability and adaptability of swarm systems in changing envi-
ronments, was previously shown only by computer simulations in Castello et al.
(2013) and Castello et al. (2014). This paper aims at confirming those simulation
results in a new set of experiments conducted using real robots.

Fig. 5 Photo of the arena used in order to conduct the real-robot experiments. In the picture,
five e-puck robots (in Wait action) gather in the middle of the experiment space, surrounding
the nest (circle located at the center), and 10 food tokens are scattered in the arena. Note that
the other markings in the experimental arena have no significance

Fig. 5 shows a snapshot of the arena where several e-puck (Mondada et al.,
2009) robots (identical to the one shown in Fig. 6(a)) were placed. The e-puck
platform is a well-known open hardware testbed extensively used for swarm ex-
periments (Chen et al., 2012; Cianci et al., 2007). Besides the main processing unit,
which was enhanced by the addition of a Linux extension board (Liu and Winfield,
2011) and the differential wheel drive that makes the robot move, each e-puck robot
is equipped with the following sensors: 8 infrared proximity sensors for detecting
obstacles, 1 colour camera with 640 × 480 pixel resolution, 1 3D accelerometer, 3
microphones and 1 loudspeaker. In addition to this hardware configuration each
e-puck robot is equipped with a 3D printed passive gripper especially designed for
foraging experiments. The environment was designed as a rectangular area of 2.0
x 1.5 square meters with a circular area (50 cm in diameter) at the centre which
represents the swarm’s nest. Solid dark cylinders (such as the one shown in Fig.
6(b)) within the arena represent food tokens. Following the example of simulation
experiments described and conducted in Castello et al. (2013) and Castello et al.
(2014), a certain number of food tokens (D) were randomly but evenly positioned
at the beginning of each run.
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(a) E-puck robot with a Linux Expansion Board and a
passive 3D printed gripper

(b) 3D printed food token

Fig. 6 (a) Photo of the e-puck robot used in the experiments. In addition to the expansion
Linux board (Liu and Winfield, 2011) used for controlling the robot, a 3D printed passive
gripper was fitted to each robot in order to bring food tokens distributed within the arena to
the swarm nest. (b) Food token used in the foraging experiments. Food tokens are 3D printed
cylinders with the following dimensions: 8 cm tall and 2 cm in diameter. The small pips on
top of the food token are for reflective markers to track the tokens. However, the location of
food tokens was not tracked during these experiments.

Fig. 7 outlines the main elements of the experimental setup and its data flows.
Every time an e-puck robot detects a food token with its embedded camera, it
aligns with it and grabs it with its passive gripper. In order to carry that food
token to the nest, the e-puck robot needs to know the position of the nest. This
information is provided using a Robot Operating System (ROS) (Quigley et al.,
2009) instance which sends that specific robot its own position and orientation as
well as the nest’s position at a frequency of 1 Hz through a ROS topic; in this
way we provide robots with a virtual nest sensor. Once the food token is within
the gripper’s jaws, the e-puck robot rotates until it aligns with the nest’s centre.
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Fig. 7 Main data flows of the real-robot experiment setup. The use of the Vicon MX tracking
system and ROS infrastructure were two important features of the experimental setup, needed
to provide the robots with virtual sensing of the nest and amount of food collected. Tx refers
to ROS topics that were used in order to send information from the ROS main instance into
the robots. Rx refers to ROS topics used in order to receive information from the environment
and robots into the ROS system.

After this, the robot moves in a straight line until the edge of the nest is reached;
at that point the robot reverses, leaving the food token within the nest limits and
re-executing the Wait action. As soon as a food token is deposited within the nest,
it is then manually re-allocated to a new random location within the arena. In
this way, we are able to simulate random re-appearance of food within the arena
while maintaining the amount of available food constant. Each robot’s position is
fed into the ROS system through the camera-based tracking system VICON MX
(by Vicon Motion Systems Ltd).

Finally, each e-puck robot sends, through another ROS topic, the information
regarding the number of food tokens collected. An external ROS package calculates
the total amount of food at the nest at any time, accounting for the consumption
rate, and sends it to robots that are in Wait action near the nest; again this provides
robots with virtual sensing of the amount of food in the nest. It is assumed that
all robots executing the Wait action during the experiments outlined in Sections
2.3 and 2.4 are able to detect the exact amount of food at the nest. During the
real-robot experiments, due to the limited number of physical food tokens, the
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amount of food that robots detect at the nest is not represented by the number of
physical food tokens within the central circle (nest) of the arena.

It is important to note that despite using an external infrastructure for the real-
robot experiments, such as ROS shown in Fig. 7, the response threshold models
studied in this paper do not internally rely on any globalised transmitted informa-
tion. This external architecture is only a convenient means to provide robots with
virtual sensors, and thus the same sensor information as in our previous simulation
experiments (Castello et al., 2013, 2014). Therefore, these models can be regarded
as decentralised solutions to foraging processes.

2.4 Simulation experiments

In order to complement and extend the real-robot experiments outlined in Sec-
tion 2.3, we also conducted several simulation tests with similar conditions as
those described above. As in Castello et al. (2013) and Castello et al. (2014), all
simulation tests were conducted using the widely used open-source multi-robot
simulation library STAGE (Gerkey et al., 2003). Although STAGE does not sim-
ulate physics (and in particular dynamics), we argue that the low-speed operation
of real-robot experiments allows us to make direct comparison of results obtained
from real-robot and simulation experiments.

Fig. 8(a) is a screenshot of the simulation arena. The environment was setup as
a rectangular area of 2 × 1.5 square meters with a circle (50 cm in diameter) at the
centre, which represents the swarm’s nest. Solid dark rectangles within the arena
represent food tokens which were also randomly positioned at the beginning of each
simulation test. The polygons close to the swarm’s nest represent the simulated
robots used in these experiments. Fig. 8(b) depicts a typical simulation test in
which a team of robots conduct a foraging mission. The three different actions,
explained within Section 2.2, were implemented within the simulated robot units.
The robot’s color indicates the action being executed. Light coloured robots (Search
action) carry out a random walk until they sense a food token. Analogously to
real-robot experiments, once a food token is detected, dark coloured robots (Collect
action) collect the token and deliver it to the swarm’s nest. Finally, striped coloured
robots (Wait action) remain in standby near the nest.

Fig. 9 shows a closer view of the simulated robot structure and capabilities.
Each robot is composed of a differential steering drive model mounted under a
polygonal chassis with the following measures: 10 cm × 12.5 cm × 7 cm. These
measures correlate with the e-puck robots with the 3D printed gripper fitted. Each
simulated robot has 7 on-board IR sensors (S0, ..., S6) at different positions.

2.5 Performance measures

One of the most widely used performance indexes within swarm and multi-agent
division of labour tests is the average number of working robots (Nv) during the
mission:

Nv =
Nr∑
i=1

ti/TM (6)
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(a) Arena’s Screenshot

(b) robot swarm in the field

Fig. 8 (a) Screenshot of the foraging arena in the extended simulation tests. In it, various
robots (running the Wait action) gather around the nest (solid color circle) located at the center
of the simulated area. (b) Screenshot of several robots during a typical foraging mission. Light
coloured robots (Search action) perform a random walk until a food token is found. Dark
coloured robots (Collect action) approach the swarm’s nest in order to deposit an already
gathered food token. Lastly, striped coloured robots (Wait action) remain in standby near the
nest. Each one of the robots’ actions is explained in greater detail in Section 2.2.

where Nr denotes the total number of robots, ti denotes the total time when
robot i is working during the mission, and TM denotes the duration of the mission.
It is important to remark that smaller values of Nv imply that the mission was
conducted using a smaller number of robots and therefore less energy.

In this research, a working robot is defined as a robot that is not running
the Wait action. In such case, a robot is consuming energy either collecting food
tokens, or doing a random search looking for them. Smaller values of Nv indicate
that the mission was conducted using less energy and therefore carried out more
efficiently.

Moreover, the average deviation of food at the nest (Vf ) is also introduced as
a performance measure. Vf is defined as:

Vf =
TM∑
t=0

|F(t0) − F(t)|
TM

(7)
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Fig. 9 Diagram of the simulated robot shape and sensor layout. Robot’s size and features
correlate with commercial models for swarm and multi-agent systems research such as the
e-puck platform used in the real-robot experiments.

In (7), F(t) corresponds to the food level within the swarm’s nest at time t,
and F(t0) to the food level in the nest at the beginning of the foraging mission.
TM denotes the duration of the mission. Smaller values of Vf imply the foraging
mission was conducted maintaining food levels at the nest closer to the optimal
value F(t0), making the system more adaptive to the effects of external consumption
rates (Crate). The Vf measure takes into account not only the difference between
lower food levels at the nest compared to the optimal value (food scarcity), but
also food levels that exceed the optimal value (food overload). Vf was designed
in order to provide a suitable measure for possible future realisations of swarms’
nests such as electric power storage or mining collection hubs in which exceeding
the capacity of the system might lead to waste.

Lastly, Srate — the survival percentage of the system — is also considered as
a performance measure:

Srate =
N∑
i=1

Si
N

100 (8)

Si =

{
1 if F(t) ≥ 0

0 if F(t) < 0
(9)

where Si is equal to 1 in case the amount of food at the swarm’s nest remains
positive (F(t) ≥ 0) for the whole duration of experiment i and bound to 0 otherwise;
and N denotes the total number of experiments conducted. Greater values of Srate
indicate that robots were able to maintain positive food levels (F(t) ≥ 0) at the
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nest, and therefore survive, during the full-length of experiments in a larger number
of experiments.

3 Results

3.1 Real-robot results
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Fig. 10 Average results for five real-robot experimental runs. (a) Amount of food robots could
maintain at the nest for each different value of Crate applied during the experiments. (b) Nv

throughout the real-robot experiment time. (c) Fluctuation of θ throughout experiments.

A collection of experiments were carried out in order to analyse the behaviour of
both (FRTM and ARTM) models in real-robot scenarios. The following parameters
were used in all real-robot experimental runs: Nr = 5, D = 10, F(t0) = 5. The
threshold parameter θ was initialised to 3.3 (following the simulation experiments
conducted in Castello et al. (2013) and Castello et al. (2014)) for FRTM as well
as for ARTM (θ(t0) = 3.3). In addition, ∆ = 1 and α = 0.25 were used as DASM
parameters. During ARTM execution, θ was bound to the range (1 ≤ θ ≤ 10).
This integer n was randomly generated within a predefined range (2 ≤ n ≤ 9) and
remained fixed for the whole experiment for both methods. In addition, robots’
waiting timer was set to 1 second. Finally, each experimental run lasted 1200
seconds (20 minutes) and was divided into five stages — each 240 seconds long
— in which a different consumption rate (Crate) against the nest reserves was
applied.

Averaged results for five real-robot experimental runs are shown in Fig. 10. Fig.
10 (a) presents the different food levels robots were able to maintain at the nest
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Fig. 11 Average results and standard deviations for five real-robot experiments using the same
parameter set as in Fig. 10. (a) Vf — average deviation of food — and its standard deviation
(error bars). (b) Nv — average number of working robots — and its standard deviation (error
bars) during the five stages of the real-robot experiments. (c) Srate — survival rate — of the
whole system.

for the five different Crate (0.015 food tokens/sec, 0.030 food tokens/sec, 0.0075
food tokens/sec, 0.035 food tokens/sec and 0.025 food tokens/sec) applied for both
methods. As reported in Fig. 10 (a), ARTM could maintain a food level close to
its initial value (F(t0) = 5) and higher than FRTM’s level.

As reported in Fig. 10 (b), ARTM was able to activate more robots within
the initial stages of the experiments, such as the first (0.015 food tokens/sec) and
second (0.03 food tokens/sec) stages in order to balance the difference between
the current amount of food at the swarm nest (F(t)) and its initial value (F(t0)). In
stages where Crate was not so high, such as the third one (0.0075 food tokens/sec),
ARTM was able to activate fewer robots than FRTM in response to the lower
demands of the system, therefore optimising the swarm’s resources.

Fig. 10 (c) shows that within the first minutes of the real-robot runs, θ was
decreased in order to neutralise the increasing S(t), then suddenly increased due
to the very low or even absent S(t) because of the closeness to the F(t0) value,
making rules I and II within table 2 more predominant. When the second stage
(0.03 food tokens/sec) began, θ was decreased because of the increasing S(t) due
to the high Crate. In contrast, in the third stage of the experiments (0.0075 food
tokens/sec) θ was gradually increased due to a lower Crate. A similar behavior of
θ can be observed in the following stages of the experimental runs.

Fig. 11 presents the results of all performance measures defined in Section 2.5.
Fig. 11 (a) and (b) are split into five different stages, each one representing the 5
different levels of Crate used during the real-robot runs. In each one of these stages



Adaptive Foraging for Bio-inspired Robotic Swarms 19

a comparison between both methods’ values and their standard deviations (error
bars) is given.

Fig. 11 (a) shows the average deviation of food at the nest Vf for the whole set of
experimental runs. In all stages, Vf was higher for FRTM than for ARTM, showing
that ARTM has stronger adaptive capabilities as it maintains the food level (F(t))
at the swarm nest closer to its initial value (F(t0)). In addition, standard deviation
bars follow an increasing pattern for FRTM as the experiment progresses, showing
that FRTM produces very different food deviation values. In contrast, they remain
relatively small for the ARTM in all experimental stages. This phenomenon is
related to the different behavior against collisions shown by both division of labour
mechanisms, which will be explained in detail in Section 3.2.

Fig. 11 (b) shows the average number of working robots Nv for the whole set
of experimental runs. Overall, both methods resulted in a very similar averaged
Nv value (depicted with grey and black dashed lines) for the whole experiment
set, and therefore showed that no significant difference is seen in the number of
robots and energy employed by both methods.

Finally, Fig. 11 (c) shows the swarm survival rate Srate for the whole set
of experimental runs. ARTM’s survival rate (80%) was considerably higher than
FRTM’s (0%). This proves that a method that can dynamically modify its θ thresh-
old can also increase the system’s sustainability and thus its ability to cope with
real-robot noisy environments.

Figs. 10 and 11 confirmed the results presented during the preliminary simula-
tion stage of this research (Castello et al., 2013, 2014). However, FRTM performed
worse (resulting in 0% Srate) than the 24% reported in our previous works (Castello
et al., 2014). One of the reasons for this low performance might be the fact that
FRTM is not able to efficiently adapt to issues that arise in experiments with real
hardware, such as noisy sensor readings or collisions among robots. These con-
jectures are analysed in detail within Section 3.2 below. Confirming the results
reported in Castello et al. (2014), ARTM was able to obtain a very small average
deviation of food at the nest (Vf ) for the whole experiment, as well as to main-
tain a very similar average number of working robots (Nv) compared to FRTM.
Therefore, even though both division of labour mechanisms use similar amounts of
energy (Nv), they produce significantly different results in terms of food deviation
(Vf ) and survival rate (Srate).

3.2 Response to collision

Communication is one of the factors behind collision avoidance (Yared et al., 2007;
Liu et al., 2003). Therefore, in systems in which there is no explicit communica-
tion between robots, collisions are particularly problematic. In our experiments,
situations in which robots near the nest unintentionally block the path of incom-
ing robots trying to deliver food tokens to the nest (Fig. 12(a)) were especially
frequent. For instance, collisions take place when robots in the Wait action have a
very low n (very flat response curve), which makes them less likely to go foraging
and therefore more likely to block the path of other robots moving towards the
nest (Fig. 12(b)). Another example is when the Crate of the system is low and a
high percentage of the robots tend to remain idle at the nest, blocking the path
of the few working robots. The collision problem is especially serious when the
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(a) Collision preamble (b) Single Type Collision

(c) Multiple Type Collision (d) Collision Resolution

Fig. 12 Typical collision cases that occurs in real-robot experiments. (a) A collecting robot
goes towards the nest in order to deliver some food, while a waiting robot is blocking its path
to the nest. (b) A single collision blocks a collecting robot. The waiting robot is not affected
since it is inactive. (c) Several robots collide with each other causing a “multiple collision”.
(d) Collisions are typically resolved when the waiting robot involved is activated for foraging.

swarm’s nest is running out of food (high S(t)) and smooth and efficient foraging
is required to restock the nest.

For this reason we considered it important to analyse the duration and number
of robots’ collisions close to the nest (1 m from the nest’s center).

It is important to note that neither ARTM or FRTM have a clear strategy for
how to conduct proper collision avoidance (there is no path planning or commu-
nications among robots in Fig. 2). However, our results suggest that even though
ARTM has no influence on the number of robot collisions during experiments (Fig.
13) it is better able to compensate for their duration (Fig. 14). Latter sections of
Fig. 14 show a pronounced collision duration time for FRTM while ARTM shows
a shorter collision duration time, resulting in a more efficient system.

The explanation for this phenomenon is that even though ARTM per se does
not know if robots have collided near the nest, as the result of θ adaptation, cases
in which F(t) is low at the nest result in θ being decreased accordingly. Robots in
the Wait action are then more likely to go foraging, therefore unblocking the path
faster (Fig. 12(d)). This leads to a large difference in the total time each robot is
stuck and unproductive during the whole foraging process (32 seconds average for
ARTM vs. 187 seconds average for FRTM).
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Fig. 13 Number of collisions in real-robot experiments. The figure shows the average number
of collisions and its standard deviation for each section of the real-robot experiments. No
pattern can be observed in the figure.
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Fig. 14 Collision duration in real-robot experiments. The figure shows the average time
needed to resolve one collision in each experimental stage of the real-robot experiments and
its standard deviation. ARTM can resolve collisions in less time, making the system more
adaptive, and hence better for real-robot application.

One of the worst-case scenarios involving collisions is when multiple robots
collide near the nest (Fig. 12(c)). This case is especially important, since it can
disable a large number of robots, making it extremely difficult for the swarm to
meet the demands of the different Crate applied — as a consequence the swarm
arrives earlier at the condition of no food in the nest (Si = 0).

Fig. 15 shows the number of multiple collisions (three or more robots involved)
in real-robot experiments. Despite the fact that neither FRTM nor ARTM have
control over the number of these types of collision, FRTM shows an increasing col-



22 Eduardo Castello et al.

0.015 FT/sec 0.030 FT/sec 0.0075 FT/sec 0.035 FT/sec 0.025 FT/sec
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Experiment sections

N
u

m
b

e
r 

o
f 

m
u

lt
ip

le
 c

o
ll

is
io

n
s

 

 

FRTM

ARTM

Fig. 15 Number of multiple collisions in real-robot experiments. The figure shows the average
number of multiple collisions and its standard deviation for each section of the real-robot
experiments. No pattern can be observed in the figure.
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Fig. 16 Multiple collision duration in real-robot experiments. The figure shows the average
time needed to resolve one multiple collision. ARTM can resolve multiple collisions in less time,
making the system more adaptive to the real-robot environment.

lision duration towards latter stages of the experiments. This increase in collision
duration implies that once a multiple collision has started (especially within the
stages with a high Crate) it is very difficult to resolve. In contrast, ARTM’s ten-
dency fluctuates, not having a clear pattern during the set of experiments shown
in this paper. This phenomenon suggests that ARTM is able to resolve collisions
in less time than FRTM, which produces a progressive increase in the collision
duration (from the 3rd section onwards) as shown in Fig. 16.
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3.3 Extended simulation analysis

3.3.1 Distribution of n

In order to understand more deeply the reasons behind ARTM’s performance and
the poor results of FRTM, we decided to study the distribution of the n variable,
which, as described before, is randomly generated for each robot from a predefined
range.

As given in equation (2) and Fig. 1, n determines the slope of the response
curve Pf for each robot. Usually, n is randomly generated for each robot using a
uniform distribution from a predefined range of positive integers (2 ≤ n ≤ 9 in
this research) in order to make robots have different response curves and therefore
react differently to the same stimulus S(t).

Fig. 17 (a) Living time (Ltime) of the 100 simulations using FRTM as division of labour
mechanism and conducted using the parameters described in Section 2.4. (b) The same simu-
lation experiments as in (a) ordered by living time in a descending manner.

Fig. 17 (a) shows the living time (Ltime) of 100 simulations using FRTM as
division of labour mechanism and conducted with the same parameters described
in Section 2.4. Ltime is defined as the point in time when robots were not able to
maintain a positive food level (F(t) ≥ 0) in the swarm nest, causing that specific
simulation to “die” (Si = 0). In this figure, successful simulations (Si = 1) have a
Ltime value equal to the total simulation time (20 minutes for these experiments).

Fig. 17 (b) shows simulations’ living time ordered in a descending manner.
Different patterns in the figure indicate the clusters in which the simulation “died”,
where white, striped grey, grey and dark grey consecutively represent the first,
second, third and fourth quarters of the simulation time. Simulations that were
able to survive during the whole simulation time (Si = 1) have a Ltime value equal
to the total simulation time and are depicted in black.
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(c) 3th quarter
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(d) 4th quarter
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Fig. 18 Normalised n distribution for the simulations that (a) “died” within the first 5 minutes
of the simulation time; (b) “died” within the second 5 minutes of the simulation time; (c) “died”
within the third 5 minutes of the simulation time; (d) “died” within the fourth 5 minutes of
the simulation time; (e) that remained “alive” during the whole simulation time.

Fig. 18(a) to Fig. 18(d) show the different normalised histograms2 for n for
each of the quarters shown in Fig. 17 (b). From the histograms we can conclude
that simulations which “died” earlier have a strong tendency of robots with low n

(2 ≤ n ≤ 4). This effect makes more robots have a “flatter” response curve causing
a delay in their foraging activity.

As we explore the n distribution of other quarters, the n distribution turns out
to be more uniform with a slight tendency towards higher numbers (Fig. 18(d)).

Fig. 19 shows that there are substantial differences between the histograms of
successful (Fig. 18(e)) and early dying simulations (Fig. 18(a) and Fig. 18(b)),
which suggests that low n value distributions give poor survivability due to their
weak response to S(t).

Therefore, we decided to test the survival capabilities of restricted values of n.
Fig. 20 confirms that lowering the upper boundary of the n range has an effect on
the Srate of FRTM, achieving only a 17% Srate when n is restricted to 2. However,
restricted values of n do not affect ARTM, which can maintain a remarkably high
Srate in all cases.

Results presented in Fig. 20 suggest that the dynamic calculation of θ gives
the possibility of overcoming a lower and potentially “inconvenient” n distribution.

2 Sum of the heights equal to 1
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Fig. 19 Each bar represents the χ2 distance between the histogram of successful simulations
(Fig. 18(e)) and the correspondent simulation quarter (Fig. 18(a)-(d)). The χ2 distance in-
creases when lower quarters are compared, suggesting that certain n configurations have a
strong impact on FRTM’s survival capabilities.
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Fig. 20 ARTM and FRTM survival rates (Srate) measured after 100 simulations runs for
each experimental condition. FRTM decreases its performance when n is restricted to ranges
with lower values, while ARTM maintains its performance regardless of the used n range.

However, if we increase the value of n in order to make robots more responsive,
while we keep θ fixed, FRTM can only reach a 70% Srate. Given these results,
it is possible to outline a simpler method for ARTM in which n is fixed or even
non-existent.

4 SARTM - Simple Adaptive Response Threshold Model

Figs. 20 and 18 show that the distribution of n has a major impact on the survival
rate of swarms in the case of FRTM. However, even when we restrict the n distri-
bution in both directions (lower and upper), ARTM can still adjust the θ threshold
accordingly and preserve a high Srate. This phenomenon suggests that a simpler



26 Eduardo Castello et al.

model, in which the effects of inconvenient n distributions are avoided, is possible
if the θ threshold is adjusted properly. In SARTM (Simple Adaptive Response
Threshold Model), Pf is defined as a simple step function on the θ threshold and
the n variable is not present:

Pf =

{
0 if S(t) < θ

1 if S(t) ≥ θ
(10)
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Fig. 21 Average results for 30 simulation tests. (a) Amount of food robots could maintain
at the nest for each different value ofCrate applied during the simulation experiments. (b) Nv

throughout the simulation experiment time. (c) Fluctuation of θ during the experiments.

In order to compare the performance of SARTM — defined in equation 10 —
we conducted 30 extra simulation experiments comparing SARTM against ARTM
when n is fixed to the lower (n = 2) and upper (n = 9) boundaries of the range used
through the paper. Fig. 21 and Fig. 22 show the averaged results of 30 simulations
conducted with the parameters explained in Section 2.4. Fig. 22 (a) and 22 (b)
show that SARTM can activate the same low number of working robots (Nv) as
the best version of ARTM (ARTM n = 9) as well as achieve the same low average
deviation of food (Vf ).

Finally, Fig. 22 (c) shows Srate results for the three compared models. SARTM
results in a very similar Srate level (95%) compared to both versions of ARTM:
93% for n = 2 and 96% for n = 9. These results demonstrate that the dynamic
calculation of the θ threshold could produce comparable results to ARTM based
methods with a simpler response function such as the step function proposed in
equation (10).

It is important to remark that even though Pf is equal to 1 according to
equation (10), not all robots are activated at the same time when SARTM is used.



Adaptive Foraging for Bio-inspired Robotic Swarms 27

0.015 FT/sec 0.03 FT/sec 0.0075 FT/sec 0.035 FT/sec 0.025 FT/sec
0

1

2

3

4

N
v

 

 ARTM n=2 N
v

ARTM n=9 N
v

SARTM N
v

ARTM n=2 AVG N
v

ARTM n=9 AVG N
v

SARTM AVG N
v

0.015 FT/sec 0.03 FT/sec 0.0075 FT/sec 0.035 FT/sec 0.025 FT/sec
0

1

2

(a)

V
f

 

 

ARTM n=2 V
f

ARTM n=9 V
f

SARTM V
f

ARTM n=2 AVG V
f

ARTM n=9 AVG V
f

SARTM AVG V
f

ARTM n=2 ARTM n=9 SARTM
0

20

40

60

80

100

(c)

S
r
a

te
 (

%
)

 

 

ARTM n=2 S
rate

ARTM n=9 S
rate

SARTM S
rate

(b)

Division of labour mechanisms

Fig. 22 Average results and standard deviations for 30 simulation tests using the same pa-
rameter set as in Fig. 21. (a) Vf — average deviation of food — and its standard deviation
(error bars). (b) Nv — average number of working robots — and its standard deviation (error
bars) during the five stages of the simulation experiments. (c) Srate — survival rate — of the
whole system.

The Wait action (Fig. 2) guarantees that robots are triggered at different times,
since by the time a robot’s waiting timer expires, other working robots might
have already lowered the S(t) value, fulfilling the (S(t) < θ) condition according to
equation (10) and thus inhibiting the activation (Pf = 0) of that specific robot.

4.1 Robustness against sensor noise

A supplementary set of simulation experiments was carried out in order to anal-
yse the behaviour of SARTM and FRTM in the presence of faulty sensor readings.
Previous sections were useful in order to explain the fundamental differences re-
garding both methods and their performance levels. However, all these sections
assumed that robots were able to sense, explicitly and without errors, the exact
amount of food F(t) at the nest in order to calculate their corresponding response
curves.

In more realistic scenarios, robot sensors are likely to suffer from noisy or faulty
readings, leading to incorrect estimates of the environment and hence unexpected
robot behaviours. F(t) then becomes: F(t) = F(t) + g(µ, σ), where g(µ, σ) is a ran-
dom value following a normal distribution perceived by the robots while executing
the Wait action near the nest. µ is the mean of the normal distribution and σ

its standard deviation. In order to test the robustness of both methods against
noise, we assigned σ a relatively high value — around 1.5 times higher than the
highest consumption rate — Crate — value used in these experiments: 0.035 food
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tokens/sec. Fig. 23 and Fig. 24 show the results obtained after conducting 20 sim-
ulations for each model, with the same parameter settings introduced in Section
3 and with a noise distribution characterised by µ = 0 and σ = 0.05.
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Fig. 23 Average results over 20 simulation runs in which a Gaussian noise component —
g(µ, σ) — has been added to the perceived food levels by robots — F(t). (a) Amount of food
robots could maintain at the nest for each different value of Crate applied during the exper-
iments. (b) Nv throughout the simulation experiment time. (c) Fluctuation of θ throughout
experiments.

According to Fig. 23 (a) an adaptive response threshold model such as SARTM
is still able to maintain higher food levels at the nest than FRTM and therefore
improve the swarm’s survival rate, see Fig. 24 (c). Even though these results
correlate to already presented results in which perfect readings were available, one
of the main differences with previous experiments is the increase of the average
value of the θ threshold for SARTM. In Fig. 21 (c) — where no noise was involved
— the average θ value for SARTM was 3.15, while in Fig. 23 (c) the average value
of θ was able to reach 3.6. This effect suggests that the addition of noise in the
food sensor readings might increase the average θ threshold values, especially if σ
is larger than the Crate currently active at the nest, since the effect of noise might
cancel the action of the current Crate. As explained previously, the adjustment
of the θ threshold has a major impact on the Srate values achieved by adaptive
response threshold algorithms (Fig. 20). For this reason, we decided to measure
the survival rates — Srate — of robot swarms using SARTM and different noise
distributions.

In Fig. 25, two bar groups can be seen. Each bar represents the survival rate
achieved over 20 simulation runs. The first group represents simulations conducted
with FRTM as division of labour mechanism and the latter group with SARTM.
In each group, the first bar represents simulations with µ = 0 and σ = 0.05, the
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Fig. 24 Average results and standard deviations for 20 simulation experiments using the same
parameter set as in Fig. 23. (a) Vf — average deviation of food — and its standard deviation
values (error bars). (b) Nv — average number of working robots — and its standard deviation
values (error bars) during the five stages of the simulation experiments. (c) Srate — survival
rate — of the whole system.

second µ = 0 and σ = 0.10 and the third µ = 0 and σ = 0.25. As can be seen in
Fig. 25, FRTM shows low levels of survivability in all cases, and the increasing
amount of noise does not produce a significant change in the bars’ progression.
This is possible due to the fixed threshold nature of FTRM, since noise is only able
to affect the calculation of the stimulus — S(t) — value. However, the SARTM
group shows a clear reduction in the survival rate — Srate — levels as we increase
the noise level. This is due to the fact that increasing the amount of noise in
food readings cancels and even counter-balances the effect of the current Crate.
Therefore, as we increase the amount of noise in a robot’s food sensing capabilities,
the average θ threshold also tends to increase. Fig 25 shows that as we increase
the noise magnitude in the food sensor readings, we obtain a higher average θ

threshold.
As explained in previous sections, models such as ARTM and SARTM can

adapt more easily to changes in the environment and dynamical situations than
their fixed thresholds counterparts. However, the addition of noise in the stimulus
sensing — in this case food levels at the nest — might lead not only to incorrect Pf
values but also to noisy θ threshold values affecting the efficiency of the adaptive
algorithms proposed.

5 Discussion

Although FRTM and ARTM were tested under the same conditions, there are
clear differences in their ability to adapt to the environmental conditions in real-
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each experimental condition. SARTM decreases its survivability as the food sensor noise is
increased. The addition of noise distributions with higher σ produce an increment in the
average θ threshold.

robot experiments. Firstly, there is a difference in the average level of food each
method can maintain at the swarm nest (shown with discontinued lines in Fig. 10
(a)). Fig. 10 (a) clearly shows that our proposed method is able to adapt better to
different consumption rates and therefore maintain food values at the nest closer
to its initial level F(t0).

Secondly, the optimised division of labour achieved by ARTM leads to a clear
improvement on the survival rate (Srate): our proposed method is able to obtain
(80%) compared to FRTM (0%) in real-robot experiments.

Moreover, the fact that ARTM can influence the collision duration (32 seconds
average for ARTM vs. 187 seconds average for FRTM) gives an additional and
unexpected advantage, especially under real-robot conditions, for ARTM against
FRTM.

Goldberg and Matarić (1997) show that having a homogeneous population of
robots allows reducing the average task execution time, which is a crucial element
in time-critical foraging (i.e when robots’ power is time-limited or the items to
be collected must be disposed of as soon as possible). However, this brings as a
drawback an increase in the collision time (called interference time in Goldberg
and Matarić (1997)). In this paper, we show that the effect of this kind of drawback
can be reduced by simple modification of the original FRTM algorithm. ARTM
demonstrates adaptation and good performance even in real-robots environments.
In other words, we saw an example of this automatic adaptation for the specific
case of collision duration (Fig. 14 and Fig. 16).

In addition, by identifying the relevance of the n distribution in Response
Threshold Models we are able to spot and explain the effects of n within the
foraging process for these kind of models. Based on the results depicted in Fig.
18, and in particular in Fig. 18(a), the performance of a robot swarm can be
compromised if the values of n assigned to the robots are too homogeneous, as
becomes very clear observing the capacity of the system of keeping a positive
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amount of food in the nest (Fig. 20). This phenomenon is clearly more likely to
occur for a low number of robots. Indeed, by the law of large numbers, as the swarm
size increases the probability of obtaining uneven distributions of n decreases, and
thus performance improvement with increasing number of robots can be expected.
This paper uncovers and proposes the possibility of creating a simplified labour
division model, in which the consequences of an “inconvenient” n distribution —
even for very small swarm sizes — could be avoided.

SARTM opens a new path towards achieving important capabilities for bio-
inspired robotics such as adaptation to dynamic environments and self-sustainability.
These capabilities are believed to have a crucial role in future applications of swarm
and multi-agent systems, such as smart manufacturing (Bolmsjö et al., 2012), in-
frastructure maintenance (Morozovsky and Bewley, 2013), or medical applications
using micro-scale robots (Suter et al., 2013).

On the other hand, the results presented in Section 4.1 show the dependency
of SARTM to a certain quality of sensor readings in order to perceive the robot’s
stimulus. Even though adaptive methods such as SARTM can keep good surviv-
ability levels in the presence of “moderate” noise distributions, their survival rates
decrease as the error in their readings becomes larger. SARTM and ARTM do not
only rely on stimulus values to calculate response curves such as fixed methods
do, but also on the fine adjustment of their θ thresholds, which makes them espe-
cially vulnerable to this kind of issue. A possible solution to this problem might
be to include a Kalman filter or other form of filtering system in order to cancel
the stimulus reading noise and make robots using ARTM/SARTM more robust
against these kind of situations.

6 Conclusions

This paper presented a division of labour algorithm for a simple foraging task that
acts to maintain a target amount of food at the nest despite consumption rates that
vary over time. It has been shown to be efficacious in achieving adaptive workload
distribution for a small size robot swarm. Real-robot and simulation experiments
confirm that ARTM is able to adapt the number of active robots, increasing the
system’s survival rate (Srate) in highly dynamic foraging missions. Moreover, it
was shown that ARTM reduces a common problem of real-robot experiments in
swarm robotics, i.e., the duration of collisions among robots. Finally, SARTM,
a simplified version of ARTM, was proposed in order to improve the adaptation
and emergent capabilities of robotic swarms in which the response threshold is
calculated dynamically. The simplicity of this new algorithm makes it a good
candidate as a basis of more advanced algorithms. As future work, we will focus on
an improved version of SARTM, which can better cope with noisy sensor readings.
This extended new model is intended to be employed in multi-nest scenarios within
bigger arenas where different swarm sizes and food densities will be studied.
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