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Abstract
The electrical energy grid is currently experiencing a paradigm shift in control. In the 
future, small and decentralized energy resources will have to responsibly perform control 
tasks like frequency or voltage control. For many use cases, scheduling of energy resources 
is necessary. In the multi-dimensional discrete case–e.g.,  for step-controlled devices–this 
is an NP-hard problem if some sort of intermediate energy buffer is involved. Systemati-
cally constructing feasible solutions during optimization, hence, becomes a difficult task. 
We prove the NP-hardness for the example of co-generation plants and demonstrate the 
multi-modality of systematically designing feasible solutions. For the example of day-
ahead scheduling, a model-integrated solution based on ant colony optimization has 
already been proposed. By using a simulation model for deciding on feasible branches, 
artificial ants construct the feasible search graphs on demand. Thus, the exponential growth 
of the graph in this combinatorial problem is avoided. We present in this extended work 
additional insight into the complexity and structure of the underlying the feasibility land-
scape and additional simulation results.

Keywords  ACO · Predictive scheduling · Smart grid · Constraint-handling

1  Introduction

The share of large, mostly fossil-fueled power plants is constantly declining. Thus, respon-
sibility for the safe operation of the electric power grid has to be transferred to small and 
volatile renewable energy resources that are replacing conventional plants (Farhangi 2010). 
The desired growth in the share of cleaner energy resources, on the other hand, entails new 
challenges for control strategies within the grid. Meanwhile, solutions are in place for dec-
ades for finding an optimal assignment of generation schedules for traditional power plants 
(Kerr et al. 1966; Lowery 1966; Sheble and Fahd 1994; Padhy 2004). Renewable energy 
resources are small and volatile by nature. Individual and hardly generalizable operational 
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constraints render similar scheduling tasks and proper modeling of flexibilities way more 
challenging for renewables (Bremer et al. 2011; Su et al. 2013; Förderer et al. 2018).

Different types of scheduling tasks frequently occur in the smart grid. Among others, 
such tasks comprise predictive/day-ahead scheduling like planning production based on 
forecasts for the next day. Ancillary services for power conditioning and supply security 
like voltage or frequency control are another example (Saboori et  al. 2011; Nieße et  al. 
2012). Day-ahead scheduling tasks in applications for the future smart grid have been 
investigated for years and many solutions are available. Most of these solutions are only 
suitable for devices in which the power control is non-discrete. Many solutions are further-
more limited in the number of periods that may be considered.

A problem arises when devices with some (e.g.,    thermal) storage are considered for 
time-ahead scheduling, especially if they can only be controlled by step-control. Step-con-
trol allows altering power output–or input respectively–in a few discrete steps (power lev-
els). Many devices may even be limited to be switched on or off only. An attached thermal 
buffer store with naturally limited capacity constraints the choice of possible power levels 
in each time interval. The limitation in each time interval also depends on power level deci-
sions for previous time intervals; at least for a recent subset of intervals. Due to this entan-
glement, the decision for a specific time interval cannot be made independently from the 
other decisions. A special case of such a constrained discrete scheduling problem has been 
proven to be NP-hard (number of planned time intervals) even for a single device (Bremer 
2006). Another problem is the non-separability in the time domain. Schedules may not be 
optimized for each time interval individually due to the dependency of the different search 
space dimensions; possible choices depend on previously taken decisions (e.g.,  minimum 
down time). Thus, scheduling here always needs to be treated as a multivariate optimiza-
tion problem.

In (Bremer and Lehnhoff 2020b), ant colony optimization (ACO) (Dorigo and Di Caro 
1999; Dorigo et al. 1999; Dorigo and Stützle 2003) has been applied to solve the problem 
of finding an optimal schedule for a given energy resource under model-predicted techni-
cal operational constraints. Different objectives defining optimality are supported. As an 
example, the optimality of an operation schedule may be calculated by integrating over 
the product of generated electricity and some given energy prices or by the similarity to 
(correlation with) some targeted generation profiles. Time-varying energy tariffs and load 
balancing are two traditional examples (Faria and Vale 2011; Wedde et al. 2008).

Ensuring the feasibility of solutions found by new control algorithms is crucial for a 
wide acceptance by different stakeholders in the energy domain (Bremer and Lehn-
hoff 2016). This holds especially true if heuristics are used. We extend the findings from 
Bremer and Lehnhoff (2020b) by a landscape analysis of the constraint-handling part. Fit-
ness landscape analysis is a tool for scrutinizing the structure and characteristics of–espe-
cially, non-linear–optimization problems in advance (Watson 2010). Reformulating con-
straints to make them quantifiable allows an adoption of techniques from fitness landscape 
analysis to scrutinize non-linear constraints and the related difficulty of ensuring the feasi-
bility by design. Designing solution candidates (operation schedules in this case) that are 
provably feasible in advance, on the other hand, guarantees feasible solutions and enables 
optimization with anytime property; meaning that heuristics return the best-so-far feasible 
solution whenever they are stopped. As many real-world problems need to adhere to some 
given deadline, this is an important property for heuristics.

The rest of the paper is organized as follows. The paper starts with a brief overview of 
related work concerning the continuous problem version. After formalizing the discrete 
problem and proving single device NP-hardness using the example of co-generation, a 
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landscape analysis of the concurrent problem of ensuring the feasibility is conducted. We 
recap the proposed solution based on ant colony optimization with the integrated simula-
tion model from Bremer and Lehnhoff (2020b) and present some additional results.

2 � Related work

Within the future smart grid, many use cases will require the adaptation of operation, espe-
cially of small-sized energy resources to some given electric production or consumption 
profile (Ramchurn et al. 2012; Behrangrad 2015; Ruiz-Romero et al. 2014). In this way, 
a schedule has to be determined for a controllable energy resource. The term schedule 
often refers to a real-valued vector x ∈ ℝ

d with each element xi denoting the mean active 
power (or equivalently the amount of energy) generated or consumed during the ith time 
interval. Negative values denote consumption. In the discrete step-control case, a schedule 
x ∈ ℕ

d will denote the indices of the respective power levels (operation modes)–with zero 
denoting off-setting. Exemplary use cases are demand-side management (Gellings and Par-
menter 2016), microgrid control (Nosratabadi et al. 2017), demand response (Palensky and 
Dietrich 2011), or virtual power plants (Saboori et al. 2011).

To provide the necessary flexibility for grid operation, adaptive behavior will be neces-
sary for generation units like small co-generation plants, for controllable consumers like 
cool storages, as well as for prosumers like batteries. Applications comprise decentralized 
production planning, ancillary services like frequency or voltage control, virtual power 
plants, micro-grid control, or grid-compliant charging of electric vehicles (Lu et al. 2018; 
Baharlouei and Hashemi 2013; Deng et al. 2015; Mukherjee and Gupta 2014; Ramchurn 
et al. 2012). Orchestration of decentralized energy resources might be achieved by direct 
control or by indirect control via incentives like varying energy prices (Khan et al. 2016; 
Sonnenschein et al. 2006). Both cases can be attacked with the same algorithm.

The number of algorithms applied to (in-house) energy management problems is numer-
ous, but solutions to devices with step-control are scarce (Beaudin and Zareipour 2015). 
Many approaches consider only continuous power level variations; examples can be found 
in (Boynuegri et  al. 2013; Koch et  al. 2009). In (Capone et  al. 2013), an example with 
binary decision variables and a mixed integer non-linear program can be found, but with-
out including appliances with storage constraint characteristics. In contrast, for the con-
tinuous case, several solutions are available that have been designed to handle constraints 
imposed by some integrated buffer stores, for example, by decoders as constraint-handling 
technique (Bremer and Sonnenschein 2013). Examples are given in (Bremer and Lehnhoff 
2016; Li et al. 2017; Yu et al. 2013; Bremer et al. 2009). We will now consider the step-
control case that constitutes the discrete optimization problem. A good overview can also 
be found in (Beaudin and Zareipour 2015).

Dethlefs et al. (2015) presented an ant colony-based solution to a closely related combina-
torial problem. The authors propose a solution for finding discrete starting times for shiftable 
loads in demand-side management. A solution to the step-control case with discrete power lev-
els is given in (Hinrichs et al. 2014; Hinrichs and Sonnenschein 2017). The problem is solved 
with an agent-based approach. Each agent represents the flexibility of its controlled energy 
resource by a fixed set of a priori model-predicted schedules. The problem is then treated as a 
(distributed) constraint optimization problem. This approach does not consider large portions 
of the real flexibility of the energy resources as it uses just a small subset of example instances. 
Bremer and Lehnhoff (2020b) integrated the prediction model directly into the algorithm and 
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hence harnessed the full potential and flexibility of the controlled energy resource. Applica-
tions of more recent ant systems like the max-min ant system (Stützle and Hoos 2000) within 
the smart grid domain are rather scarce. An example for energy savings within the transport 
sector is given in (Ke et al. 2009).

Most works propose using heuristics as an appropriate means for attacking scheduling 
problems within the smart grid. In (Nieße et  al. 2017), a systematic analysis of the occur-
rence of local minima for decentralized predictive scheduling problems has been conducted. 
The used approach of fitness landscape analysis is especially suitable for analytically difficult, 
non-linear objectives, decentralized problems, or complex relations between objective and 
constraints. Different approaches for fitness landscape analysis can be found in (Pitzer and 
Affenzeller 2012; Watson 2010). Surprisingly, not many a priori studies on practical problems 
are published. Some examples can be found in (Tavares et al. 2008; Rapp 2019; Nieße et al. 
2017).

We applied fitness landscape analysis to scrutinize the complexity of ensuring the feasibil-
ity of solutions. Feasibility by design in energy management can also be achieved by meta-
modeling the flexibility as a multi-dimensional state space of feasible operations of an energy 
resource. Examples of machine learning-based a priori modeling can be found in (Bremer 
et al. 2011; Schiendorfer 2014; Bremer and Sonnenschein 2013; Förderer et al. 2018; Förderer 
and Schmeck 2019; Pinto et al. 2017). Although being quite accurate, guarantees cannot be 
given by any stochastic approach. In addition, these methods often cannot guarantee a full 
coverage of the complete flexibility.

3 � Problem statement

The problem from the smart grid domain that we consider here has some specific characteris-
tics that make its solution hard. Thus, we first analyze these characteristics.

We start by explaining the underlying planning problem from the smart grid domain, which 
is to find an operation schedule for a given energy device. Such schedule for some given, 
future planning horizon denotes the operation of the device such that individual constraints are 
satisfied and some given goal is met. Often, such a schedule is given as a real-valued vector 
denoting the mean generated or consumed power during the respective time interval. A typical 
scenario comprises 96 dimensions for all 15-minute intervals of a day. Several solutions exist 
for the real-valued case. We extend the planning problem to the case of step-controlled devices 
with discretized power output levels.

When the planning procedure starts, the following information is available: starting time t0 , 
the initial operational state of the device at t0 , and some cost c1,… , cd for d discrete time inter-
vals T = {T1,… , Td} (not necessarily equidistant). For the period of one-time interval, costs 
are considered constant. Examples are monetary costs for electricity given by time-varying 
prices, or set points given by some external smart grid control strategy (Sarstedt et al. 2019). 
In the latter case, costs are defined by the deviation from the desired energy feed-in.

The step-controller of a device may choose among a limited number of m discrete power 
levels P = {P1,P2,… ,Pm} denoting operated mean active power, for the duration of each 
time interval. The relation between power levels and the index of the operation mode is given 
by a device-specific mapping

(1)� ∶ ℕ → ℝ, �(ui) ↦ Pi, where ui ∈ {1,… ,m},Pi ∈ P;
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Negative values for active power (as a result of � ) are allowed and denote consumption 
instead of generation. With this we follow the active sign convention from electrical engi-
neering for defining the sign of electric power in an electric circuit (Goswami 2004). We 
do not consider switching of power levels during a time interval. Equivalently, to mean 
active power, the amount of energy consumed or produced during Ti could be used instead. 
Ti denotes the ith time interval from time ti−1 to time ti . Time ti denotes the absolute time.

Controlling devices with some integrated (energy) storage like cooling devices, batteries, 
co-generation plants, or similar lead to a dependency of possible choices at later planning 
intervals on previous choices, but allow on the other hand for additional flexibility. Let R be 
the controlled variable, e.g.,  the state of charge of a thermal buffer store (represented by the 
temperature), controlled by heating through a co-generation plant and disturbed by thermal 
demand and hot water usage. Keeping R close to the set point or at least within an allowed 
range may be achieved with different operation schedules, as heat can be intermediately stored 
in the buffer store. In this case, the temperature within the thermal store may vary within a 
given range. In general, operation modes for a co-generation plant have to be chosen in a way 
that for every point in time: R ∈ [Rmin,Rmax].

Which operation modes PTi ⊆ P specifically are possible during time interval Ti depends 
on the operational state of the device at the beginning of an interval Ti and thus depends on the 
previous operations. PTi denotes the set PTi = {Pi ∈ P|(RTi−1 ⊕ PTi ) ∈ R} , where ⊕ denotes 
the operation that determines RTi in interval i from RTi−1 and operated power (if not given by 
the initial state) and from the chosen operation mode. R denotes the set of all feasible values 
of R and depends on the technical specification of the controlled device.

When looking at a single device, the problem can be defined as follows. Assuming constant 
power input (or feed-in) the amount of energy consumed or generated during time interval Ti 
is given by Ei = �TiPi , with �Ti = ti − ti−1 . With this notation, we are open to future scenarios 
with different operational and pricing time intervals with different and unequal lengths. Thus, 
the cost for the whole planning horizon of a single device is given by:

In case all intervals have the same length � , the objective function for g concurrently 
controlled devices can be simplified and expressed with operation mode schedules 
x ∈ {1,… ,m}d:

with ◦ denoting the Hadamard product. Fi denotes the feasible region specific to the ith 
energy resource and with respect to individual technical restrictions; xi denotes the opera-
tional mode schedule of the ith device.

In the following, we consider only cases with equidistant time intervals, and if not stated 
otherwise, with a single device. Constraints are given by the controlled variable R that has 
to stay within the given range:

A set of device-specific operational constraints further restrict possible operations. Exam-
ples of such constraints are: the allowed power range, buffer restriction, min./max. on/off 
times, or ramping (Bremer and Lehnhoff 2020a; De Angelis et al. 2013; Nieße et al. 2016).

(2)C =

d∑
i=1

�TiP
Tici.

(3)argmin
xj∈Fj

�

g∑
i=1

�i(xi)◦ci = argmin
xj∈Fj

g∑
i=1

�i(xi)◦ci,

(4)PTi ∈ PTi ∧ RTi ∈ R ∀ 1 ≤ i ≤ d.
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For each time interval, an assignment of electrical power has to be found such that the 
controlled variable R stays within the allowed range and technical, operational constraints 
are fulfilled. In the case of a co-generation plant, R relates to the buffer store temperature. 
Due to the interconnection (induced by the buffer) of possible power levels in each time 
interval, they cannot be chosen independently. Each subset of possible feasible power lev-
els for time interval Ti depends (in the worst case) on all choices for T1,… , Ti−1 . This is the 
major reason for the computational complexity, not the (rather simple) objectives. For the 
special case of in-house energy management and a two-step controlled single fridge, the 
problem has shown to be NP-hard with the growing planning horizon (Bremer 2006).

4 � Complexity analysis

When examining the complexity of the scheduling problem and the proposed solution, we 
have to distinguish between actual scheduling and ensuring the feasibility by design. The 
complexity of the scheduling problem can be analytically attacked. The operations for con-
structing feasible solutions, on the other hand, involve individually parameterized simula-
tion models with unknown starting conditions. Thus, we split examinations and start with a 
formal analysis of the NP-hardness of the scheduling part prior to a fitness landscape anal-
ysis of the feasibility part. The feasibility analysis cannot be derived formally and needs 
simulation to evaluate the feasibility.

4.1 � Scheduling complexity

The scheduling problem sketched above is NP-hard already for a single device; with the 
problem, size depending on the number of intervals in the planning horizon. NP-hardness 
has already been proven in the case of a fridge (Bremer 2006). In the context of a co-gener-
ation plant with the attached thermal buffer store used in this study, the NP-hardness of the 
problem can be derived as follows.

As a model, we used a simulation model that takes an electric schedule and calculates 
the temperature profile within the buffer store by repeatedly evaluating a difference equa-
tion derived from a differential equation describing the physical model. The feasibility of 
the electric schedule is determined by checking different technical constraints: the allowed 
temperature range, minimum on and off times, ramping, allowed electric power range, and 
fulfillment of heat demand.

Proof  For showing NP-equivalence of the scheduling problem, NP-completeness of the 
related decision problem has to be demonstrated. We define the decision problem SATCHP 
as follows:

Given: a vector of fixed individual costs c for each time interval, a value for the total 
cost ctot , and an instance of the scheduling problem for a co-generation plant.
Question: does any combination of feasible power levels exist such that for the total cost 
ctot = �

∑d

i=1
PTici holds?

In a first step, we show that ������ ∈ NP . It can be easily seen that this is the case: An 
assignment B = (v1,… , vd) of power levels to the d time intervals (with vi ∈ P ) can be 
guessed in polynomial time; actually in O(d) . Checking whether this non-deterministically 
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found assignment is a solution to SATCHP can also be done in polynomial time using equa-
tion �

∑d

i=1
vici . For checking the feasibility, the simulation model is initialized with the 

initial state (assignment of variables in constant time). For each time interval, the follow-up 
state of the model is calculated using a difference equation for the new buffer store tem-
perature (constant time). Additional constraints are checked by simple condition checking 
(e.g.,  temperature range). Thus, checking the feasibility is also just linear with the number 
of time intervals. Consequently, ������ ∈ NP holds.

Now, we can show NP-completeness of SATCHP by reducing the NP-complete problem 
SUBSET SUM to SATCHP. SUBSET SUM is defined as follows (Schöning 2001):

Given: a set of natural numbers a1, a2,… , an ∈ ℕ as well as b ∈ ℕ.
Question: does a subset I ⊆ {1, 2, 3,… , n} exist with 

∑
i∈I ai = b ?

The reduction ������ ��� ≤p ������ can be achieved by the following mapping:

We choose a co-generation plant with only two modes (off and on) resulting in relative 
power levels 0 and 1 (100% of rated power). Moreover, let the length of all time intervals 
be � = 1 , then there exists a subset I ⊆ {1, 2, 3,… , n} with 

∑
i∈I ai = b , that is, S is satis-

fied iff there exists a combination of power levels B = (v1,… , vd) with �
∑d

i=1
vici = Ctot . 	

� ◻

4.2 � Hardness of ensuring the feasibility

As has been argued, checking the feasibility for a single schedule can be done in linear 
time. Nevertheless, systematically searching for a feasible schedule (even an arbitrary one 
that is not necessarily optimal) already entails some challenges. For gaining more insight 
into the complexity of ensuring the feasibility by design already during optimization, we 
adapted a technique for fitness landscape analysis to feasibility landscapes.

One major aspect of fitness landscape analysis is analyzing the structure of a fitness 
landscape in optimization in order to derive characteristics like shape, number, and distri-
bution of (local) minima, flat valleys, and so forth. These characteristics in turn give evi-
dence on the expected complexity of the optimization problem. Many different procedures 
have so far been proposed for analyzing the landscape of fitness (Pitzer and Affenzeller 
2012). As a starting point, we used an approach by (Vassilev et al. 2000) that has already 
been used in energy management-related questions (Nieße et al. 2017). Given an optimi-
zation problem, a landscape L is defined by the search space S , a neighborhood relation 
N  and an error function (equivalently: the fitness) � . Plotting � overall x ∈ S yields the 
landscape that is explored by an optimization algorithm in search of an optimal point. The 
structure of this landscape determines (premature) convergence and thus whether the algo-
rithm succeeds with a sufficiently small budget or might get stuck within some local opti-
mum. On the other hand, information about the expected number of objective evaluations 
before reaching promising regions may be derived.

S = ({a1, a2,… , an}, b) ↦

⎧⎪⎨⎪⎩

number of intervals: d = n

interval individual cost: ci = ai ∀ 1 ≤ i ≤ n

total cost: ctot = b
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Fitness landscape analysis usually works on landscapes spanned over the parameter 
space and ignores infeasible parts. As we want to analyze the hardness of ensuring the fea-
sibility as a side task of our actual optimization problem, we need a quantifiable criterion. 
The feasibility usually is binary, that is, a solution is either feasible or infeasible. But, we 
can define partial feasibility f (x) by measuring the share of feasible intervals of a d-dimen-
sional schedule x of power levels instead of absolute feasibility. We use

Fp denotes a function that counts the number of feasible intervals that can be operated 
without violating any constraint. Practically, the number is determined by simulating the 
operation until the first error occurs. Relating this count to the length d of the schedule 
yields the measure for the partial feasibility. One way to analyze the structure by scruti-
nizing the partial feasibility correlation of neighboring candidate solutions (Vassilev et al. 
2000). Neighboring solutions from flat regions of the landscape exhibit a higher correlation 
than solutions from rugged parts of the landscape. Thus, the correlation can be seen as 
some measure that estimates the ruggedness of L.

We study the autocorrelation of random paths on the landscape (random walk through 
S ) (Weinberger 1990). Let x be a solution to the scheduling problem Eq. (3). Each element 
denotes a schedule and each element of a schedule represents the index of the operated 
power level during the respective time interval i. Let {fk}�k=1 be a sequence of � feasibility 
quantifications sampled as follows: starting from a randomly chosen solution x0 ∈ S , suc-
cessive, neighboring solutions xk+1 are generated according to Merkuryeva and Bolshakovs 
(2011) by altering each element in xk by adding or subtracting 1 (switch to neighboring 
power level) with a probability of 1/3 each:

where xk+1 is the neighbor solution generated from xk and r is real number uniformly ran-
domly sampled from the interval [0, 1].

The series {fk}�k=1 now contains values fk = f (xk) . Next, we calculate the autocorrelation

 for a given path length � , with E[fk] and V[fk] denoting expectation and variance, respec-
tively. Moreover, Weinberger (1990) defines the correlation length � = −

1

ln(�(1))
 , denoting 

the mean distance (in the sense of neighboring hops in N  ) after which the majority of the 
solutions is no longer correlated (Vassilev et al. 2000). The correlation length can also be 
interpreted as the expected maximum width of flat valleys in the landscape.

Another aspect of fitness landscape analysis is information analysis. Analyzing the cor-
relation of random paths on the landscape gives an impression of the structure. In (Vas-
silev et al. 2000) an extended analysis based on entropy measures on {fk}�k=1 is proposed. 
Founded on ideas from algorithmic information theory (Chaitin 1987) and the Shannon 

(5)
Fp(x) ∶

{
ℕ
d

→ [0, d]

Fp(x) ↦ # of feasible intervals

� =f (x) =
Fp(x)

d

.

(6)xk+1
i

=

⎧⎪⎨⎪⎩

xk
i
+ 1 if r ≤

1

3

xk
i

if
1

3
< r ≤

2

3

xk
i
− 1 otherwise

, 1 ≤ i ≤ d,

(7)�(�) =
E[fkfk+�] − E[fk]E[fk+�]

V[fk]
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entropy (Shannon 1948), a characterization of the distribution and number of local optima 
along the path is given as a measure of the complexity of the fitness landscape.

For the following indicators, random paths on the landscape are seen as ensemble of 
basic elements. Three element types (token) can be distinguished:

–	 flat areas (neighboring points have similar fitness),
–	 isolated points (surrounded solely by better, or solely by worse points), and
–	 slope points (neither isolated nor flat).

In a first step, each path is transformed in a sequence of tokens S(�) = s1s2 … so over the 
alphabet {1, 0, 1} by

 for a given � ∈ [0,max fk] (cf.  Vassilev et al. 2000). A string S(�) then contains informa-
tion on the structure of the landscape along a randomly chosen path. Now one can define 
an object by two successive tokens in the string. For example, the sequence 11 denotes a 
change from downslope to upslope and thus a trough. The entropy measure for such an 
ensemble of objects can be determined according to (Vassilev et al. 2000):

with P[pq] denoting the frequency of the occurrence of the sequence pq in S(�) . Also, the 
modality of the objective function can be derived from S(�) . The entropy is a measure of 
the diversity of objects along the path. In contrast, the modality must be measured by a 
classification of objects in order to determine the number of (local) optima. First, the par-
tial information content is determined (Vassilev et al. 2000). To achieve this, the string S(�) 
is transformed into S�(�) = o1o2 … o� over the alphabet {1, 1} . S�(�) is determined in a way 
that it contains the shortest string that represents the alternations from uphill to downhill 
changes along the path. This can be done recursively. The partial information content is 
then defined as (Vassilev et al. 2000):

 A value of 1 denotes the maximum modality. The absolute number of (local) minima 
(according to a given � ) can be derived by 

⌊
(n ⋅M(�))−2

⌋
 . All these measures are sensitive 

to the choice of � . Small values lead to a higher sensitivity to changes in fitness between 
neighboring solutions. The smallest value of � that lets all differences vanish is called infor-
mation stability (Vassilev et al. 2000) (fully flat feasibility quantification function).

For analyzing the complexity of finding feasible solutions, we conducted several exper-
iments. In particular, paths of length 2000 were studied. Each experiment was repeated 
1000 times with random starting solutions. Figure 1a shows a first result demonstrating the 
differences induced by the dimensionality d of the schedules. The correlation length grows 
with longer schedules. This fact is also reflected by the respective steepness of the abso-
lute correlation along the path of solution evaluations in Fig. 1b. The absolute correlation 

(8)Si = 𝜓fk
(i, 𝜖) =

⎧⎪⎨⎪⎩

1, if fi − fi−1 < −𝜖

0, if �fi − fi−1� ≤ 𝜖

1, if fi − fi−1 > 𝜖

(9)H(�) = −
∑
p≠q

P[pq] log6 P[pq],

(10)M(�) =
�

o
=

|S�(�)|
|S(�)| ∈ [0, 1].
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depicts the decline of the correlation between solutions with growing distance. The cor-
relation length condenses this fact by denoting the mean number of operations after which 
any correlation disappears. The distance between two solutions in this context is meas-
ured as the number of mutation operations Eq. (8) that have transformed one solution into 
another. The entropy is a measure of diversity along the path and also drops with growing 
dimension giving evidence–together with the growing correlation length–of larger valleys. 
The partial information content denotes the relative modality along the path.

The result in Fig. 1a reflects a co-generation plant with given fixed hot water drawing 
profile leading to a general correlation of feasible schedules. Figure  2a shows the same 
result for a co-generation model with fully random hot water drawing. Obviously, there is 
almost no impact that is induced by model internal correlation. On the other hand, using 30 
power levels changes the game. Figure 2b shows this situation. Having more power levels 
to choose from simplifies the optimization problem. A similar effect for ensuring the feasi-
bility can be observed at least for growing schedule dimension.

Looking at the range of different interval lengths with a constant number of planning 
intervals reveals, that the main difference in complexity here is reflected by a growing 
diversity of paths. The interval length varies from 10 sec to 30 min. The diversity increases 
mainly during one step between 2 and 3 minutes interval length. From a mathematical 
point of view, the reason is that one sequence pq is always present (cf.  Eq. 9). The root 
cause lies in the used co-generation model. Due to the constant number of time intervals, a 
different total time horizon is covered. Starting from an interval length of approximately 80 
sec, a sufficiently large period is covered to incorporate morning heating and showering as 
an additional heat sink. Hence, the feasible region is significantly narrowed. The informa-
tion content grows due to more active constraints. The standard deviations of the correla-
tion lengths in Fig. 3 show that coarser planning obviously leads to a higher dependency 
on the initial solution candidate. Some starting solutions lead to a search within rather flat 
valleys, others do not. Thus, we can conclude that the choice of the starting solution has a 
major impact on the optimization performance as the feasibility has to be ensured several 
times when generating candidate solutions.

Fig. 1   Fitness landscape analysis of random paths derived from co-generation plants with different length 
of schedules d; a shows the classical landscape characteristics, b displays the correlation with respect to 
different lags (solution distances). These experiments were conducted with a fixed number of 3 power levels 
and schedules of 15-minute time intervals. The graphs show the means of (dimensionless) landscape char-
acteristics
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5 � Creating feasibility by design

As a result of the previous complexity analysis, we can now motivate the necessity of an 
integrated means for ensuring the feasibility by design when attacking the scheduling prob-
lem. NP-hardness motivates the use of a heuristic as large problem instances that are to be 
expected in practical scenarios can hardly be tackled otherwise. We identified ant colony 
optimization as a suitable approach for the discrete problem at hand. This algorithm will 
work with an integrated systematic design of feasible solutions.

When optimizing the schedule for an energy resource (or an ensemble of devices), the 
recursive dependencies on prior decisions turn out to be problematic for the definition 
of a neighborhood relation between different solutions. The domain of xi depends on the 

Fig. 2   Impact of uncorrelated schedules and number of power levels for a co-generation model with fully 
random hot water drawing on the fitness landscape characteristics. For the results in Fig. 2b, the number of 
power levels was increased from 4 to 30. The graphs show the means of (dimensionless) landscape charac-
teristics

Fig. 3   Impact of the interval 
length �

T
 on the mean number of 

correlated succeeding solution 
candidates (correlation length) 
and the (dimensionless) entropy 
of the fitness landscape analysis 
as measures for the dependency 
on the initial solution candidate. 
The number of intervals is kept 
constant for each experiment
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assignments of (x1,… , xi−1) , because the operation of the sub-schedule (x1,… , xi−1) has an 
impact on the feasible operational phase-space of the device for xi . It is an NP-hard prob-
lem in itself to construct the whole feasible search graph in advance.

Thus, we used an ACO approach in which each artificial ant is equipped with a simula-
tion model of the respective device as a means to ask for possible branches at each node. In 
this way, the search graph can be generated locally on demand. Figure 4a shows the general 
idea of the used search graph.

Nodes represent different power levels operated during each planning interval and are 
organized in layers. Each layer represents the start of a new time period. Each ant has to 
make its way from the beginning of the planning horizon to the end. Each layer repre-
sents the set of all existing power levels independent of the actual operational state; the 
power level that is to be operated during the next time interval is chosen at the begin-
ning of the interval and fixed for the duration of the interval. Costs for a time inter-
val–cf.  Eq. 3–are calculated on the basis of the chosen power level and some global cost 
information; e.g.,  on energy prices during the interval. Edges are allowed only in between 
neighboring layers and are existent just virtually.

For the construction of a solution, each ant starts at time t0 with the power level given 
by the initial operation state of the energy resource. At each layer, the path taken so far is 
passed to the simulation model to calculate the feasible choices for the current decision on 
a new power level and thus on the next edge. Each ant walks from layer to layer and knows 
the so far covered path; the simulation model calculates–based on initial state and path–a 
selection of feasible power levels (subset of feasible edges) for the next time interval; the 
ant chooses from this selection and moves on to the next layer. Edges materialize only 
after the simulation model acknowledges feasibility based on the ants previous path. In this 
way, the feasibility of constructed paths (representing an operation schedule for the energy 
resource) is ensured.

Fig. 4   Path construction by artificial ants for an operational schedule (a single resource; b multiple con-
straint-coupled resources, 2-dimensional example with i; j meaning ith power level of the first and jth power 
level of the second unit); cf.  (Bremer and Lehnhoff 2020b)
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The graph of feasible schedules is obviously not complete as often the case in ACO 
algorithms. The graph of feasible schedules is a d-partite graph (cf.  Fig. 4)

whose edges all point towards immediate future time intervals:

 Each node set Vi consists of different compositions of power levels that are operable during 
interval Ti for devices G1 to Gg , where Vi ⊆ M is a subset of the set of all theoretically pos-
sible compositions M:

M corresponds to the set of virtual nodes. Which nodes Vi become available for ant A 
and are thus reachable, must always be evaluated based on the current operational state 
and the so far covered path (course of previously operated power levels). Each time an 
ant has decided on a power level for a planning interval T

�
 it moves along this edge and 

then involves the simulation model to discover available feasible branches for time interval 
T
�+1 ; cf.  Fig. 4a. The current partial path ( PT1 ,… ,PT

� ) is passed as input to the simulation 
model, which is already parametrized with the initial state at T0 . The model returns a set 
of feasible power modes (or, respectively, a set of possible absolute power values). This set 
constitutes possible new edges (i, j) ∈ V

�
 pointing from the ith power level in time interval 

T
�
 to the jth power level in T

�+1 . The weight of each of these new edges results from the 
electric power and the given cost for this time interval. A decision for an edge from the set 
of power levels is made by calculating a probability for each edge (i, j):

Taking into account the amount of pheromone associated with (i, j) and additionally, a pri-
ority rule, intensifies the search within the local neighborhood. For an example, choosing 
the highest power level as in a greedy approach could be used as a priority rule. This would 
promise the highest profit. A weighting of both types of information is given by � and � . 
According to these probabilities, the next edge is chosen by random wheel selection. With 
a given probability, an alternative rule is used (Dorigo et al. 1999). This rule uses the maxi-
mum product of priority and pheromone ( maxj∈IVi (�

�
ij
⋅ �

�

ij
) ) as the criterion and allows for 

searching the immediate neighborhood.
It may occur that an ant finds itself in a dead-end, and the simulation model is not 

able to find any feasible extension of the current path. In this case, something in the 
already generated path has to be changed in order to be able to proceed. For this reason, 
we integrated a classical backtracking as a rollback. In case of a dead-end, the last edge 
is removed for the ant’s path and from the previous set of feasible power levels. Then, 
another decision is made with the reduced set but with the same mechanisms. If the set 
is empty, this is again treated as a dead-end and triggers another step backward.

(11)V = V1,… ,Vd , with

(12)Vi = {((P
Ti
G1
)1 …(P

Ti
Gg
)1), … , ((P

Ti
G1
)r …(P

Ti
Gg
)r)}, 0 ≤ r ≤ m

(13){(v, v�) | v ∈ Vi+1 ∧ v� ∈ Vi} = �, ∀i < d.

(14)M = {(PG1
…PGg

) | Gi ∈ G}
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After every ant has constructed a path (each representing an operation schedule denot-
ing electric power for each time interval), all paths are evaluated. The � best ants are 
selected to deposit pheromones on the trail:

Parameter � controls pheromone evaporation. As the search graph is not known in advance, 
we cannot use a static data structure for deposition. Instead, we use maps for each time 
interval containing the edges as key-value-pairs, with a default value of zero if an edge 
has so far not been present in the map. The key for edge identification is composed of both 
power-levels i and j at the start and the end of the edge (i, j).

In case the given problem instance comprises more than one energy resource and each 
energy resource cannot be optimized individually due to a joint constraint, the approach 
can easily be extended to a higher-dimensional graph for an ensemble of more than just 
one energy resource, as shown in Fig. 4b for two dimensions. For each time interval, the 
cross-product of power levels from individual energy units is taken. In this way, the con-
cept of power levels is expanded to tuples of power levels with the rest of the procedure left 
unchanged.

6 � Simulation results

For testing the algorithm, a simulation model of a co-generation plant has been used. The 
model has already been evaluated and proven useful in several smart grid-related projects 
(Neugebauer et al. 2015; Hinrichs et al. 2013; Nieße and Sonnenschein 2015). This model 
comprises a micro co-generation plant with 4.7 kW of rated electrical power (12.6 kW 
thermal power) and is bundled with a thermal buffer store. Constraints restrict power band, 
buffer charging, gradients, min. on and off times, and satisfaction of thermal demand. Ther-
mal demand is determined by simulating losses of a detached house (including hot water 
drawing) according to given weather profiles. Electric power feed-in is either zero (off) or 
between 1.3 and 4.7 kW. This operational range is subdivided into m equidistant discrete 
power levels resulting in m + 1 operation modes in total.

The parameters of our algorithm (weighting of pheromone and priority rule �, � ; pri-
ority rule share � , share of depositing ants � , evaporation � , min. pheromone � ) have 
been tuned in advance by using a Halton sequence (Halton and Smith 1964; Kuipers 
and Niederreiter 2006) for a random search. A Halton sequence generates a high-dimen-
sional, low discrepancy pseudo-random series. Each value is from the interval [0,  1] 
and can easily be scaled to the respective parameter domain. A series of 1000 experi-
ments were used as an experimental design to find the best values for the parameters. 
In each experiment, we considered a load balancing scenario. As a scenario size, we 
choose to use 96-dimensional schedules. Scenarios with shorter schedules are a sub-
problem covering just the early part of the longer scenarios and can be solved with the 
same parameterization. In each experiment, we used the model of a co-generation plant 
with a randomly initialized state of charge (of the thermal buffer store). The number of 
operation modes was set to 4 because this covers a wide range of today’s co-generation 
controllers. For each experiment, 20 optimization runs were conducted to find the mean 
results for evaluation. We tuned the parameters once and used the found values for all 

(16)�ij = �ij ⋅ (1 − �) + � ⋅

{
1

F(x)
∀(i, j) ∈ x

0 ∀(i, j) ∉ x
.
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later experiments: � = 0.82, � = 0.87, � = 0.5, � = 0.145, � = 0.51 and � = 0.12 . If not 
otherwise stated, 10 ants were used in each run.

We use two scenarios: (1) load balancing and (2) variable energy pricing. In scenario 
one, the objective is to minimize the distance between the operation schedule x ∈ ℕ

d 
and a (possibly market given) target schedule � ∈ ℝ

d . As �(x) and � denote the gener-
ated and the wanted amount of energy (or equivalently the mean electrical power) for d 
successive time intervals, any distance measure would do. We used | ⋅ |2 during optimi-
zation. In scenario two, a time-varying tariff c ∈ ℝ

d is given denoting the energy price 
for each of the d time intervals. Thus, the objective is to minimize the overall cost

 or for generators (to maximize profit)

For all simulations, a randomly initialized model of the co-generation plant is used 
by the algorithm. Figure 5 shows as a first example the convergence of different runs of 
a 96-dimensional load balancing scenario. The given budget was 1000 iterations result-
ing in a max. 10.000 objective evaluations. The residual error denotes the mean absolute 
error in power feed-in. For a better assessment, this is an additional domain-specific cri-
terion. A deviation from the committed energy feed-in (at the market) would be respon-
sible for possible break-up fees.

Co-generation plants with a controller that allows for a more fine-grained power 
control are easier to plan. On the one hand, the search space grows significantly with 
the number of power levels per time interval. But, the relation of feasible to infeasible 
schedules becomes advantageous with more power levels. Thus, as the tricky part is 
ensuring the feasibility of solutions, planning becomes easier with fine-grained control. 
In fact, with a continuous controller, the problem is no longer NP-hard. Table 1 shows 
the impact of the number of power levels on the solution quality with a fixed budget of 
evaluations. Table 2 shows the impact of the number of used ants (with a fixed number 
of iterations).

(17)min�(x)◦c

(18)min

d∑
i=1

(cmax − ci) ⋅�(xi).

Fig. 5   Convergence of different 
runs for a 96-dimensional load-
balancing problem for a 4-modes 
co-generation plant (known 
optimum: zero); cf.  (Bremer and 
Lehnhoff 2020b). The residual 
error is given by the Euclidean 
distance | ⋅ |2 between wanted 
schedule and solution schedule
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Next, we compared the ACO approach with the covariance matrix adaptation evolution 
strategy (CMA-ES) (Ostermeier et al. 1994; Hansen 2006). CMA-ES is a well-known evo-
lution strategy for solving multimodal black-box problems and has demonstrated excellent 
performance (Hansen 2016), especially for non-linear, non-convex black-box problems. 
CMA-ES improves its operations by harnessing lessons learned from previously success-
ful evolution steps for future search directions. A new population of solution candidates is 
sampled from a multivariate normal distribution N(0,C) with covariance matrix C , which 
is adapted such that it maximizes the occurrence of improving steps according to previously 
seen distributions for good solution candidates. Sampling offspring is weighted by a selec-
tion of solutions from the parent generation. In a way, the method learns a second-order 
model of the objective function and exploits it for structure information and for reducing 
calculations of objective evaluations. In order to use CMA-ES for the non-linear discrete 
step-control problem, we relaxed it to an equi-dimensional continuous search space and 
rounded the results back to ℕ . The constraints for co-generation plant operation were inte-
grated using a classical penalty approach (Smith and Coit 1997). We added a penalty term 
to the objective that reflects the inverse length of the feasible part of a solution schedule. A 
second penalty reflecting infeasible power levels improved the result. The weighting for the 
scalarization of the objectives has again been tuned using Halton sequences. For algorithm 
parametrization, we relied on Smith and Coit (1997) giving recommendations for a wide 
range of applications.

Figure  6 shows two results with budgets of 20000 (a) and 106 (b) objective eval-
uations. Both algorithms have been tested on load balancing problems with different 
dimensions. The number of power levels was set to 5. As can be seen, ACO performs 
better; probably because ACO constructs feasible solutions in a systematic manner, 

Table 1   Impact of the number 
of power levels that the device 
controller may pilot on the 
residual error after optimization 
(for a 32-dimensional load 
balancing scenario and a budget 
of 1000 iterations); cf.  (Bremer 
and Lehnhoff 2020b)

No. 
of op. 
modes

Error ( | ⋅ |2 of schedules) Mean abs. error (kW)

2 4.500 × 10−1 ± 4.218 × 10−2 5.850 × 10−1 ± 5.484 × 10−2

3 9.438 × 10−2 ± 7.016 × 10−2 1.354 × 10−1 ± 9.757 × 10−2

4 2.423 × 10−2 ± 3.841 × 10−2 2.853 × 10−2 ± 4.521 × 10−2

5 1.020 × 10−2 ± 2.502 × 10−2 9.247 × 10−3 ± 2.282 × 10−2

6 4.557 × 10−3 ± 1.288 × 10−2 4.310 × 10−3 ± 1.109 × 10−2

7 3.989 × 10−3 ± 1.401 × 10−2 2.748 × 10−3 ± 9.461 × 10−3

Table 2   Impact of the number of artificial ants on the residual error after optimization (for a 96-dimen-
sional load balancing scenario, 4 power levels fixed, and a budget of 1000 iterations); cf.   (Bremer and 
Lehnhoff 2020b).

No. of ants Error ( | ⋅ |2 of schedules) Mean abs. error (kW)

2 4.230 × 10−2 ± 3.630 × 10−2 4.715 × 10−2 ± 4.050 × 10−2

5 2.958 × 10−2 ± 2.850 × 10−2 3.349 × 10−2 ± 3.323 × 10−2

10 3.827 × 10−2 ± 3.374 × 10−2 4.394 × 10−2 ± 3.943 × 10−2

15 3.827 × 10−2 ± 2.590 × 10−2 4.476 × 10−2 ± 3.206 × 10−2

20 3.168 × 10−2 ± 2.675 × 10−2 3.572 × 10−2 ± 3.121 × 10−2

50 3.419 × 10−2 ± 2.266 × 10−2 3.928 × 10−2 ± 2.836 × 10−2
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whereas CMA-ES is just guided by the degree of feasibility calculated afterward. This 
is also reflected in the results from Table  3 showing the respective feasibility of the 
found results. The ACO approach achieves a share of 100% feasible results regard-
less of the dimension of the problem. CMA-ES achieves an acceptable share of feasi-
ble results only for low-dimensional problems. Significantly increasing the budget for 
objective evaluations improves the result, but the penalty approach still fails to ensure 
the feasibility for higher-dimensional problems. For the quite usual case of planning one 
day with 15-minute resolution (96 dimensions), CMA-ES fails completely. The prob-
lem, obviously, is the discrete nature of the problem. Increasing the number of power 
levels lets CMA-ES become very competitive. We tested two scenarios (with a dimen-
sion of 48 and otherwise the setting from Fig.  6b). With 100 power levels CMA-ES 
scores with a residual error of 0.0864 ± 0.0701 and for 1000 power levels the result was 
0.0573 ± 0.0405 . The remaining issue still is the feasibility of the schedules. The share 
(in percent) in both experiments was 88.75 ± 19.83 and 98.96 ± 4.66 respectively. Thus, 
CMA-ES actually does a good job. The crucial part of the scheduling problem is ensur-
ing the feasibility.

We have tested other standard heuristics, but with even worse results. Again, the rea-
son is that each time interval entails independent constraints. This effect has also been 
observed in other studies (Sonnenschein et al. 2015).

Fig. 6   Comparison of the residual error | ⋅ |2 achieved by ACO (light gray) and CMA-ES (dark gray) for 
load balancing optimization problems with different dimensionality. a Shows examples with a budget of 
20000 objective evaluations, b shows examples with a budget of 106 evaluations; cf.  (Bremer and Lehnhoff 
2020b)

Table 3   Mean share of feasible 
results (and intervals) resulting 
from the experiments in Figure 6; 
cf.  (Bremer and Lehnhoff 
2020b).

Budget No. of intervals Feasible sched-
ules (%)

Feasible 
intervals 
(%)

20000 16 84 95
48 12 61.2
96 0 30.5

106 48 24 68.42
96 0 33.04
192 0 13.54
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Figure 7 shows some example runs for a multi-plant scenario. Here, 10 co-generation 
plants are controlled by artificial ants at the same time. Finally, two example results on 
time-varying energy prices are shown in Figs. 8; 8a shows an example with two peak prices 
in the morning and the evening, Fig. 8b shows the example of a photovoltaics dominated 
regime with the aim of shifting feed-in from co-generation to the dark hours. In both cases, 
feed-in is successfully shifted to more profitable hours. An exception is the early hours of 
the day because the empty buffer store had to be charged first to gain enough flexibility for 
the rest of the day.

In addition to (Bremer and Lehnhoff 2020b), we conducted experiments regarding the 
effort in ensuring flexibility. Ideally, the ants may simply have a walkover when construct-
ing a feasible schedule, but often constraints are too tight, and the ants get stuck in a situ-
ation where no feasible move to the next time interval is left. In such situations, a back-
tracking mechanism steps in. Figure 9a shows the results of an experiment counting the 
backtracking steps that eventually are responsible for slowing down the feasibility design 
process and thus the optimization. We counted the taken backtracking steps per ant while 
the optimization was run with a fixed budget of 10000 objective evaluations for all ants in 

Fig. 7   Convergence of example 
runs for load balancing optimiza-
tion scenarios with 10 concur-
rently controlled co-generation 
plants; cf.  (Bremer and Lehnhoff 
2020b)

Fig. 8   Altered energy feed-in from a co-generation plant as an optimization result for scenarios with time-
varying energy prices. Figure a shows the results of a scenario with two price peaks in the morning and in 
the evening; b shows a scenario with high photovoltaics feed-in resulting in low prices during the sunny 
hours; cf.  (Bremer and Lehnhoff 2020b)
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total. The figure displays the means as well as the positions of the lower and upper quan-
tiles and the inter-quantile distance as an area between the plots. As expected, the num-
ber of backtracking steps grows with growing schedule length and thus growing problem 
size. But more importantly, this is obviously not an exponential growth. The experiment in 
Fig. 9a has been conducted with a setup of three power levels. Having more levels eases 
the optimization, but also eases the systematic construction of feasible schedules. This can 
be seen in Fig. 9b. Here, the number of backtracking steps is counted for different numbers 
of power levels for a fixed problem size of 96 dimensions. Thus, it is highly desirable to 
have some more power levels for optimization if the problem size grows beyond 48 inter-
vals. Nevertheless, increasing the number of power levels that an engine controller might 
operate seems to be the most effective countermeasure to keep the NP-hard optimization 
process efficient for larger problem sizes.

7 � Conclusions

The paradigm shift in control that can currently be seen in energy supply systems entails 
new challenges to algorithmic control. Regarding the smart grid, small and distributed 
energy resources have to be integrated into the grid. Optimizing and orchestrating step-
controlled devices in day-ahead scheduling is NP-hard already for single devices with a 
growing number of time intervals within the planning horizon. Providing ancillary ser-
vices for power conditioning (like voltage or frequency control) requires planning in short 
periods resulting in higher-dimensional optimization problems in the future. New types of 
generation units and controllable consumers entail new difficulties in constraint-handling, 
especially if some buffer technology for intermediate energy storage does not allow for an 
independent consideration of different time intervals. If this is the case, the problem has to 
be solved by multi-dimensional optimization.

These challenges render heuristics the most promising as a possible solution. On the 
other hand, a wide acceptance of such approaches in practice demands some guarantee on 
the feasibility of solutions. Ensuring the feasibility by design in the sense of systematically 

Fig. 9   Mean number of necessary backtracking steps for constructing the feasibility (solid lines) and inter-
quantile distance of the variability (filled area) depending on the dimension of the schedules (a) and on the 
number of power levels (b)
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constructing new solution candidates by operators, a priori as a feasible solution is an 
important precondition for an application within a critical infrastructure like the energy 
supply system.

In Bremer and Lehnhoff (2020b) we already proposed an ant colony-based approach 
with model integration for constraint-handling. By integrating a model of the planned 
energy resource, artificial ants may decide on feasible further directions while already 
underway and constructing their path in the search graph. The feasible graph does not have 
to be known in advance. A priori construction would also be NP-hard.

Here, we applied fitness landscape analysis to answer the question regarding the com-
plexity of finding feasible solutions. We showed that ensuring the feasibility–as a sub-task 
of the actual optimization problem–is an additional, non-trivial problem. Integrating a 
model of the energy resource into the ant algorithm and allowing backtracking mechanisms 
as fallback guarantees that the ants at all times only consider feasible solutions–at least if 
there exists one. Due to the landscape analysis, some first insights into prerequisites for 
accelerating the feasibility operator have already been derived. Simulation results rendered 
this approach valid, competitive, and sufficiently fast.

So far we have used the classical ant system. In future work, we will also implement 
integration into more recent algorithms like the max-min ant system and expect a further 
improvement of the results.
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