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Abstract
Individual agents in natural systems like flocks of birds or schools
of fish display a remarkable ability to coordinate and communicate
in local groups and execute a variety of tasks efficiently. Emulating
such natural systems into drone swarms to solve problems in Defence,
agriculture, industry automation and humanitarian relief is an emerg-
ing technology. However, flocking of aerial robots while maintaining
multiple objectives, like collision avoidance, high speed etc. is still a
challenge. In this paper, optimized flocking of drones in a confined
environment with multiple conflicting objectives is proposed. The con-
sidered objectives are collision avoidance (with each other and the
wall), speed, correlation, and communication (connected and discon-
nected agents). Principal Component Analysis (PCA) is applied for
dimensionality reduction, and understanding the collective dynamics
of the swarm. The control model is characterised by 12 parameters
which are then optimized using a multi-objective solver (NSGA-II).
The obtained results are reported and compared with that of the
CMA-ES algorithm. The study is particularly useful as the pro-
posed optimizer outputs a Pareto Front representing different types
of swarms which can applied to different scenarios in the real world.

Keywords: Drone swarm, Multi-Objective Optimization, PCA, NSGA-II,
Drone swarm simulator, Collective dynamics
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1 Introduction
Collective behaviour is pervasive in nature and is frequently observed in diverse
organisms ranging from microscopic bacteria [1] to large scale flocking of birds
and insects[2][3]. While researchers still hypothesize the underlying mecha-
nisms behind such behaviour, moving in groups can offer several advantages
like avoiding predators or carrying collective cargo[4]. Emulating these natu-
ral systems has gained popularity in the past few years and the development
of a robust, fault-tolerant and generalised swarm of robots is now a widely
regarded problem among researchers [5] [6]. Aerial swarms, owing to their high
maneuverability and speed, find a number of applications in various industries.
They can be deployed as counterdrone measures [7] or basic surveillance oper-
ations in a defence scenario. In [8], the authors utiltise the sensing capability
of multiple robots to yield topographical and population density maps of a
disaster afflicted area. In [9], a centralised swarm architecture was proposed
for measuring air pollution. A system like this could potentially reduce mea-
surement error due to the bigger sample size and distributed data points over
the coverage volume. Mixed aerial and ground swarms have also been used for
automation in construction tasks[10]. In [11], multiple UAVs have been shown
to outperform a single UAV for tasks like agricultural sensing and monitoring
by measuring multiple metrics like energy consumption, flight time, and area
coverage. In general, drone swarms can be classified into three categories in
order of increasing complexity:

• Coordinated: This refers to the collective movement with basic environmen-
tal awareness and collision avoidance.

• Cooperative: Here, the robots start to work together to achieve a certain
goal using lesser resources than that of a single drone.

• Collaborative: This refers to multiple drones working together irrespective
of their nature, i.e. heterogeneous collaboration.

In this paper, we propose a methodology to solve the drone swarm coordina-
tion problem with multiple conflicting objectives. In this document, the terms
drone, UAV and aerial robot are used interchangeably.

Developing a robust velocity controller that allows multiple drones to self-
organise comes with it’s own set of challenges. According to the taxonomy
defined in [6] the control of velocities comes under Swarming Behaviour i.e.
deciding a high level control policy with shared information across each agent’s
neighbors. The challenge is to take this shared information (the agent’s own
state as well states of neighbors) and come up with functions (policies) that
output an instantaneous velocity vector for each agent. Over time, each agent’s
velocity gives rise to various patterns and mutual interactions that can poten-
tially emerge into self-organising behaviour. Conventionally, a first of it’s kind
algorithm by Reynolds was based on simple rules for each agent and has been
successfully applied in many fields [12] [13] [14]. In [15], the authors address
this problem by defining a single fitness function and optimizing it through
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the CMA-ES algorithm. However, the study doesn’t take into account mul-
tiple conflicting objectives, the priority of which can vary depending on the
scenario. In [16], a multi-objective solution for quad-rotors is proposed but the
swarm size is limited and the full range of solutions that take into account the
relations among the fitnesses is not explored. We explore these relationships
using unsupervised learning and extend our findings to highlight the use of
obtaining a non-dominating solution set for drone flocking.

Simulation is a powerful tool while studying these systems as it allows risk
free experimentation and many programming platforms have been leveraged to
come up with such solutions [17][18][19]. In [17], the authors create a 3D simu-
lator (AirSim1) for autonomous vehicles written in C++ with growing support
for multi-drone scenarios. It is easy to setup a simulation through Python
scripting. The goal of AirSim however, is graphical realism and it is cumber-
some to extend the same for the domain of swarm intelligence. RobotSim 2, a
fast simulator targeting flocking scenarios, is written in C but lacks sufficient
abstraction and extension to multi-objective optimization which is required for
the work carried out in this paper. In [18], the authors develop SwarmLAB3,
a dedicated drone swarm simulator capable of handling non-linear quadcopter
simulation. While the simulator itself could meet requirements of speed and
accuracy, it was insufficient for extending future work in the direction of
hardware testing. We use Python to develop such a simulator as it can lever-
age existing libraries and algorithms. The inter-operability with libraries like
Pymavlink, and the ease of testing protocols like the MultiWii Serial Protocol
(MSP) on Raspberry pi on board computers was found to be particularly easy
with Python based on past experience with similar projects.

Modelling of natural processes through simulation often needs to be com-
plemented by an in depth qualitative understanding of the performance
measures. Unsupervised learning can help in understanding and clustering data
especially in high dimensional spaces which can’t be visualised. It is widely used
in experiments where abundant data is available such as mapping vulnerability
indices [20], understanding relationships between economical and environmen-
tal objectives in a chemical supply chain [21], understanding global motions
of atoms in proteins [22], and most commonly for dimensionality reduction
in evolutionary algorithms [23]. Similar to many real systems, the solution of
an optimization problem depends on various factors. Often, these factors or
objectives are conflicting in nature and they cannot be solved simultaneously
without compromising on the overall fitness. In case of flocking we consider
six objectives:

• Collision avoidance with the wall.
• Collision avoidance with each other.
• Average speed of the swarm.
• Average velocity alignment or correlation.

1https://github.com/microsoft/AirSim
2https://github.com/csviragh/robotsim
3https://github.com/lis-epfl/swarmlab
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• Total number of connected agents.
• Total number of disconnected agents.

We use PCA for both understanding collective dynamics of multi-agent
systems and therefore reducing the objective space for the multi-objective opti-
mizer. To the best of our knowledge, this work is the first attempt that involves
using PCA to reduce the objective functions for a drone flocking optimization
problem.

These objectives are then optimized via a well-established multi-objective
optimizer (NSGA-II) to yield a Pareto front which can be used to guide decision
making and trade-offs under various situations. We report the results and show
that the results at extremities of the Pareto front perform better than that
of the CMA-ES algorithm. We conclude by giving some practical examples of
the use of such abstract mathematical formalism for real time decision making
with a flock of UAVs.

In short, in this research, we create a drone swarm simulator integrated
with a multi-objective solver, use PCA to understand the collective dynam-
ics of swarms, and give a Pareto front that represents different swarms that
can be used in real-world scenarios. The rest of the paper is organised as
follows: Section 2 presents the background of Principal Component Analysis
(PCA) and multi-objective optimizer (NSGA-II). A Drone flocking optimiza-
tion problem is formulated in Section 3. In Section 4 PCA is used to reduce
the number of the objective functions and a discussion on the correlations is
followed. Section 5 presents the experimental setup while the numerical results
and discussions are given in Section 6. The research is concluded by giving
some potential use-cases and possible future work.

2 Background

2.1 Principal Component Analysis
A high dimensional objective space is known to suffer from problems like poor
selection pressure and convergence[23]. It is also difficult to visualize the space
and gain intuition which is often required for appropriate decision making.
Principal component analysis, a technique under the domain of unsupervised
learning may be useful to understand the underlying structure of the data
without explicit labels. The idea is to search for the eigenvectors of an m-
dimensional covariance matrix (K) which is then used to decide the redundant
objectives. Here, m is the number of objectives. This covariance matrix (often
called correlation matrix when scaled) is symmetric and it’s elements give the
relations between the design variables on which the analysis has been run. Such
an analysis on the objectives of a optimization problem can give insights about
their correlations and can help in understanding their qualitative aspects.

LetX be an n xm design matrix with n rows as the samples andm columns
as objectives. A pre-processing step often carried out is the normalisation of
design matrix to bring the mean of samples for each objective to 0 and the
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variance to 1.0 (Eq. (1)). The covariance matrix is then calculated by taking
the mean of all samples of the pairwise products for each objective (Eq. (2)).
In a vectorized format, this is equivalent to taking the matrix product of the
design matrix X with it’s transpose (Eq. (3)).

Xnorm
ij =

Xij − µj

σj
(1)

Kij =
1

n

n∑
k=1

XkiXkj (2)

K =
1

n
(Xnorm)TXnorm (3)

where,
Xij ≡ Element of X at ith row and jth column
Xnorm

ij ≡ Xij normalised to 0.0 mean and 1.00 standard deviation
µj ≡ Mean of all n samples of jth objective
σj ≡ Standard deviation of all n samples of jth objective
n ≡ Number of samples
m ≡ Number of objectives
K ≡ Covariance matrix
Kij ≡ Element of K at ith row and jth column

2.2 Non-Dominating Sorting Genetic Algorithm-II
NSGA-II is a multi-objective optimization algorithm that is based on ranking
each solution in the population according to their fitness and progressively pro-
ducing better solutions using genetic operators like reproduction and mutation.
The entire algorithm is explained in detail in [24]. However, a brief explanation
covering the salient features of NSGA-II is explained here.

Let Po be a N sized initial random population. This population is sorted
based on non-domination according to the following rules: An individual X1

in the population is said to be dominated by individual X2 if satisfies both of
the following conditions:

• All fitnesses of X1 must be less than or equal to that of X2 particle.
• At least one fitness of X1 must be strictly less than that of X2.

Mathematically, individual X1 dominates X2 if d = 1, and the individuals
are non-dominated if d = 0.

Where, d = {∀m F (X1)m ≤ F (X2)m} ∩ {∃m F (X1)m < F (X2)m}
This method divides the population into dominating and non-dominating

solutions which is a heuristic used to guide the population towards better solu-
tions through the generations. Each solution in this population is also ranked
based on the number of other members it is dominated by and accordingly it
is assigned a front rank. Next, an offspring population Q is created from the
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sorted population by applying tournament selection, recombination and muta-
tion operators. To ensure that the best solution across generations remains
(elitism), a new 2N sized population is made using P ∪Q which is again sorted
and ranked. To make the next population Pt+1 from this combined set, solu-
tions are taken in order of their front ranking. In case the number of solutions
belonging to a front exceed the amount that can be accommodated into the
new N sized population, the remaining solutions in that front are ranked based
on a crowding operator as follows:

Let Fk be the set of solutions on the kth ranked pareto front. The crowding
distance (cmi ) for the mth objective for ith solution on this front is defined as
the normalised distance between the two nearest solutions i.e. (i + 1)th and
(i−1)th (Eq. (4)). The overall crowding distance (ci) is the sum taken for each
objective (Eq. (5)).

∀Xi ∈ Fk : cmi =
Fm(Xi+1)− Fm(Xi−1)

Fm
max − Fm

min

(4)

ci =

M∑
m=1

cmi (5)

This crowding operator ensures that the Pareto Front is uniformly dis-
tributed and the range of each each objective value is maximised as the search
progresses. The remaining solutions are ranked according to ci and the new
population Pt+1 moves forward to the next generation. NSGA-II is faster than
NSGA-I and has a worst case complexity of O(MN2).

3 Drone flocking optimization problem
A completely decentralized flocking swarm is based on certain simple rules
like Separation, Alignment, Cohesion. These rules when defined using a veloc-
ity control algorithm has certain parameters which can be tuned to flock
optimally. In this section these parameters are introduced and a simulation
framework capable of handling artificial sensor noise is created. The algorithm
used for flocking is based on the work in [15] and Reynold’s Flocking model
[25]. Some subtle modifications have been incorporated in order to handle
a multi-objective optimization framework. We use vectorized versions of the
equations to leverage fast computation with matrix computation libraries.

To simulate a multi-agent system, there must be a mechanism to share
information across the agents. In case of a decentralised system this informa-
tion is shared in each agent’s neighborhood No. Moreover, real-systems are
characterised by a stochastic uncertainty and noise which are incorporated into
the position(r) and velocity(v) vectors of the drones. The model for simulat-
ing the noise is taken from [26]. The relative position (rji) and velocity (vji)
at time t is then found using the following equations:
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rji(t) = (rj(t− tdel) + rgpsj )− ri(t)− rgpsi (6)

vji(t) = (vj(t− tdel) + vgps
j )− vi(t)− vgps

i (7)

Rrel
j = rji(t) (8)

V rel
j = vji(t) (9)

where,
rji ≡ Relative position vector of jth agent with respect to ith agent at time t
vji ≡ Relative velocity vector of jth agent with respect to ith agent at time t
Rrel

j ≡ jth row of the Relative position matrix for agent i ∀ j = 1, 2, ...,No

V rel
j ≡ jth row of the Relative velocity matrix for agent i ∀ j = 1, 2, ...,No

tdel ≡ Simulated communication delay
rgps ≡ Simulated GPS noise for position
vgps ≡ Simulated GPS noise for velocity

3.1 Decision variables
Based on the above modification for the relative position and velocities the
flocking rules are explained the following sections. These rules give rise to
certain parameters which are used as decision variables for the drone flocking
optimization problem. Note that all the flocking operations are carried out for
all N agents .

3.1.1 Separation

To flock effectively without collisions, the agents must have a mechanism for
repulsion. A spring-like mechanism is used which is activated at short ranges
of inter-agent distance in the flock. The following two equations (11) and (12)
are used to find a repulsion vector for agent i after scaling it according to the
relative distances in rmag

i and a gain prep.

rmag = ‖Rrel‖⊥r
rep
0 (10)

V rep = prep.(rmag − rrep0 ).
Rrel

rmag
(11)

vrep
i =

No∑
j=1

V rep
j (12)

where,
a⊥c>b = min(max(a, b), c))
rmag ≡ No x 1 sized vector containing inter-agent distances
rrep0 ≡ Repulsion cutoff distance (user dependent parameter)
prep ≡ Repulsion gain (user dependent parameter)
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V rep ≡ No x 2 sized matrix of scaled repulsion velocities
V rep
j ≡ Repulsion velocity of jth neighbor

vrep
i ≡ Desired collective repulsion vector
Note that the upper bound of rmag is the parameter rrep0 to enable short

range effects. The matrix norm in Eq. (10) is only taken along the row axis,
i.e. for each neighbor. V rep contains all the the corresponding scaled repulsion
velocities and the division and multiplication in Eq. (11) is done element wise.

3.1.2 Alignment

Vásárhelyi et al. [15] realised that effective control of both the magnitude and
direction of velocities as a function of inter-agent distances can yield the best
alignment with scalable velocities. The equations for alignment are similar to
repulsion with one major difference: the upper bound for the velocity mag-
nitude (vfrictmax

i ) is now calculated dynamically with decay function D in
Eq. (13) which is dependent on the inter-agent distance [15]. Eqs. (14) - (16)
describe the process of finding out the combined alignment vector for the agent.

vfrictmax = D(rmag
i − rfrict0 − rrep0 , africt, pfrict)>vfrict (13)

vmag = ‖V rel‖>vfrictmax (14)

V frict = cfrict.(vmag − vfrictmax).
V rel

vmag
(15)

vfrict
i =

No∑
j=1

V frict
j (16)

where,
D is a vectorized version of the velocity decay function taken from [15]
pfrict ≡ Slope for the linear part of the decay curve (user dependent
parameter)
africt ≡ Acceleration for the non-linear part of the decay curve (user
dependent parameter)
cfrict ≡ Overall Gain for alignment (user dependent parameter)
vfrict ≡ Velocity slack for alignment (user dependent parameter)
rfrict0 ≡ Alignment cutoff distance for maximum alignment (user dependent
parameter)
vfrict
i ≡ Desired collective alignment vector
Eq. (13) gives a vector composed of the maximum allowable velocity dif-

ference for each neighbor. The maximum is proportional to the inter-agent
distance. This ensures that the alignment for two agents that are in close prox-
imity is larger and vice-versa. Also, the maximum allowable difference is lower
bound by an optimization parameter vfrict so that the agents do not strive
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for perfect alignment and there is some slack. Eq. (15) compensates the veloc-
ity difference for each neighbor and Eq. (16) sums the alignment velocities for
each neighbor.

3.1.3 Wall collisions

To account for collisions at walls, the authors in [15] have proposed virtual
"shill" agents at the walls which the actual agents can try to align their veloci-
ties with. These shill agents have no gain and therefore repulsion at walls takes
place to the maximum extent (cshill = 1). This makes sense while flocking in
confined environments, because one of the primary goals is to avoid the wall
at any cost. In our research however, while seeking for non dominated set of
solutions(ref. section 6), we can characterise the elasticity of the virtual geo-
fence using a shill gain (cshill) parameter. The following equations are used
to find a shill velocity vector from each wall so as to align with it. rci is the
relative position vector from the agent to the arena’s center rc. This vector
is used to find the distances to the walls in Eq. (18). Eq. (20) gives a m x m
sized matrix which has the rows as the shill vector from each wall.

rci = rc − ri (17)
rmag
s = Lc/2− |rci| (18)

vshillmax
i = D(rmag

s − rshill0 , ashill, pshill) (19)

Vs = (vshill.
rci
|rci|

)� I (20)

vmag
s = ‖Vs − vi‖ >vshillmax

i
(21)

V shill = cshill.(vmag
s − vshillmax

i ).
Vs

vmag
s

(22)

vshill
i =

m∑
k=1

V shill
k (23)

where,
rc Absolute position of the center of the arena
Lc Side length of the arena
rci Relative position of the center with respect to the agent
pshill ≡ Slope for the linear part of the decay curve (user dependent
parameter)
ashill ≡ Acceleration for the non-linear part of the decay curve (user
dependent parameter)
cshill ≡ Overall Gain for shilling alignment (user dependent parameter)
vshill ≡ Speed of shilling agents (user dependent parameter)
rshill0 ≡ Alignment cutoff distance for maximum alignment (user dependent
parameter)
vfrict
i ≡ Desired collective alignment vector
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We assume a square geo-fence in our research but trivial modifications to Eq.
(17) and (18) can generalise it other shapes as well. Here, I is the identity
matrix and � is the Hadamard product. Eqs. (21) - (23) have the same velocity
alignment procedure done in section 3.1.2 but here it’s done for each wall’s
shill velocity instead of each agent.

The above three velocities (3.1.1 - 3.1.3) along with the normalised flocking
velocity are summed up and normalised again to give the desired velocity for
the respective agent.

vdesired
i =

vi

‖vi‖
vflock + vrep

i + vfrict
i + vshill

i (24)

vdesired
i ←− min{vmax, ‖vdesired

i ‖} vdesired
i

‖vdesired
i ‖

(25)

Finally, the set of resulting 12 parameters to optimize is:

x = {rsep0 , prep, rfrict0 , africt, pfrict, vfrict, cfrict, rshill0 , vshill, ashill, pshill, cshill}

3.2 Fitness functions
To measure the performance of one simulation run, order parameters are
defined and passed through transfer functions to get the fitnesses[15].

F speed = F1(φvel, vflock, vtol)

F coll = F3(φcoll, atol)

Fwall = F2(φwall, rtol)

F corr = Θ(φcorr)φcorr

F disc = F3(φdisc, N/5)

F cluster = F3(φcluster, N/5)

(26)

Here, the order parameters φvel, φcoll, φcorr, φwall and transfer functions F1,
F2, F3 are taken from [15] and Θ is a the heave-side step function. Parameters
rtol, atol, and vtol are explained in section 5. Order parameters for disconnected
agents (φdisc) and the minimum connected agents (φcluster) are explained
below. These parameters are calculated locally in rcluster sized clusters:

rcluster = rrep + rfrict + D̃(vflock, africt, pfrict) (27)

D̃ is the braking distance r for which D(r, a, p) = v for any agent.

Disconnected agents

This parameter measures the average number of completely disconnected
agents throughout the simulation. Eq. (30) gives the number of agents within
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rcluster distance of each agent at any given moment. Eq. (31) is then used to
determine the number of agents throughout the simulation with zero connected
agents, i.e. disconnected.

Θ(x) =

{
1 if x ≥ 0

0 if x < 0
(28)

(29)

nclusteri (t) =

N−1∑
j 6=i

Θ(rcluster − rij(t)) (30)

φdisc =
1

T

∫ T

0

N∑
i=1

Θ(nclusteri (t)− 1) (31)

Minimum connected agents

This parameter measures the minimum number of connected agents aver-
aged throughout the simulation and is therefore dependent on time. Since the
drones start at random positions, it was observed that keeping this parameter
time dependent instead of steady state (the global minimum throughout the
simulation) gave a better idea of the robustness of the communication graph
throughout the simulation.

φcluster(t) =
1

T

∫ T

0

min{ncluster1 , ncluster2 ... ncluster
i }(t) (32)

∀ i : 1, 2, ..., N

Finally, we need to optimize these fitness functions given in Eq. (26) simultane-
ously To optimize the above fitness functions simultaneously, the six objectives
must be analyzed for correlations among them so that the system can be rep-
resented with fewer objectives, preferably two. In the next section, Principal
Component Analysis (PCA) is used for the dimensionality reduction so that
the multi-objective optimizer NSGA-II can be used, effectively.

4 Dimensionality reduction using PCA
To reduce the number of objective functions, a data set of the six objectives
discussed in section 3 is collected. This data is just the result of 500 random
simulations without any heuristic so as to cover the entire search space. Note
that the data used for PCA is for the fitness values after being passed through
the transfer functions. This can also be done directly on the order parameters
as well. Both processes would give different correlations depending on the
nature of the transfer function. We prefer the former method as it gives a
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Fwall

F speed

F corr

F coll

F disc

F cluster

1st component
(w)

0.191
0.329
−0.495
−0.285
−0.509
−0.518



Covariance matrix
(K)

1.002 0.2821 −0.172 −0.115 −0.094 −0.131
0.282 1.002 −0.285 −0.283 −0.301 −0.259
−0.172 −0.285 1.002 0.253 0.5815 0.682
−0.115 −0.283 0.253 1.002 0.278 0.204
−0.094 −0.301 0.581 0.278 1.002 0.748
−0.131 −0.259 0.682 0.204 0.748 1.002


Fig. 1: Matrices obtained from Principal component analysis

more accurate representation of the matrix components and the exact fitnesses
functions used for optimization. This data is used to create the covariance
matrix and principal components shown in section 2 which is followed by a
qualitative discussion on the correlations.

In Fig. 1, the matrices obtained from the application of PCA on the objec-
tive space is given. The matrices show some interesting results. Some insights
are discussed as follows:

K23 is negative implying that a higher velocity doesn’t necessarily imply
higher correlation. This might be false in situations where the UAVs have very
high velocity magnitudes while travelling long distances or have a large turn
radius (as in the case of fixed wing drones). But in a confined environment, to
maintain correlation at the edges (where the flock gets broken up most), the
speeds must be reduced. This is also a consequence of a limited acceleration
which aligns with the actual physical systems.

The above statement regarding confined environments is also confirmed by
K13. To maintain correlation at walls, the UAVs can either slow down or skip
the wall altogether. A combination of slowing down and breaching the geo-
fence makes the above movement the most efficient. Note that intuition would
suggest that as speed increases, it would be easier to decrease the wall fitness
as there is indeed a limited acceleration/deceleration available. Upon running
numerous simulations and making correlation matrices, it was found that this
is because Fwall itself is time dependent. This means that the fitness is inversely
proportional to the amount of time frames that the drones spend outside the
wall. Since the goal of F2 is to maintain correlation and connectivity wherever
possible at the expense of φvel and Fwall, whenever the drones slow down they
naturally spend more time frames outside and turn slowly irrespective of the
acceleration, This makes Fwall and F speed directly correlated with each other
on average. The elements w11 and w12 and K12 are representative of this very
fact.

Drones naturally collide less with each other when their velocities are
aligned and they are well connected. This is because the time it takes for
velocity changes to travel throughout the communication network is much
lesser. Although, when this network is strongly connected, the agent has to
sum up through many velocity differences in it’s neighborhood. While this is
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advantageous when the neighbors are moving in similar directions, it can be
detrimental when there is a lot of noise and the inter-agent velocity differences
point in different directions. As a result the summed up alignment velocity for
the concerned agent gets dampened by cancelling out. This results in inter-
agent friction and makes the entire flock sluggish (slow to react). This is very
clearly shown by the elements w2 and w3 which are strongly uncorrelated.
It is also worth pointing out that elements w3 through w6 are strongly cor-
related which confirms the association of correlation and collisions with the
communication network. The cluster parameters for disconnection and mini-
mum number of connected UAVs are strongly correlated (K65) as expected as
they are both direct functions of the communication network.

Using a single objective can result in loss of important information as the
final fitness is just the collective product or weighted sum. Particularly, in
noisy dynamical systems such as multi-agent robotics, efforts need to be made
to retain as much information as possible and use it intelligently to guide
the decision making process. We propose a multi-objective methodology for
optimization of the swarm’s fitness to tackle this problem.

The principal component (w) for the maximum variance captures all the
above relations and shows them how they relate with each other on average.
The sign of the elements indicate correlation which gives rise to the following
features/objectives:

F1 = Fwall . F speed (33)

F2 = F corr . F coll . F disc . F cluster (34)

Unlike traditional PCA, we don’t use just the non-redundant objectives.
Each objective captures tangible physical information about the simulation
and therefore we multiply the two sets individually to retain that information
and also make it easier to draw a comparison with the single objective CMA-ES
optimizer as given in section 6.

It is worth mentioning here that the above correlation matrix is dependent
on the number of agents and the size of the confined arena. While some param-
eters like the cluster connectivity and correlation still remain the same because
they are independent of the above parameters, a different non redundant set
of objectives was obtained upon changing the size of the geo-fence. The simu-
lations dictated that the same number of agents in a larger space took more
time to align with the shill agents due to the stronger inter-agent alignment
over long distances. The correlation matrix for the same is not shown here
for the sake of brevity. In [15], there is a certain ambiguity in the size of the
geo-fence. While the authors mentioned that they used a side length of 250m
for the square arena, the averaged results on their open-source simulator were
closer to the claimed ones when a radius of 250m (or side length of 500m) was
used for the arena. To make comparisons easier we continue with the latter
definition for our study as well.
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Fig. 2: Class diagram

The reduced objectives are passed to the multi-objective solver NSGA-II
[24] and the results are summarized below.

5 Numerical Experiments
To test the propsed algorithm and for future work as well, a custom simulator
MOflock was created in the Python programming language. The ease of use
in setting up multiple processes, leveraging optimization and machine learning
libraries was a major influence in choosing Python. The simulator is highly
object oriented and modular. It has the drones abstracted at various levels
and allows experimenting with both single (Bot) and multiple collaborative
agents (CoBot). The class diagram for the same is given in Fig. 2. It was kept
in mind that error between RobotSim[15] and the current work should remain
under a threshold of 5-10%. The link of the repository for the code is given
in supplementary material (S1) and a screenshot of the simulation is shown in
Fig. 3. All the experiments are carried out with a flocking velocity (vflock) and
maximum velocity (vmax) of 6 m/s but no changes were made in the algorithm
so as to disrupt the scalability in velocity. Artificial GPS noise is added using
the Brownian noise model used in [26]. Communication delays are integral to
the result of optimization as they simulate a kind of inertia at the walls and
with neighbours as well. Without these delays and noises it is observed that
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Fig. 3: MOflock simulation screenshot

the drones favour high gain and short range repulsion as opposed to the model
optima.

After analysing the covariance matrix for correlations (Section 4), the
objectives are combined accordingly and passed to the multi-objective opti-
mizer. A good multi-objective optimization algorithm should contain the
following characteristics:

1. Guide the solutions to an optimal Pareto front
2. Maintain solution diversity

NSGA-II is proven to be one of the best performing algorithms in this
regard. The ‘pymoo’ [27] python library is used for the same with default
parameters.

It is imperative to setup the optimization problem in such a way that there
is enough diversity in the search space so as to find "good enough" solutions
through heuristic methods. For the sake of exploration a test run is conducted
using the CMA-ES algorithm without any bounds on the parameters. The
solution for this setup revealed that the flock only moves in circles around the
centre and does not interact with the walls at all. While such a solution is
mathematically the most optimal, it does not encapsulate the physical limi-
tations and logical constraints on the variable bounds. This happens because
the correlation and wall fitnesses become abnormally high.

To avoid such false positives in the simulation, either explicitly known
bounds can be set on the variables which are realistic and relevant to the
physics of a UAV or another objective which maximises the search area covered
in minimum time can also be incorporated in the optimization process. For
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Table 1: Optimization bounds

Lower bound Upper bound

rrep0 30.8 51
prep 0.02 0.10
rfrict0 58.5 100
africt 5.04 10.0
pfrict 0.38 9.67
vfrict 0.3 2.7
cfrict 0.03 0.22
rshill0 -10 0
vshill 10.0 15.0
ashill 1.54 6.55
pshill 0.48 9.96
cshill 0.3 1

Table 2: Simulation parameters

Parameter Value

vflock 6 m/s
vmax 6 m/s
tdel 0.2 s
N 30
Larena 500 m
σinner 0.005 m2/s2

tdel 1 s
rcoll 3 m
vtol 3.75 m/s
atol 0.0003
rtol 5 m

this study, the former approach is used without any loss of generality. The
bounds used for the variables are shown in Table 1 and some miscellaneous
simulation parameters including certain tolerance parameters rtol, atol, and
vtol for the transfer functions in section 3.2 are given in Table 2. Appropriate
values for these tolerance parameters promote better search of solutions and
gradient directions.

All the experiments were performed on a machine with the AMD Ryzen 7
4800H 16 core CPU and 16 GB of RAM. The results are reported in Section 6.

6 Results and Discussions
The results of the optimization procedure are analyzed and discussed in this
section.

Fig. 4 shows statistical evaluations (mean ± standard deviation) of 100
simulations for different points. The blue and red curves are comparisons
of our simulator and RobotSim at the model optima for vflock = 6m/s.
F (Xa)|RobotSim is the multi-objective fitness for the model optima Xa taken
from [15] and evaluated on RobotSim itself. F (Xa)|MOflock is the fitness for
Xa evaluated on MOflock. As targeted, the error on mean fitnesses between
both simulator at the model optima in [15] is 4.28%. FCMA−ES(Xopt)|MOflock
is the optimized fitness result on out simulator using the CMA-ES algorithm.
Note that this fitness wasn’t evaluated using a multi-objective algorithm but
was separated into F1 and F2 according to Section 4. This is done so that com-
parisons can be drawn easily between the single objective and multi-objective
results. The Pareto front for the last generation using the NSGA-II algorithm is
also shown. FNSGA2

1 , FNSGA2
2 |MOflock are mean values for the extreme points

on this Pareto Front.
Since the single objective fitness is just a scalar product of all individual

fitnesses, it follows that neither of the six fitnesses can be close to zero or even
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Fig. 4: Comparison of different configurations with respect to the optimal
Pareto front.

guaranteed to be maximum in case there exists a negative correlation between
some of them. As a result, when optimizing a single objective function a ’best
of both’ situation is sought after. In the case of multiple conflicting objectives,
however, this can be forgiven for better performance on the separated fitness
functions. This also explains why the CMA-ES point lies around the knee of
the Pareto fronts. It should be noted however, that the CMA-ES optima on
our simulator outperforms the Pareto front at it’s knee. This is owed to the
high degree of automation and robustness of the CMA-ES algorithm.

While the user can now choose amongst any of the points depending on
the scenario and relative importance, there are two interesting points on the
optimal front corresponding to the extreme situations when either one of the
two solutions is compromised for the other. They are given by point A and
B in Fig. 4. The values of the variables and fitnesses at the above points are
summarised in Table 3. Fig. 5a shows the last 10 even Pareto fronts ranked in
descending order. The even ones were only chosen to display the spread and
convergence in a neat manner. A snapshot of the relevant simulations for both
points is also shown in Fig. 5b along with the graphs for their order parameters
in Fig. 6. They can be qualitatively understood as follows:

Point A: A weaker cluster dependent fitness shows that multiple clusters
can coexist in the same environment when correlation and speed is sacrificed.

Point B: Similarly, the other point clearly skips the geo-fence and/or slows
down to maintain a good correlation and make up for the damping caused by
inter-agent friction and pressure at the walls.
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(a) Last 10 even Pareto fronts (b) Point A (blue) and Point B (red)

Fig. 5: Optimization Results

(a) Point A (b) Point B

Fig. 6: Cumulative order parameters for points A and b.

The generation of the above two points is a direct consequence of the
physical and environmental restrictions imposed on the swarm. The limited
acceleration does not allow the entire swarm to turn sharply without slowing
down. The confined walls don’t allow agents to flock together when moving at
high speeds without losing on some amount of correlation. These statements
are a testament to the complex dynamics that multi-agent systems exhibit. A
video showing the above interactions is given in supplementary material (S2).
Better mathematical formalism and high fidelity simulations can be developed
to realise such intertwined relationships.
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The trend in the order parameters in Fig. 6 also confirms the elements of
the covariance matrix in Section 4. Note that the graph is scaled to the (0,1)
interval with the relevant maximum feasible values for each parameter and
cumulative values are shown for the curves.

Table 3: Optimization results

Point A Point B

F1(µ± σ) 0.890± 0.039 0.065± 0.039
F2(µ± σ) 0.112± 0.09 0.896± 0.179

rrep0 33.69 33.45
prep 0.023 0.028
rfrict0 59.26 58.95
africt 5.38 8.223
pfrict 4.62 2.67
vfrict 1.73 3.00
cfrict 0.035 1.84
rshill0 -2.45 -0.21
vshill 12.93 12.93
ashill 4.84 2.57
pshill 4.83 1.30
cshill 0.55 0.43

Further statistical analysis on the data from the optimization shows
that there is a lot of redundancy in the decision variables. The following
observations indicate this finding:

• Even though points A and B are far apart on the Pareto front, their
respective parameters for repulsion are very similar.

• It was observed that the right combination of rshill0 and ashill gives similar
fitnesses and order parameters even with a constant shilling velocity.

• The introduced shill gain (cshill) doesn’t take it’s maximum possible value
(1.0) even when seeking the best F1 which is highly dependent on this
parameter.

Note that a full PCA correlation analysis on the decision variables can be
performed to confirm the above observation, and reduce the dimension of the
input space as well.

The above results are more consequential than just a Pareto front. Real
life missions and the inherent stochastic nature of the environment demands a
range of potential solutions from which a human in the loop can choose in an
ad-hoc manner. A typical mission profile consists of cruise, loiter, surveillance,
and occasionally a payload drop. A brief description of the use of the practical
applications of the Pareto optimal points are shown below.

• Target search and loitering is a common phase in surveillance missions. A
snapshot of an extreme case where the target is located at a corner of the
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geo-fence is shown in Fig. 7a. The flock breaks at corners and walls to loiter
around the target. To make this observation mathematically sound, another
order parameter called φtarget is created.

xCOM (t) =

∑N
i=1 ri(t)
N

(35)

d̄target(t) = ‖xtarget − xCOM (t)‖ (36)
(37)

where,
xCOM (t) ≡ Center of mass of the swarm at time t
d̄target(t) ≡ Mean distance to target (over all N agents) at time t

This parameter includes two performance measures- the closeness of the
entire flock to the target on average (Eq. 36) and the ‘Loiter Frequency (ω)’.
This frequency measures how fast the flock can loiter around the target and
turn around as a whole. As opposed to the other parameters, the steady state
version of this parameter is measured. Since the motion is circular and periodic,
the time series is fit to a sinusoidal wave similar to an audio signal.

φtarget(t) = a. sin(ω.d̄target(t) + ψ) + c (38)

F = FFT (φtarget) (39)

d̄target =
1

T

T−1∑
t=0

d̄target(t) (40)

ao =

√√√√ 2

T

T−1∑
t=0

(d̄target(t)− d̄target)2 (41)

fo = |fsargmax(|Ak|)| (42)

ψo = 0 (43)

co = d̄target (44)

a, ω, ψ, c = LSF (φtarget, d̄target, ao, fo, ψo, co) (45)

where,
F ≡ Fourier transform output
d̄target ≡ Mean of the mean distance throughout the simulation
fs ≡ Sample frequencies for the time series data
d̄target ≡ Average distance throughout simulation
fo ≡ Initial guess of frequency for φtarget(t) corresponding to the maximum F
ψo ≡ Initial guess of phase for φtarget(t)
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(a) Target following simulation (b) d̄target(t) for Point A and B

Fig. 7: Target order parameter comparison

ao ≡ Initial guess of amplitude for φtarget(t)
co ≡ Initial guess of offset for φtarget(t)

This is done by first getting an estimate of the initial coefficients, namely
amplitude (ao), phase (ψo), offset (co), and frequency (fo = ωo/2π)) via a Fast
Fourier Transform (FFT ) on the data (Eq. (38)-(39)) and then passing this
estimate for Least Squares curve Fit represented by LSF (Eq. (45)). The final
order parameter is just the angular frequency divided by the amplitude.

F target = ω/a (46)

The analysis shows that point A on the Pareto front has a lower loiter
frequency because of the extra inter-agent friction created to maintain the
flock correlation. Point B on the other hand has almost half the amplitude and
double the frequency because of the higher velocity, loosely correlated flock
with more collisions. These curves and an accompanying simulation screenshot
are shown in Fig. 7. A full video showing the target tracking and fitness analysis
is given in supplementary material S3.

• There have been recent studies in which collisions are handled explicitly
through physical boundaries and mechanisms rather than by an explicit
algorithm [28]. The idea is to allow for some amount of collisions as long
as agility is maintained and the drones reach their target. Point A on the
front is akin to such a situation. The flock doesn’t give much attention to
inter-agent separation or correlation in local clusters. Rather, the speed is
given a higher priority. This is especially useful when tiny drones need to
overcome narrow passages and crevices without acting as a fully connected
flock but get through the region as fast as possible with each drone acting
for themselves.
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• Point B naturally resembles a good flock where connectivity and correlation
is concerned. The decentralised neighbor architecture makes the flock very
desirable where robustness and swarm health is an absolute requirement and
the entire swarm needs to travel long distances as a fully connected cluster.

While developing the methodology for this work, there were a number of
nuanced characteristics of collective behaviour noticed in the multi-agent sim-
ulations. For instance, the parameters which characterise the swarm changed
drastically based on factors like communication delay and the arena size.
These two variables affect the swarm as a whole because any control action
for an agent close to the wall is propagated throughout the swarm with the
appropriate communication delay. Naturally, every PCA analysis with differ-
ent simulation parameters yielded unique objectives and therefore a different
Pareto front. The advantage of separating the objective function into multi-
ple grouped objectives is that global swarm behaviour can be controlled by
choosing a point on the Pareto front instead of tuning parameters manually
or running an offline optimization for each possible situation that the swarm
would encounter. It follows therefore, that the behaviour of the swarm can be
controlled by a supervisor with access to the appropriate Pareto front. This
problem of generalising a semi-autonomous swarm based on various scenarios
is often difficult to handle with just online learning algorithms. A compromise
between both, wherein, we can control large scale behaviour through multiple
objectives, and individual decision making through reinforcement learning can
be sought after to solve the generalisation problem.

7 Conclusion
In this paper, we proposed a methodology to address the problem of drone
flocking. First, a simulator with an integrated optimizer was designed to test
the algorithm. The decision variables which characterise the flocking opera-
tors, and fitness functions which indicate the performance of the swarm are
defined. Then, to use the multi-objective optimizer effectively, the six dimen-
sional objective space is reduced to two dimensions using Principal Component
Analysis. The correlation analysis showed that fitness functions for both speed
and wall avoidance can be treated separately from the cohesive movement of
the entire flock. This process also gave insight into the various complex rela-
tionships that multi-agent systems can exhibit. Further, the so formed two
objective optimization problem is optimized using NSGA-II and the results
are compared with the single objective CMA-ES optimization algorithm. It
is found that while CMA-ES performs better with respect to the knee of the
Pareto front, NSGA-II outperforms CMA-ES on the extreme points and offers
an entire range of solutions to choose from. The study also discussed the use
cases of such a Pareto front to guide the decision-making process in real-
world scenarios. Incorporating algorithms like Reinforcement Learning with
the proposed methodology can be future research agenda.
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Supplementary Material
• S1: Repository: Multi-objective flocking simulator (https://github.com/
nikhil-sethi/MOflock)

• S2: Comparison of the swarms from the two extreme points on the Pareto
front (https://youtu.be/MIgc80M1dHg

• S3: Target following for the two extreme points on the Pareto front (https:
//youtu.be/Fl71fg-DU_c)
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available from the corresponding author on reasonable request.
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