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Abstract

In several real Multi-Agent Systems (MAS), it has been observed
that only weaker forms of metastable consensus are achieved, in which
a large majority of agents agree on some opinion while other opinions
continue to be supported by a (small) minority of agents. In this
work, we take a step towards the investigation of metastable consensus
for complex (non-linear) opinion dynamics by considering the famous
Undecided-State dynamics in the binary setting, which is known
to reach consensus exponentially faster than the Voter dynamics.
We propose a simple form of uniform noise in which each message
can change to another one with probability p and we prove that the
persistence of a metastable consensus undergoes a phase transition for
p = 1

6
. In detail, below this threshold, we prove the system reaches with

high probability a metastable regime where a large majority of agents
keeps supporting the same opinion for polynomial time. Moreover,
this opinion turns out to be the initial majority opinion, whenever
the initial bias is slightly larger than its standard deviation. On the
contrary, above the threshold, we show that the information about the
initial majority opinion is “lost” within logarithmic time even when
the initial bias is maximum. Interestingly, using a simple coupling
argument, we show the equivalence between our noisy model above
and the model where a subset of agents behave in a stubborn way.
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1 Introduction

We consider a fully-decentralized Multi-Agent Systems (for short, MAS)
formed by a set of n agents (i.e. nodes) which mutually interact by ex-
changing messages over an underlying communication graph. In this set-
ting, opinion dynamics are mathematical models to investigate the way a
fully-decentralized MAS is able to reach some form of Consensus. Their
study is a hot topic touching several research areas such as MAS [15, 21],
Distributed Computing [7,20,29], Social Networks [1,38], and System Biol-
ogy [11,12]. Typical examples of opinion dynamics are the Voter Model, the
averaging rules, and the majority rules. Some of such dynamics share a sur-
prising efficiency and resiliency that seem to exploit common computational
principles [7, 20,29].

Within such framework, the tasks of (valid) Consensus and Majority
Consensus have attracted a lot of attention within different application do-
mains in social networks [38], in biological systems [27], passively-mobile
sensor networks [2] and chemical reaction networks [16]. In the Consensus
task, the system is required to converge to a stable configuration where all
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agents supports the same opinion and this opinion must be valid, i.e., it must
be supported by at least one agent in the initial configuration. While, in the
Majority Consensus task, starting from an initial configuration where there
is some positive bias towards one majority opinion, the system is required
to converge to the configuration where all agents support the initial major-
ity opinion. Here, the bias of a configuration is defined as the difference
between the number of agents supporting the majority opinion (for short,
we name this number as majority) and the number of agents supporting the
second-largest opinion.

Different opinion dynamics have been studied in a variety of settings
[17, 26], and then used as subroutine to solve more complex computational
tasks [10,19,40].

In the aforementioned applicative scenarios, it has been nevertheless ob-
served that only weaker forms of metastable consensus are achieved, in which
the large majority of agents rapidly achieves a consensus (while other opin-
ions continue to be supported by a small set of agents), and this setting is
preserved for a relatively-long regime. Models that have been considered
to study such phenomenon include MAS where: i) agents follow a linear
dynamics, such as the Voter model or the Averaging dynamics and ii)
a small set of stubborn agents are present in the system [36, 37, 43], or the
local interactions are affected by communication noise [34].

We emphasize that the Voter model has a slow (i.e. polynomial in the
number n of agents) convergence time even in a fully-connected network
(i.e. in the complete graph) and it does not guarantee a high probability
to reach consensus on the initial majority opinion, even starting from a
large initial bias (i.e. Θ(n), where n is the number of the agents of the
system) [31]. On the other hand, averaging dynamics requires agents to
perform numerical operations and, very importantly, to have a large local
memory (to guarantee a good-enough approximation of real numbers). For
the reasons above, linear opinion dynamics cannot explain fast and reliable
metastable consensus phenomena observed in some MAS [10,16,27].

The above discussion naturally leads us to investigate the behaviour of
other, non-linear dynamics in the presence of stubborn agents and/or com-
munication noise. Over a MAS having the n-node complete graph as the un-
derlying graph, we introduce a simple model of communication noise in the
stochastic process yielded by a popular dynamics, known as theUndecided-

State dynamics. In some previous papers [39], this protocol has been called
the Third-State Dynamics. We here prefer the term “undecided” since it well
captures the role of this additional state.

According to this simple dynamics, the state of every agent can be either
an opinion (chosen from a finite set Σ) or the undecided state. At every
discrete-time step (i.e., round), every agent “pulls” the state of a random
neighbor and updates its state according to the following rule: if a non-
undecided agent pulls a different opinion from its current one, then it will
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get undecided, while in all other cases it keeps its opinion; moreover, if the
node is undecided then it will get the state of the pulled neighbor.

This non-linear dynamics is known to compute Consensus (and Majority
Consensus) on the complete network within a logarithmic number of rounds
[2,13] and, very importantly, it is optimal in terms of local memory since it
requires just one extra state/opinion [35].

While communication noise is a common feature of real-world systems
and its effects have been thoroughly investigated in physics and information
theory [18], its study has been mostly focused on settings in which commu-
nication happens over stable links where the use of error-correcting codes is
feasible since message of large size are allowed; it has been otherwise noted
that when interactions among the agents are random and opportunistic and
consists of very-short messages, classical information-theoretic arguments do
not carry on and new phenomena calls for a theoretical understanding [11].

Our Contribution.

In this work, we show that, under a simple model of uniform noise, the
Undecided-State dynamics exhibits an interesting phase transition.

We consider the binary case (i.e., |Σ| = 2) together with an oblivious and
symmetric action of noise over messages: any sent message is changed upon
being received to any other value, independently and uniformly at random
with probability p (where p is any fixed positive constant smaller than 1/2).

On one hand, if p < 1/6, starting from an arbitrary configuration of the
complete network of n agents, we prove that the system with high probabil-
ity1 (w.h.p., for short) reaches, within O(log n) rounds, a metastable almost
consensus regime where the bias towards one fixed valid opinion keeps large,
i.e. Θ(n), for at least a poly(n) number of rounds (see Theorem 3). In
particular, despite the presence of random communication noise, our re-
sult implies that the Undecided-State dynamics is able to rapidly break
the initial symmetry of any balanced configuration and reach a metastable
regime of almost consensus (e.g., the perfectly-balanced configuration with
n/2 agents having one opinion and the other n/2 agents having the other
opinion).

Importantly enough, our probabilistic analysis also shows that, for any
p < 1/6, the system is able to “compute” the task of almost Majority
Consensus. Indeed, in Theorem 1, starting from an arbitrary configuration
with bias Ω(

√
n log n),2 we prove that the system w.h.p. reaches, within

O(log n) rounds, a metastable regime where the bias towards the initial
majority opinion keeps large, i.e. Θ(n), for at least a poly(n) number of

1An event E holds with high probability if a constant γ > 0 exists such that P(E) ≥
1− (1/n)γ .

2We remark that, when every agent chooses its initial binary opinion uniformly at
random, the standard deviation of the bias is Θ(

√
n).

4



rounds (see Theorem 1). For instance, our analysis for p = 1/10 implies
that the process rapidly reaches a metastable regime where the bias keeps
size larger than n/3.

On the other hand, if p > 1/6, even when the initial bias is maximum
(i.e., when the system starts from any full-consensus configuration), after
a logarithmic number of rounds, the information about the initial majority
opinion is “lost”: in Theorem 2, we indeed show that the system w.h.p.
enters into a regime where the bias keeps bounded by O(

√
n log n). We also

performed some computer simulations that confirm our theoretical results,
showing that the majority opinion switches continuously during this regime
(see Section 5 for further details).

Interestingly, in Subsection 2.0.2 we show that our noise model is equiv-
alent to a noiseless setting in which stubborn agents are present in the sys-
tem [43] (that is, agents that never change their state): we thus obtain an
analogous phase transition in this setting. The obtained phase transition
thus separates qualitatively the behavior of the Undecided-State dynam-
ics from that of the Votermodel which is, to the best of our knowledge, the
only opinion dynamics (with a finite opinion set) which has been rigorously
analyzed in the presence of communication noise or stubborn agents [37,43]:
this hints at a more general phenomenon for dynamics with fast convergence
to some metastable consensus.

We believe this work contributes to the research endeavour of explor-
ing the interplay between communication noise and stochastic interaction
pattern in MAS. As we will discuss in the Related Work, despite the fact
that these two characteristics are quite common in real-world MAS, their
combined effect is still far from being understood and poses novel mathemat-
ical challenges. Within such framework, we have identified and rigorously
analyzed a phase transition behaviour of the famous Undecided-State

process in the presence of communication noise (or, of stubborn agents) on
the complete graph.

Related Work.

The Undecided-State dynamics has been originally studied as an efficient
majority-consensus protocol by [2] and independently by [8] for the binary
case (i.e. with two initial input values). They proved that w.h.p., within a
logarithmic number of rounds, all agents support the initial majority opin-
ion. Some works have then extended the analysis of the Undecided-State

dynamics to non-complete topologies. In the Poisson-clock model (formally
equivalent to the Population Protocol model), [23] derive an upper bound
on the expected convergence time of the dynamics that holds for arbitrary
connected graphs, which is based on the location of eigenvalues of some
contact rate matrices. They also instantiate their bound for particular net-
work topologies. Successively, [35] provided an analysis when the initial
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states of agents are assigned independently at random, and they also derive
“bad” initial configurations on certain graph topologies such that the ini-
tial minority opinion eventually becomes the majority one. As for the use
of Undecided-State as a generic consensus protocol, [14] recently proved
that, in the synchronous uniform PULL model in which all agents update
their state in parallel by observing the state of a random other node the
convergence time of the Undecided-State dynamics is w.h.p. logarithmic.

The motivation to investigate opinion dynamics is twofold: they can be
regarded as simplistic models of several real-world phenomena or as build-
ing blocks for more complex algorithms. While on the modelling side the
Undecided-State dynamics is an appealing model of opinion dynamics
and it has also been considered as a model of some mechanism occurring in
the biology of a cell [12], it has been employed as a sub-routine of efficient
Majority Consensus protocols: [30], [9] and [25] consider Majority Consen-
sus in the Uniform-PULL, and design protocols (based on the Undecided-

State dynamics) which w.h.p. converge in poly-logarithmic time even if
the number of initial opinions is very large.

Notably, communication noise in random-interacting MAS appears to
be a neglected area of investigation [5, 6, 15, 34]. Such shortage of studies
contrasts with the vast literature on communication noise over stable net-
works3. Among the few investigations of communication noise in MAS, we
note the Vicsek model [41], where agents are driven with a constant absolute
velocity, and at each time step assume the average direction of motion of
the agents in their neighborhood: this strategy is then combined with some
random perturbation. The authors show that the average velocity of their
model exhibits a phase transition around some critical value of the model
parameters which include the noise.

More recently, in [27], the authors consider a settings in which agents
interact uniformly at random by exchanged binary messages which are sub-
ject to noise. In detail, the authors provide simple and efficient protocols to
solve the classical distributed-computing problems of Broadcast (a.k.a Ru-
mor Spreading) and Majority Consensus, in the Uniform-PUSH model with
binary messages, in which each message can be changed upon being received
with probability 1/2− ǫ. Their results have been generalized to the Major-
ity Consensus Problem for the multi-valued case in [28]. When the noise
is constant, [27] proves that in their noisy version of the Uniform-PUSH
model, the Broadcast Problem can be solved in logarithmic time. Rather
surprisingly, [11] and [13] prove that solving the Broadcast Problem in the
Uniform-PULL model takes linear time, while the time to perform Majority
Consensus remains logarithmic in both models.

The fact that real-world systems such as social networks fail to converge

3For stable networks, we here mean a network where communication between agents
can be modeled as a classical channel the agents can use to exchange messages at will [18].
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to consensus has been extensively studied in various disciplines; formal mod-
els developed to investigate the phenomenon include the multiple-state Ax-
elrod model [4] and the bounded-compromise model by Weisbuch et al [42];
the failure to reach consensus in these models is due to the absence of inter-
action among agent opinions which are “too far apart”. A different perspec-
tive is offered by models which investigate the effect of stubborn agents (also
known as zealotry in the literature), in which some stubborn/zealot agents
never update their opinion.

Several works have been devoted to study such effect under linear models
of opinion dynamics. Starting with [36] which proposed a statistical-physics
method in order to study the Voter model under the presence of a stub-
born agent, followed by [37] which considers the case of several stubborn
agents in the system. Later investigations analyzed various aspects of the
stationary distribution of the systems, such as [1, 3] which investigate the
relationship between the behavior of the opinion dynamics and the structure
of the underlying interaction graph, or [43], in which the authors consider
the Voter dynamics and study the first and second moments of the number
of the average agents’ opinion.

Roadmap of the paper. In Section 2, we give some preliminaries and the
equivalence result between communication noise and stubborn agents. In
Section 3, we provide the probabilistic analysis of the Undecided-State

process when the initial bias is relatively large and its consequences on al-
most Majority Consensus. This analysis will be then combined with the
analysis of the symmetry-breaking phase given in Section 4 to obtain our
results on almost Consensus. Some computer simulations validating exper-
imentally our theoretical results are shown in Section 5.

2 Preliminaries

We study the discrete-time, parallel version of the Undecided-State dy-
namics on the complete graph in the binary setting [14]. In detail, there is
an additional state/opinion, i.e. the undecided state, besides the two possi-
ble opinions (say, opinion Alpha and opinion Beta) an agent can support,
and, in the absence of noise, the updating rule works as follows: at every
round t ≥ 0, t ∈ N, each agent u chooses a neighbor v (or, possibly, itself)
independently and uniformly at random and, at the next round, it gets a
new opinion according to the rule given in Table 1.4 The definition of noise
we consider is the following.

Definition 1 (Definition of noise). Let p be a real number in the interval
(0, 1/2]. When an agent u chooses a neighbor v and looks at (pulls) its

4Notice that this dynamics requires no labeling of the agents, i.e., the network can be
anonymous.
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u \ v undecided Alpha Beta

undecided undecided Alpha Beta
Alpha Alpha Alpha undecided
Beta Beta undecided Beta

Table 1: The update rule of the USD.

opinion, it sees v’s opinion with probability 1 − 2p, and, with probability p,
it sees one of the two other opinions.

For instance, if v supports opinion Alpha, then u sees Alpha with proba-
bility 1− 2p, it sees Beta with probability p, and it sees the undecided state
with probability p. In this work, the terms agent and node are interchange-
able.

2.0.1 Notation, Characterization, and Expected Values.

Let us name C the set of all possible configurations; notice that, since the
graph is complete and its nodes are anonymous, a configuration x ∈ C is
uniquely determined by giving the number of Alpha nodes, a(x) and the
number of Beta nodes, b(x). Accordingly to this notation, we call q(x) the
number of undecided nodes in configuration x, and s(x) = a(x) − b(x) the
bias of the configuration x. When the configuration is clear from the context,
we will omit x and write just a, b, q, and s instead of a(x), b(x), q(x), and
s(x). The Undecided-State dynamics defines a finite-state non reversible
Markov chain {Xt}t≥0 with state space C and no absorbing states.

The stochastic process yielded by the Undecided-State dynamics,
starting from a given configuration, will be denoted as Undecided-State

process. Once a configuration x at a round t ≥ 0 is fixed, i.e. Xt = xt,
we use the capital letters A, B, Q, and S to refer to random variables
a(Xt+1), b(Xt+1), q(Xt+1), and s(Xt+1). Notice that we consider the bias
as a(x) − b(x) instead of |a(x) − b(x)| since the expectation of |A − B| is
much more difficult to evaluate than that of A−B.

The expected values of the above key random variables can be written
as follows:

E
[

A
∣

∣ x
]

=
a

n
(a+ 2q)(1 − 2p)

+ [a(a+ b) + (a+ q)(b+ q)]
p

n
, (1)

E
[

B
∣

∣ x
]

=
b

n
(b+ 2q)(1 − 2p)

+ [b(a+ b) + (a+ q)(b+ q)]
p

n
, (2)

E
[

S
∣

∣ x
]

= s
(

1− p+ (1− 3p)
q

n

)

, (3)
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E
[

Q
∣

∣ x
]

= pn+
1− 3p

2n

[

2q2 + (n− q)2 − s2
]

. (4)

The proof of equations 3 and 4 can be found in Appendix B.

2.0.2 Oblivious Noise and Stubborn Agents.

We can now consider the following more general message-oblivious model of
noise.

Definition 2. We say that the communication is affected by oblivious noise
if the value of any sent message changes according to the following scheme:

(i) with probability 1− pnoise independent from the value of the sent mes-
sage, the message remains unchanged;

(ii) otherwise, the noise acts on the message and it changes its value ac-
cording to a fixed distribution p = p1, ..., pm over the possible message
values 1, ...,m.

In other words, according to the previous definition of noise (Definition
1), the probability that the noise changes any message to message i is pnoise ·
pi. It is immediate to verify that the definition of noise adopted in Theorems
1 and 2 corresponds to the aforementioned model of oblivious noise in the
special case m = 3, pnoise = p, and pAlpha = pBeta = pundecided =

1
3 .

Recalling that an agent is said to be stubborn if it never updates its
state [43], we now observe that the above noise model is in fact equivalent
to consider the behavior of the same dynamics in a noiseless setting with
stubborn agents.

Lemma 1. Consider the Undecided-State dynamics on the complete
graph with opinions (i.e. message values) in Σ = {1, ...,m}. The follow-
ing two processes are equivalent.

(a) the Undecided-State process with n agents in the presence of obliv-
ious noise with parameters pnoise and p = p1, ..., pm;

(b) the Undecided-State process with n agents and nstub = pnoise
1−pnoise

n
additional stubborn agents present in the system, of which: nstub · p1
are stubborn agents supporting opinion 1, nstub ·p2 are stubborn agents
supporting opinion 2, and so on.

Proof of Lemma 1. The equivalence between the two processes is showed
through a coupling. Consider the complete graph of n nodes, Kn, over
which the former process runs. Consider also the complete graph Kn+nstub

,
which contains a sub-graph isomorphic to Kn we denote as K̃n. Let H =
Kn+nstub

\ K̃n. The nodes of H are such that nstub · p1 are stubborn agents
supporting opinion 1, nstub · pBeta are stubborn agents supporting opinion 2,

9



and so on. Observe that
∑m

i=1 pi = 1, so this partition of Kn+nstub
is well

defined.
The Undecided-State dynamics behaves in exactly the same way over

Kn+nstub
, with the exception that the stubborn agents never change their

opinion and that there is no noise perturbing communications between
agents. Let C and C̃ be the set of all possible configurations of, respec-
tively, Kn and Kn+nstub

. Let φ : Kn → K̃n be any bijective function. The
coupling is a bijection f : C → C̃ such that, for any node v ∈ Kn in the
configuration x ∈ C, the corresponding node φ(v) ∈ K̃n in the configuration
f(c) ∈ C̃ supports v’s opinion. Consider the two resulting Markov processes
{Xt}t≥0 over Kn and {X′

t}t≥0 over Kn+nstub
, denoting the opinion configu-

ration at time t in Kn and in Kn+nstub
, respectively. It is easy to see that

the two transition matrices are exactly the same, namely the probability to
go from configuration c ∈ C to configuration c′ ∈ C for Xt is the same as
that to go from configuration f(c) ∈ C̃ to configuration f(c′) ∈ C̃ for X′

t.
Indeed, in the former model (a), the probability an agent pulls opinion

j ∈ {1, . . . ,m} at any given round is

(1− pnoise)
cj
n

+ pnoise · pj ,

where cj is the size of the community of agents supporting opinion j; in the
model defined in (b), the probability a non-stubborn agent pulls opinion j
at any given round is

cj + nstub · pj
n+ nstub

=
cj +

pnoise
1−pnoise

n · pj
n+ pnoise

1−pnoise
n

= (1− pnoise) ·
cj
n

+ pnoise · pj .

Basically, this equivalence implies that any result we state for the process
defined in (a) has an analogous statement for the process defined in (b).

2.0.3 Probabilistic Tools.

Our analysis makes use of the following probabilistic result which states that
the intersection of some polynomial number of events holding w.h.p. is still
an event wich holds w.h.p.

Lemma 2. Consider any family of events {ξi}i∈I with |I| ≤ nλ, for some
λ > 0. Suppose that each event ξi holds with probability at least 1−nη, with
η > λ. Then, the intersection ∩i∈Iξi holds w.h.p.

Proof of Lemma 2. By the union bound, Pr(∩i∈Iξi) = 1 − Pr(∪i∈I ξ̄i) ≥
1−∑i∈I n

−η = 1−nλ−η ≥ 1−n−δ, where ξ̄i denotes the negation of ξi and

δ = η−λ
2 .
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3 Process analysis for biased initial configurations

In this section, we analyze the Undecided-State process when the system
starts from biased configurations. The following two theorems show the
phase transition exhibited by this process. We remind that our notion of
noise is that of Definition 1.

Theorem 1 (Almost Majority Consensus). Let x be any initial configu-
ration having bias s(x) ≥ γ

√
n log n for some constant γ > 0, and let

ǫ ∈ (0, 1/6) be some absolute constant. If p = 1/6 − ǫ is the noise prob-
ability, then the Undecided-State process reaches a configuration y hav-

ing bias s(y) ∈ ∆ =
[

2
√
ǫ

1+6ǫn,
(

1− 2
(

1−6ǫ
12

)3
)

n
]

within O(log n) rounds,

w.h.p. Moreover, starting from y, the Undecided-State process enters
a (metastable) phase of length Ω

(

nλ
)

rounds (for some constant λ > 0)5

where the bias remains in the range ∆, w.h.p.

Observe that if the theorem is true, then it also holds analogously for
the symmetrical case in which s(x) ≤ −γ

√
n log n.

Theorem 2 (Victory of Noise). Let p = 1/6 + ǫ be the noise probability
for some absolute constant ǫ ∈ (0, 1/3]. Assume the system starts from
any configuration x with |s(x)| ≥ γ

√
n log n, for some constant γ > 0.

Then, the Undecided-State process reaches a configuration y having bias
|s(y)| = O(

√
n log n) in O(log n) rounds, w.h.p. Furthermore, starting from

such a configuration, the Undecided-State process enters a (metastable)

phase of length Ω
(

nλ′

)

rounds (for some constant λ′ > 0) where the absolute

value of the bias keeps bounded by O(
√
n log n), w.h.p.

The next subsections are devoted to the proof of Theorem 1 (Subsection
3.1) and Theorem 2 (Subsection 3.2). We here just remark that the adopted
arguments in the two proofs are similar.

Let us now consider the equivalent model with stubborn agents according
to Lemma 1, in which pnoise = 3p and pAlpha = pBeta = pundecided = 1

3 .

We thus have nstub = 3p
1−3pn additional stubborn nodes, of which nstub ·

1
3 = p

1−3pn support opinion Alpha, nstub · 1
3 = p

1−3pn opinion Beta, and

nstub · 1
3 = p

1−3pn are undecided. On this new graph of n + nstub nodes,
let the Undecided-State dynamics run and call the resulting process the
stub process. The next result is an immediate corollary of the two previous
theorems.

Corollary 1. Let 1
2 > p > 0 be a constant, and let the stub process start

from any configuration having bias s ≥ γ
√
n log n for some constant γ > 0.

5The constant λ depends only on the values of ǫ and γ. The same holds for the constant
λ′ in Theorem 2.
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If p < 1
6 , then, in O(log n) rounds, the stub process enters a metastable

phase of almost consensus of length Ω
(

nλ
)

for some constant λ > 0, in
which the bias is Θ(n), w.h.p. If p ∈ (16 ,

1
2 ], then, in O(log n) rounds, the

stub process enters a metastable phase of length Ω
(

nλ′

)

for some constant

λ′ > 0 where the absolute value of the bias keeps bounded by O(
√
n log n),

w.h.p.

Trivially, the corollary holds also in the symmetrical case in which s ≤
−γ

√
n log n.

3.1 Proof of Theorem 1

Informally, while the analysis is technically involved, it can be appreciated
from it that the phase transition phenomenon at hand relies ultimately on
the exponential drift of the Undecided-State towards the majority opin-
ion in the absence of noise: as long as the noise is kept within a certain
threshold, the dynamics manages to quickly amplify and sustain the bias
towards the majority opinion; as soon as the noise level reaches the thresh-
old, the expected increase of the majority bias abruptly decreases below
the standard deviation of the process and the ability of the dynamics to
preserves a signal towards the initial majority rapidly vanishes.

We now proceed with the formal analysis. Wlog, in the sequel, for a
given starting configuration x, we will assume a(x) ≥ b(x). Indeed, as it
will be clear from the results, if s(x) ≥ γ

√
n log n, then the plurality opinion

does not change for Ω(nλ) rounds, w.h.p., and the argument for the case
b(x) > a(x) is symmetric. First notice that, for any fixed ǫ ∈ (0, 1/6) and
p = 1/6− ǫ, Equations (3) and (4) become

E
[

S
∣

∣ x
]

= s

(

5

6
+ ǫ+

1

2
(1 + 6ǫ)

q

n

)

, (5)

E
[

Q
∣

∣ x
]

=
3

4

(

1 + 6ǫ

n

)

q2 − 1 + 6ǫ

2
q +

5 + 6ǫ

12
n− 1 + 6ǫ

n

(s

2

)2
. (6)

The key-point to prove the first claim of the theorem is to show that, if the
bias of the configuration is less than βn (for some suitable constant β), and
the number of undecided nodes is some constant factor of n, then the bias
at the next round increases by a constant factor, w.h.p. At the same time,
as long as the bias is below βn, the number of undecided nodes in the next
round is sufficiently large, w.h.p.

Lemma 3. Let x be a configuration such that q ≥ 1−4ǫ
3(1+6ǫ)n and s ≥ γ

√
n log n

for some constant γ > 0. Then, in the next round, S ≥ s
(

1 + ǫ
6

)

, w.h.p.

Proof of Lemma 3. We first notice that Equation (5) implies E
[

S
∣

∣ x
]

≥
s (1 + ǫ/3). Then, consider the events

E1 =
{

A ≤ E [A | x]− ǫ

12
γ
√

n log n
}

and E2 =
{

B ≥ E [B | x] + ǫ

12
γ
√

n log n
}

12



For the additive form of Chernoff bound (Theorem 6 in Appendix A), it
holds that

P
(

E1

∣

∣ x
)

≤ e−
2n log n
144n = n− 1

77 and P
(

E2

∣

∣ x
)

≤ e−
2n log n
144n = n− 1

77 .

It follows that

P

(

S ≥ s
(

1 +
ǫ

6

)

| x
)

= P

(

S ≥ s
(

1 +
ǫ

3

)

− ǫ

6
s | x

)

≥ P

(

S ≥ E [S | x]− ǫ

6
γ
√

n log n | x
)

= P

(

A−B ≥ E [A−B | x]− 2
ǫ

12
γ
√

n log n | x
)

≥ P
(

EC
1 ∩ EC

2

∣

∣ x
)

= P
(

EC
1

∣

∣ x
)

+ P
(

EC
2

∣

∣ x
)

− P
(

EC
1 ∪ EC

2

∣

∣ x
)

≥ 1− 2n− 1
77 ,

where in the last inequality we bounded the probability of the union with
1.

We now fix β = 2
√
3ǫ

1+6ǫ and show the following bound.

Lemma 4. Let x be a configuration such that s ≤ βn. Then, in the next
round, Q ≥ 1−4ǫ

3(1+6ǫ)n, w.h.p.

Proof of Lemma 4. Since Equation (6) has its minimum in q̄ = n
3 ,

E
[

Q
∣

∣ x
]

≥ (1 + 6ǫ)
n

12
− (1 + 6ǫ)

n

6
+ (5 + 6ǫ)

n

12
− (1 + 6ǫ)

(

β

2

)2

n

=
n

12

(

1 + 6ǫ− 2− 12ǫ+ 5 + 6ǫ− 36ǫ

1 + 6ǫ

)

=
1− 3ǫ

3(1 + 6ǫ)
n.

Hence, we can apply the additive form of Chernoff bound (Theorem 6 in
Appendix A), and get Q ≥ 1−4ǫ

3(1+6ǫ)n, w.h.p.
(

actually, with probability 1 −
exp(Θ(n))

)

. Formally,

P

(

Q ≤ 1− 4ǫ

3(1 + 6ǫ)
n | x

)

= P

(

Q ≤ 1− 3ǫ

3(1 + 6ǫ)
n− ǫ

3(1 + 6ǫ)
n | x

)

≤ P

(

Q ≤ E [Q | x]− ǫ

3(1 + 6ǫ)
n | x

)

≤ e
− 2

n
ǫ2

9(1+6ǫ)2
n2

= e
− 2ǫ2

9(1+6ǫ)2
n
.

The two lemmas above ensure that the system eventually reaches a con-
figuration y with bias s(y) > βn within O(log n) rounds, w.h.p. (see the
proof of Theorem 1). We now consider configurations in which s > βn and
derive a useful bound on the possible decrease of s.

Lemma 5. Let x be any configuration such that s ≥ γ
√
n log n for some

constant γ > 0. Then, in the next round, it holds that S ≥ s
(

5
6 + ǫ

2

)

w.h.p.

13



Proof of Lemma 5. Observe that Equation (5) implies E
[

S
∣

∣ x
]

≥ s (5/6 + ǫ).
By the additive form of Chernoff bound and the union bound (as we did in
the proof of Lemma 3), we get S ≥ s

(

5
6 + ǫ

2

)

, w.h.p.

Lemma 5 is used to show the metastable phase of almost consensus,
which lasts for a polynomial number of rounds and in which the bias keeps

lower bounded by 2
√
ǫ

1+6ǫn (see the proof of Theorem 1). The next two lemmas
provide an upper bound on the bias during this phase.

Lemma 6. Let x be any configuration. Then, in the next round, Q ≥
n
12(1− 6ǫ), w.h.p.

Proof of Lemma 6. From Equation (6)

E
[

Q
∣

∣ x
]

≥ 3

4

(

1 + 6ǫ

n

)

q2 − 1 + 6ǫ

2
q +

5 + 6ǫ

12
n− 1 + 6ǫ

n

(

n− q

2

)2

≥ 1

2

(

1 + 6ǫ

n

)

q2 +
1− 6ǫ

6
n ≥ 1− 6ǫ

6
n,

where we used s ≤ n−q. For the additive form of Chernoff bound (Theorem
6 in Appendix A), we get Q ≥ 1−6ǫ

12 n, w.h.p.

Lemma 7. Let x be a configuration with q ≥ n
12(1− 6ǫ). Then, in the next

round, B ≥
(

1−6ǫ
12

)3
n, w.h.p.

Proof of Lemma 7. From the last term of Equation (2), we have

E
[

B
∣

∣ x
]

≥ 1

6

(

1− 6ǫ

n

)

(

q2
)

≥ n

6 · 122 (1− 6ǫ)3.

The the additive form of Chernoff bound (Theorem 6 in Appendix A) implies

that B ≥
(

1−6ǫ
12

)3
n, w.h.p.

Proof of Theorem 1. Let x be the initial configuration. We now prove that
the bias keeps upper bounded by the value

(

1− 2[(1 − 6ǫ)/12]3
)

n. Indeed,
Lemma 6 ensures that the number of undecided nodes keeps at least n

12 (1−
6ǫ), w.h.p. Thus, applying Lemmas 2 and 7, we get that b(Xt) ≥ [(1 −
6ǫ)/12]3n, w.h.p., for a polynomial number of rounds .

As for the lower bound of the bias, we distinguish two initial cases.
Case s(x) ≥ βn. From Lemma 5, we know that as long as the bias is
of magnitude Ω(

√
n log n), then it cannot decrease too fast w.h.p., namely

s(Xt+1) ≥ s(Xt)(5/6 + ǫ/2), w.h.p. Notice that

(

5

6
+

ǫ

2

)2

· βn ≥ 2
√
ǫ

1 + 6ǫ
n,

which means that, if at some round t the bias goes below the value βn, then

it remains at least 2
√
ǫ

1+6ǫn and it will not decrease below that value for at least

14



another round, w.h.p. Then, by Lemma 4 we know that at round t+ 1 the
number of undecided nodes is at least 1−4ǫ

3(1+6ǫ)n, w.h.p., which means that the
bias starts increasing again each round due to Lemma 3, w.h.p., as long as it
is still below βn. Indeed, the number of undecided nodes keeps greater than
1−4ǫ

3(1+6ǫ)n as long as the bias is below βn, w.h.p. (Lemma 4). This phase, in

which the bias keeps greater than 2
√
ǫ

1+6ǫn, lasts for a polynomial number of
rounds, w.h.p. (see Lemma 2);
Case γ

√
n log n ≤ s(x) < βn. Thanks to Lemma 5, in the next round,

the bias is greater than γ′
√
n log n, w.h.p., while the number of undecided

nodes gets greater than 1−4ǫ
3(1+6ǫ)n, w.h.p. (Lemma 4). Then, Lemmas 3 and 4

guarantee that, within the next O (log n) rounds, the bias reaches the value
βn, w.h.p. (Lemma 2), and so the process turns to be in the first Case.

We finally remark that our analysis above shows that the polynomial
length of the metastable phase, i.e. nλ, has the exponent λ that (only)
depends on the (constant) parameters γ and ǫ of the considered process.

3.2 Proof of Theorem 2

First we present all the necessary technical lemmas (with their proof) we
are going to use to prove the theorem and then we prove the theorem. We
assume the starting configuration x to have bias s(x) = a(x) − b(x) ≥
γ
√
n log n for some constant γ > 0; the case in which b(x) > a(x) is anal-

ogous. Let ǫ ∈
(

0, 13
]

be a constant, and p = 1/6 + ǫ be the probability of
noise. Equations (3) and (4) become

E
[

S
∣

∣ x
]

= s

(

5

6
− ǫ+

1

2
(1− 6ǫ)

q

n

)

, (7)

E
[

Q
∣

∣ x
]

=
3

4

(

1− 6ǫ

n

)

q2 − 1− 6ǫ

2
q +

5− 6ǫ

12
n

− 1− 6ǫ

n

(s

2

)2
. (8)

From Equation (7) it is clear that the bias decreases in expectation expo-
nentially fast each round as long as ǫ ≥ 1/6 (actually, ǫ > 1/12 is enough) or
q/n < 1/3 · (1+ 6ǫ)/(1− 6ǫ). We analyze two cases: ǫ > 1/12 and ǫ ≤ 1/12.

3.2.1 First Case: ǫ > 1
12 Large Epsilon.

We first show a bound on the decrease of the bias.

Lemma 8. Let x be a configuration such that s ≥ γ
√
n log n for some

constant γ > 0. Then, in the next round, it holds that S ≤ s
(

1− 2ǫ+ 1
6

)

w.h.p.

15



Proof of Lemma 8. From Equation (7), we have

E
[

S
∣

∣ x
]

≤ s

(

5

6
− ǫ+

1

2
(1− 6ǫ)

)

= s

(

4

3
− 4ǫ

)

≤ s

(

1− 4ǫ+
1

3

)

.

Observe that 4ǫ−1
3 > 0 if and only if ǫ > 1

12 . Now, let λ = γ
(

ǫ− 1
12

)√
n log n,

and define the events

E1 = {A ≥ E [A | x] + λ}, and

E2 = {B ≤ E [B | x]− λ}.

Then, for the additive form of Chernoff bound (Theorem 6 in Appendix A)
it holds that

P (E1 | x) ≤ e−
γ(ǫ−1/12)2 logn

2 = n− γ(ǫ−1/12)2

2 , and

P (E2 | x) ≤ e−
γ(ǫ−1/12)2 logn

2 = n− γ(ǫ−1/12)2

2 .

Then, for the union bound, we have that

P

(

S ≤ s

(

1− 2ǫ+
1

6

)

| x
)

= P

(

S ≤ s

(

1− 4ǫ+
1

3

)

+ 2λ | x
)

≥ P (S ≤ E [S | x] + 2λ | x)
= P (A−B ≤ E [A−B | x] + 2λ | x)
≥ P

(

EC
1 , E

C
2 | x

)

≥ P
(

EC
1 | x

)

+ P
(

EC
2 | x

)

− P
(

EC
1 ∪ EC

2 | x
)

≥ 1− 2n− γ(ǫ−1/12)2

2 ,

where in the last inequality we used that the probability of the union of two
events is at most 1.

We then obtain the first part of Theorem 2 by using a simple symmetric
argument for configurations such that b > a, and by Lemma 2.

3.2.2 Second Case: ǫ ∈
(

0, 1
12

]

Small Epsilon.

The following lemma states that, if s ≥ 2
3n, the bias decreases exponentially

at the next round, w.h.p. On the other hand, if the bias is at most 2
3n, it

cannot grow over 2
3n, w.h.p.

Lemma 9. Let x be any configuration. The followings hold:

(1) if s ≥ 2
3n, then S ≤ s(1− ǫ) w.h.p.;

16



(2) if s ≤ 2
3n, then S ≤ 2

3n w.h.p.

Proof of Lemma 9. Consider the first statement. If s ≥ 2
3n, then q < 1

3n.
Thus

E
[

S
∣

∣ x
]

≤ s

(

5

6
− ǫ+

1

6
− ǫ

)

≤ s(1− 2ǫ).

We conclude using the additive form of Chernoff bound (Theorem 6 in
Appendix A), as we have done in the proof of Lemma 8, getting that
S ≤ s(1− ǫ), w.h.p.

As for the second statement, we take the expectation of S from Equation
(7) and we observe that

E
[

S
∣

∣ x
]

= s

(

5

6
− ǫ+

1

2
(1− 6ǫ)

q

n

)

≤ s

(

5

6
− ǫ+

1

2
(1− 6ǫ)

n− s

n

)

= s

(

4

3
− 4ǫ− s

2n
(1− 6ǫ)

)

≤ 2

3
n (1− 2ǫ) .

We conclude applying the additive form of Chernoff bound (Theorem 6 in
Appendix A) on A and B, and the union bound, as we have done in the
proof of Lemma 8, getting that S ≤ 2

3n, w.h.p.

Thus, we just have to take care of cases in which the bias is no more
than 2

3n. The key-point to show the decrease of the bias, as long as it is

Ω
(√

n log n
)

, is the condition q ≤ n(1+3ǫ)
3(1−6ǫ) , as shown in the next lemma.

Lemma 10. Let x be a configuration such that s ≥ γ
√
n log n for some

constant γ > 0. If q ≤ n
3

(

1+3ǫ
1−6ǫ

)

, then in the next round it holds that

S ≤ s
(

1− ǫ
4

)

w.h.p.

Proof of Lemma 10. From Equation (7) it follows that

E
[

S
∣

∣ x
]

≤ s

(

5

6
− ǫ+

1

6
+

ǫ

2

)

≤ s
(

1− ǫ

2

)

.

The thesis follows from an easy application of the additive form of Chernoff
bound (Theorem 6 in Appendix A) and the union bound, as we have done
in the proof of Lemma 8, getting that S ≤ s(1− ǫ/4), w.h.p.

We now analyze the dynamics by partitioning the interval
(

0, 23n
]

and
seeing what happens to the bias in each element of the partition. Let β =

17



2
√
2ǫ√

(1+6ǫ)(1−6ǫ)
and define S−1 := (0, βn], Si the sequence of intervals

Si :=

(

(

3

2

)i

βn,

(

3

2

)i+1

βn

]

for i = 0, 1, . . . , k−2 where k =
⌈

log 2
3
(β) − 1

⌉

, and Sk−1 :=
(

(

3
2

)k−1
βn, 23n

]

.

Furthermore, just for completeness, we define Sk :=
(

2
3n, n

]

. In the next lem-
mas, we show that as long as s ∈ Si for i = −1, . . . , k − 1, s = Ω(

√
n log n),

and q̄i+1 ≤ q ≤ n
3

(

1+3ǫ
1−6ǫ

)

for some decreasing sequence q̄−1, . . . , q̄k accurately

chosen, then, at the next round, the bias decreases exponentially w.h.p. and

the number of undecided nodes moves to the interval
[

q̄i,
n(1+3ǫ)
3(1−6ǫ)

]

w.h.p.

Note that since ǫ is a constant, so it is k. The following lemma determines
the sequence q̄i.

Lemma 11. Let x be any configuration.

1. If −1 ≤ i ≤ k−1 and s ≤
(

3
2

)i+1
βn, it holds that Q ≥ n

3− 2nǫ
1+6ǫ

(

3
2

)2i+3

w.h.p.;

2. If s ≤ 2
3n, it holds that Q ≥ 2

9n+ ǫ
3n w.h.p.;

3. Without any condition on s, it holds that Q ≥ n
12 + ǫn w.h.p.

Proof of Lemma 11. We start proving Item 1. From Equation (8), we have
that

E
[

Q
∣

∣ x
]

≥ n

3
− 1− 6ǫ

n

(s

2

)2

≥ n

3
− 1− 6ǫ

4

(

3

2

)2i+2

β2n

= n

[

1

3
− 2ǫ

1 + 6ǫ

(

3

2

2i+2
)]

.

Thus, using the additive form of Chernoff bound (Theorem 6 in Appendix

A) with λ = ǫ
1+6ǫ

(

3
2

)2i+2
n, we have that Q ≥ n

(

1
3 − 2ǫ

1+6ǫ

(

3
2

)2i+3
)

, w.h.p.

As for Item 2, we have that

E
[

Q
∣

∣ x
]

≥ n

3
− 1− 6ǫ

n

(s

2

)2
≥ n

3
− n

1− 6ǫ

9

=
2 + 6ǫ

9
n

and we conclude by using the additive Chernoff bound (Theorem 6 in Ap-
pendix A) with λ = ǫ

3n, getting that Q ≥ 2
9n+ ǫ

3n, w.h.p.
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To prove Item 3 we use that s ≤ n and observe that

E
[

Q
∣

∣ x
]

≥ n

3
− 1− 6ǫ

n

(s

2

)2
≥ n

3
− n

1− 6ǫ

4

=
1 + 18ǫ

12
n.

We conclude with the additive Chernoff bound (Theorem 6 in Appendix A)
with λ = ǫ

2n, getting Q ≥ n
12 + ǫn, w.h.p.

Define q̄i := n
(

1
3 − 2ǫ

1+6ǫ

(

3
2

)2i+3
)

for i = −1, ..., k − 2, q̄k−1 :=
2
9n+ ǫ

3n,

and q̄k := n
12 + ǫn, and notice that they form a decreasing sequence. Next,

with few lemmas, we take care of controlling the behaviour of the number
of undecided nodes when s > inf(Si) for −1 ≤ i ≤ k − 1.

Lemma 12. Let −1 ≤ i ≤ k − 1 and let x be a configuration such that
q̄i+1 ≤ q ≤ n(1+3ǫ)

3(1−6ǫ) and s > inf(Si). Then, at the next round, q̄i ≤ Q ≤
n(1+3ǫ)
3(1−6ǫ) w.h.p.

Proof of Lemma 12. Define f(q) equal to E [Q | x] = 3
4

(

1−6ǫ
n

)

q2 − 1−6ǫ
2 q +

5−6ǫ
12 n− 1−6ǫ

n

(

s
2

)2
. We are going to evaluate f(q) in q̄i+1 and in q̄ = n(1+3ǫ)

3(1−6ǫ) .
We take care of different cases: first, we assume i = −1, with the condition
that s > 0. Thus

f(q̄0) ≤
3

4

(

1− 6ǫ

n

)

n2

[

1

9
+

4ǫ2

(1 + 6ǫ)2

(

3

2

)6

− 4ǫ

3(1 + 6ǫ)

(

3

2

)3 ]

− 1− 6ǫ

2
n

[

1

3
− 2ǫ

1 + 6ǫ

(

3

2

)3 ]

+
5− 6ǫ

12
n

=
n

3
+ n

3ǫ2(1− 6ǫ)

(1 + 6ǫ)2

(

3

2

)6

=
n

3

[

1 +
38ǫ2(1− 6ǫ)

26(1 + 6ǫ)2

]

;

now, we observe that

1 +
38ǫ2(1− 6ǫ)

26(1 + 6ǫ)2
− 1

1− 6ǫ

<
−6ǫ

1− 6ǫ
+

38ǫ2

26(1 + 6ǫ)2

=
−26 · 6ǫ(1 + 6ǫ)2 + 38ǫ2(1− 6ǫ)

26(1− 6ǫ)(1 + 6ǫ)2

=
3ǫ
(

−27 − 3 · 29ǫ− 32 · 29ǫ2 + 37ǫ− 2 · 38ǫ2
)

26(1− 6ǫ)(1 + 6ǫ)2
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=
3ǫ
(

−27 + 3ǫ(36 − 29)− 2 · 32ǫ2(28 + 36)
)

26(1− 6ǫ)(1 + 6ǫ)2
< 0

where in the last inequality we have used that −27 + 3ǫ(36 − 29) < 0 for
ǫ ≤ 1

12 . Thus, f(q̄0) <
n

3(1−6ǫ) .

Second, we assume 0 ≤ i ≤ k − 3, with the condition that s >
(

3
2

)i
βn.

f(q̄i+1) ≤
3

4

(

1− 6ǫ

n

)

n2

[

1

9
+

4ǫ2

(1 + 6ǫ)2

(

3

2

)4i+10

− 4ǫ

3(1 + 6ǫ)

(

3

2

)2i+5 ]

− 1− 6ǫ

2
n

[

1

3
− 2ǫ

1 + 6ǫ

(

3

2

)2i+5 ]

+
5− 6ǫ

12
n− 2ǫ

1 + 6ǫ

(

3

2

)2i

n

=
n

3
+ n

3ǫ2(1− 6ǫ)

(1 + 6ǫ)2

(

3

2

)4i+10

− n
2ǫ

1 + 6ǫ

(

3

2

)2i

=
n

3

{

1 +
3ǫ

(1 + 6ǫ2)

(

3

2

)2i [

3ǫ(1 − 6ǫ)

(

3

2

)2(i+5)

− 2(1 + 6ǫ)

]}

;

for the evaluation of f(q̄i+1) we observe that β is a constant in (0, 1) and
that

3ǫ(1 − 6ǫ)

(

3

2

)2(i+5)

− 2(1 + 6ǫ)

< 3ǫ

(

2

3

1

β

(

3

2

)3
)2

− 2

<
35

27
− 2 < 0

because
(

3
2

)i+2
< 2

3β for i+ 2 ≤ k; thus f(q̄i+1) ≤ n
3 .

Let now i = k − 2; thus s >
(

3
2

)k−2
βn. We now evaluate f(q̄k−1).

f(q̄k−1) ≤
3

4

(

1− 6ǫ

n

)

n2

[

4

81
+

ǫ2

9
+

4ǫ

27

]

− 1− 6ǫ

2
n

[

2

9
+

ǫ

3

]

+
5− 6ǫ

12
n

− 2ǫ

1 + 6ǫ

(

3

2

)2k−4

n

=
−8(1− 6ǫ) + 45 − 54ǫ

108
n− ǫ(1− 6ǫ)

18
n− 2ǫ

1 + 6ǫ

(

3

2

)2k−4

n

=
37− 12ǫ+ 36ǫ2

108
n− 2ǫ

1 + 6ǫ

(

3

2

)2k−4

n

=
n

3

[

1 +
(1− 6ǫ)2

36
− 6ǫ

1 + 6ǫ

(

3

2

)2k−4
]

=
n

3

[

1 +

(

1− 6ǫ

6
−
√

6ǫ

1 + 6ǫ
· 3

k−2

2k−2

)

·
(

1− 6ǫ

6
+

√

6ǫ

1 + 6ǫ
· 3

k−2

2k−2

)

]

.
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Observe that, by definition of k, we have

1− 6ǫ

6
−
√

6ǫ

1 + 6ǫ
· 3

k−2

2k−2
≤ 1− 6ǫ

6
−
√

6ǫ

1 + 6ǫ
· 23

33β

=
1− 6ǫ

6
−
√

3(1− 6ǫ) · 22
33

=
9− 54ǫ− 8

√

3(1− 6ǫ)

54

<
9− 8

√

3(1 − 6ǫ)

54
< 0

for ǫ ≤ 1
12 . Thus, f(q̄k−1) ≤ n

3 .

Let now i = k−1, which implies that s >
(

3
2

)k−1
βn. We evaluate f(q̄k):

f(q̄k) ≤
3

4

(

1− 6ǫ

n

)

n2

[

1

144
+ ǫ2 +

ǫ

6

]

− 1− 6ǫ

2
n

[

1

12
+ ǫ

]

+
5− 6ǫ

12
n

− 2ǫ

1 + 6ǫ

(

3

2

)2k−2

n

=
−7(1− 6ǫ) + 80− 96ǫ

192
n− 3ǫ(1 − 6ǫ)

8
n− 2ǫ

1 + 6ǫ

(

3

2

)2k−2

n

=
n

3

[

219− 162ǫ − 216ǫ + 1296ǫ2

192
− 6ǫ

1 + 6ǫ

(

3

2

)2k−2]

=
n

3

[

1 +
27− 378ǫ + 1296ǫ2

192
− 6ǫ

1 + 6ǫ

(

3

2

)2k−2]

.

By definition of k, we have that

27− 378ǫ+ 1296ǫ2

192
− 6ǫ

1 + 6ǫ

(

3

2

)2k−2

≤ 27− 378ǫ+ 1296ǫ2

192
− 1− 6ǫ

2

(

2

3

)3

< 0,

where the first and the second inequalities hold for ǫ ≤ 1
12 . Thus, f(q̄k) ≤ n

3 .
We finally evaluate f(q̄):

f (q̄) ≤ n

12

(

(1 + 3ǫ)2

(1− 6ǫ)

)

− n(1 + 3ǫ)

6
+

n(5− 6ǫ)

12

=
n

12

(

1− 6ǫ+ 9ǫ2

1− 6ǫ
− 2− 6ǫ+ 5− 6ǫ

)

=
n

12(1 − 6ǫ)

(

1− 6ǫ+ 9ǫ2 − 2 + 6ǫ+ 36ǫ2 + 5− 36ǫ+ 36ǫ2
)

=
n

12

(

4− 36ǫ+ 81ǫ2

1− 6ǫ

)
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=
n

12

(

(2− 9ǫ)2

1− 6ǫ

)

.

It holds that f(q̄) ≤ n
3(1−6ǫ)

(

remember that ǫ < 1
12

)

; thus, all the evaluations

are no more than n
3(1−6ǫ) , and, from an immediate application of the additive

Chernoff bound (Theorem 6 in Appendix A) with λ = ǫn
1−6ǫ , and by observing

that q̄i ≥ q̄i+1, we get that

q̄i ≤ Q ≤ n(1 + 3ǫ)

3(1− 6ǫ)
,

w.h.p.

At the same time, the following lemma implies that the possible decrease
of the bias cannot move it from Si beyond Si−1.

Lemma 13. Let x be a configuration such that s ≥ γ
√
n log n for some

constant γ > 0. If s >
(

3
2

)i
βn for some 0 ≤ i ≤ k, then S > inf(Si−1)

w.h.p.

Proof of Lemma 13. We have

E
[

S
∣

∣ x
]

≥ s

(

5

6
− ǫ

)

.

The additive form of Chernoff bound (Theorem 6 in Appendix A) on A and
B, together with the union bound, implies that S ≥ s

(

5
6 − 2ǫ

)

w.h.p. (we
can proceed as in the proof of Lemma 3). Thus

s

(

5

6
− 2ǫ

)

>

(

3

2

)i

βn

(

5

6
− 2ǫ

)

≥
(

3

2

)i−1

βn = Si−1

since 3
2

(

5
6 − 2ǫ

)

≥ 1.

We still need to “control” the dynamics, in particular the case in which
q > n(1+3ǫ)

3(1−6ǫ) . The next lemma fulfill this need. It shows that there is a

decrease of the number of undecided nodes when they are more than n(1+3ǫ)
3(1−6ǫ) ,

and provides a lower bound on the decrease, depending on the bias.

Lemma 14. Let x be a configuration such that q ≥ n
3(1−6ǫ) . Then, it holds

that

(1) Q ≤ q (1− ǫ) w.h.p.;

(2) if s ≤ sup(Si) for some −1 ≤ i ≤ k − 1, then Q ≥ q̄i+1 w.h.p.
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Proof of Lemma 14. Consider the first item. We define f(q) = 3
4

(

1−6ǫ
n

)

q2−
1−6ǫ
2 q+ 5−6ǫ

12 n. We now show that f(q) ≤ q (1− 2ǫ). Indeed, f(q)−q (1− 2ǫ)
is equal to

3

4

(

1− 6ǫ

n

)

q2 −
(

1− 6ǫ

2
+ 1− 2ǫ

)

q +
5− 6ǫ

12
n

=
3

4

(

1− 6ǫ

n

)

q2 −
(

3− 10ǫ

2

)

q +
5− 6ǫ

12
n.

This expression is a convex parabola which has its maximum in either q̄1 =
n

3(1−6ǫ) or q̄2 = n. We calculate f(q)− q (1− 2ǫ) in these two points

3

4

(

1− 6ǫ

n

)

q21 −
(

3− 10ǫ

2

)

q1 +
5− 6ǫ

12
n

=
n2

12(1 − 6ǫ)

(

1− 6 + 20ǫ+ 5− 36ǫ+ 36ǫ2
)

=
n2

12(1 − 6ǫ)
[−4ǫ(4− 9ǫ)] < 0

for all 0 < ǫ ≤ 1
12 . At the same time it holds that

3

4

(

1− 6ǫ

n

)

q22 −
(

3− 10ǫ

2

)

q2 +
5− 6ǫ

12
n

=
n

12
[9− 54ǫ− 18 + 60ǫ+ 5− 6ǫ]

= − n

3
< 0.

Thus, E [Q | x] ≤ q(1− 2ǫ). The additive form of Chernoff bound (Theorem
6 in Appendix A) with λ = ǫn

3(1−6ǫ) implies that Q < q(1− ǫ) w.h.p.
As for the second item, We consider two cases. First, assume i < k − 1,

thus s ≤
(

3
2

)i+1
βn. Take the expectation (8) and observe that

E
[

Q
∣

∣ x
]

≥ 3

4

(

1− 6ǫ

n

)

n2

9(1− 6ǫ)2
+

5− 6ǫ

12
n−

(

1− 6ǫ

2

)

n

3(1− 6ǫ)
− 1− 6ǫ

n

(s

2

)2

≥ n

12

(

4− 24ǫ+ 36ǫ2

1− 6ǫ

)

− 2nǫ

1 + 6ǫ

(

3

2

)2i+2

≥ n

3(1 − 6ǫ)
(1− 3ǫ)2 − 2nǫ

1 + 6ǫ

(

3

2

)2i+2

≥ n

3
− 2nǫ

1 + 6ǫ

(

3

2

)2i+5

+
19nǫ

4

(

3

2

)2i+2

= q̄i+1 +
19nǫ

4

(

3

2

)2i+2

.
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We conclude applying the additive Chernoff bound (Theorem 6 in Appendix

A) with λ = 19nǫ
4

(

3
2

)2i+2
, obtaining Q ≥ q̄i+1, w.h.p.

Second, let i = k − 1; then s ≤ 2
3n. As before

E
[

Q
∣

∣ x
]

≥ 3

4

(

1− 6ǫ

n

)

n2

9(1− 6ǫ)2
+

5− 6ǫ

12
n−

(

1− 6ǫ

2

)

n

3(1− 6ǫ)
− 1− 6ǫ

n

(s

2

)2

≥ n

12(1 − 6ǫ)

(

4− 24ǫ+ 36ǫ2
)

− n(1− 6ǫ)

9

≥ n (1− 3ǫ)2

3(1 − 6ǫ)
− n(1− 6ǫ)

9

=
n

9(1 − 6ǫ)

(

2− 6ǫ− 9ǫ2
)

=
n

12

(

4(2 − 6ǫ− 9ǫ2)

3(1− 6ǫ)

)

≥ n

12
(1 + 14ǫ) = q̄k +

ǫn

6

since
4(2− 6ǫ− 9ǫ2)

3(1 − 6ǫ)
− (1 + 14ǫ) >

5− 48ǫ

3(1 − 6ǫ)
> 0

for ǫ ≤ 1
12 . Thus, we conclude applying the additive form of Chernoff bound

(Theorem 6 in Appendix A) with λ = ǫ
6n, obtaining Q ≥ q̄k, w.h.p.

Next and last lemma guarantees that once the process reaches a config-
uration having bias O(

√
n log n), then it “enters” a metastable phase that

lasts Ω(nλ′

) rounds w.h.p. in which the absolute value of the bias remains
O(

√
n log n), since it can be used symmetrically when the bias is negative.

Lemma 15. Let x be any configuration. If s ≤ γ
√
n log n for some constant

γ > 0 and q ≤ n
3

(

1+3ǫ
1−6ǫ

)

, then S ≤ 2γ
√
n log n w.h.p.

Proof of Lemma 15. Consider the expectation of S from equation 7. We
have

E
[

S
∣

∣ x
]

≤ γ
√

n log n

(

5

6
− ǫ+

1

6
+

ǫ

2

)

≤ γ
√

n log n.

We conclude applying the additive form of Chernoff bound (Theorem 6 in
Appendix A), and the union bound, as we did in the proof of Theorem 8.

Proof of Theorem 2. If 1
12 < ǫ the theorem is true due to Lemma 8. Let us

assume 0 < ǫ ≤ 1
12 . The proof is divided into different cases (recall Lemma

2 in the preliminaries). Let γ > 0 be any constant.
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(1) s ∈ Si for some −1 ≤ i ≤ k − 1 and s ≥ γ
√
n log n,

(1.1) q̄i+1 ≤ q ≤ n(1+3ǫ)
3(1−6ǫ) : the bias decreases exponentially fast each

round, w.h.p., until 0 ≤ s ≤ γ
√
n log n due to the combination of

Lemmas 10, 11, 12, and 13. This phase lasts O(log n) rounds;

(1.2) n(1+3ǫ)
3(1−6ǫ) < q: Lemmas 14 and 11 imply that in O(log n) rounds

the number of undecided nodes reaches the interval
[

q̄i+1,
n

3(1−6ǫ)

]

where i is such that the round before the undecided nodes become
less than n

3(1−6ǫ) , the bias is in Si: remind that during the whole

process (which lasts O(log n) rounds) the bias never goes over 2
3n

thanks to Lemma 9. At the same time, the bias will be in one set
between Si−1, . . . , Sk−1 due to Lemma 13. Since q̄i is a decreasing
sequence, we are in Case 1.1, and we conclude.

(1.3) q < q̄i+1: in this case, Lemma 11 implies Q ≥ q̄i+1 in the next
round, w.h.p. Since Lemma 9 guarantees that the bias remains
under the value 2

3n w.h.p., either we are in Case 1.1 or in Case
1.2, and we conclude.

(2) s > 2
3n: Lemma 9 implies that the bias gets less than or equal to 2

3n
in O(log n) rounds, w.h.p.; then we are in Case 1 and we conclude.

Now, we can suppose the process starts from a configuration y having

bias 0 ≤ s(y) ≤ γ
√
n log n, and such that q̄0 ≤ q(y) ≤ n

3

(

1+3ǫ
1−6ǫ

)

, as Case 1.1

or 1.3 leaves it. In the next round, it holds that the number of undecided

nodes is q̄−1 ≤ Q ≤ n
3

(

1+3ǫ
1−6ǫ

)

, w.h.p., due to Lemma 12; at the same time,

w.h.p., |S| ≤ 2γ
√
n log n for Lemma 15 (which can be used symmetrically on

A−B and B−A). Thus, the absolute value of the bias is either still less than
γ
√
n log n or has become greater than or equal to |S| ≥ γ

√
n log n, in which

case it starts decreasing exponentially fast each round, w.h.p., for Lemma
10 until becoming again less than γ

√
n log n (as explained in Case 1.1, which

works analogously if the bias is negative, because of symmetry). This phase
lasts Ω(nλ′

) rounds, for some sufficiently small constant λ′ > 0 (see Lemma
2 in the preliminaries). As in the proof of Theorem 1, λ′ depends only on γ
and ǫ.

4 Symmetry Breaking from Balanced Configura-

tions

IIn this section, we consider the Undecided-State process starting from
arbitrary initial configurations: in particular, from configurations having no
bias. Interestingly enough, we show a transition phase similar to that proved
in the previous section. Informally, the next theorem states that when p <
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1/6, the Undecided-State process is able to break the symmetry of any
perfectly-balanced initial configuration and to compute almost consensus
within O(log n) rounds, w.h.p.

Theorem 3. Let x be any initial configuration, and let ǫ ∈ (0, 1/6) be
some absolute constant. If p = 1/6 − ǫ is the noise probability, then the
Undecided-State process reaches a configuration y having bias s toward

some opinion j ∈ {Alpha,Beta} such that |s(y)| ∈ ∆ =
[

2
√
ǫ

1+6ǫn,
(

1− 2
(

1−6ǫ
12

)3
)

n
]

within O(log n) rounds, w.h.p. Moreover, once reached configuration y,
the Undecided-State process enters a (metastable) phase of length Ω(nλ)
rounds (for some constant λ > 0) where the majority opinion is j and the
bias keeps within the range ∆, w.h.p.

What follows is an outline of the proof of the theorem, while more details
are given in the next subsection.

Outline of Proof of Theorem 3. If the initial configuration x has bias s =
Ω(

√
n log n) then the claim of the theorem is equivalent to that of Theorem

1, so we are done. Hence, we next assume the initial bias s be o(
√
n log n):

for this case, our proof proceeds along the following main steps.
Step I. Whenever the bias s is small, i.e. o(n), we prove that, within the next
O(log n) rounds, the number of undecided nodes turns out to keep always
in a suitable linear range: roughly speaking, we get that this number lies in
(n/3, n/2], w.h.p.
Step II. Whenever s is very small, i.e. s = o(

√
n), there is no effective

drift towards any opinion. However, we can prove that, thanks to Step
I, the random variable S, representing the bias in the next round, has high
variance, i.e. Θ(n). The latter holds since S can be written as a suitable sum
whose addends include some random variables having binomial distribution
of expectation 0: so, we can apply the Berry-Essen Theorem (Theorem 7
in Appendix A) to get a lower bound on the variance of S. Then, thanks
to this large variance, standard arguments for the standard deviation imply
that, in this parameter range, there is a positive constant probability that
S will get some value of magnitude Ω(

√
n) (see Claim 1 of Lemma 18). Not

surprisingly, in this phase, we find out that the variance of S is not decreased
by the communication noise. We can thus claim that the process, at every
round, has positive constant probability to reach a configuration having bias
s = ω(

√
n) and q ∈ (n/3, n/2]. Then, after O(log n) rounds, this event will

happen w.h.p.
Step III. Once the process reaches a configuration with s = ω(

√
n) and

q ∈ (n/3, n/2], we then prove that the expected bias increases by a constant
factor (which depends on ǫ). Observe that we cannot use here the same
round-by-round concentration argument that works for bias over

√
n log n

(this is in fact the minimal magnitude required to apply the Chernoff’s
bounds [24]). We instead exploit a useful general tool [14] that bounds the
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stopping time of some class of Markov chains having rather mild conditions
on the drift towards their absorbing states (see Lemma 16). This tool in
fact allows us to consider the two phases described, respectively, in Step
II and Step III as a unique symmetry-breaking phase of the process. Our
final technical contribution here is to show that the conditions required to
apply this tool hold whenever the communication noise parameter is such
that p ∈ (0, 1/6). This allows us to prove that, within O(log n) rounds, the
process reaches a configuration with bias s = Ω(

√
n log n), w.h.p.

Large communication noise (the case p > 1/6+ ǫ). When p > 1/6+ ǫ,
Theorem 2 a fortiori holds when the initial bias is small, i.e. s = o(

√
n log n):

thus, we get that, in this case, the system enters into a long regime of non
consensus, starting from any initial configuration. Then, by combining the
results for biased configurations in Section 3 with those in this section, we
can observe the phase transition of the Undecided-State process starting
from any possible initial configuration.

Theorem 4. Let x be any initial configuration, and let ǫ ∈ (0, 1/3] be
some absolute constant. If p = 1/6 + ǫ is the noise probability, then the
Undecided-State process reaches a configuration y having bias |s(y)| =
O(

√
n log n) within O(log n) rounds, w.h.p. Furthermore, starting from such

a configuration, the Undecided-State process enters a (metastable) phase

of length Ω
(

nλ′

)

rounds (for some constant λ′ > 0) where the absolute value

of the bias keeps bounded by O(
√
n log n), w.h.p.

Stubborn agents. We conclude this section by observing that the equiv-
alence result shown in Lemma 1 holds independently of the choices of the
noise parameter p ∈ (0, 1/2], and of the initial bias: the phase transition
of the Undecided-State process in the presence of stubborn agents thus
holds even in the case of unbiased configurations.

Corollary 2. Let 1
2 > p > 0 be a constant, and let the stub process start

from any initial configuration. If p < 1
6 , then, in O(log n) rounds, the stub

process enters a metastable phase of almost consensus towards some opinion
j ∈ {Alpha,Beta} of length Ω

(

nλ
)

for some constant λ > 0, in which the
absolute value of the bias is Θ(n), w.h.p. If p ∈ (16 ,

1
2 ], then, in O(log n)

rounds, the stub process enters a metastable phase of length Ω
(

nλ′

)

for

some constant λ′ > 0 where the absolute value of the bias keeps bounded by
O(

√
n log n), w.h.p.

4.1 Proof of Theorem 3: More details

The proof of Theorem 3 essentially relies on the following lemma which has
been proved in [14] (we report a proof here).
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Lemma 16. Let {Xt}t∈N be a Markov Chain with finite-state space Ω and
let f : Ω 7→ [0, n] be a function that maps states to integer values. Let c3 be
any positive constant and let m = c3

√
n log n be a target value. Assume the

following properties hold:

(1) for any positive constant h, a positive constant c1 < 1 exists such that
for any x ∈ Ω : f(x) < m,

P{f(Xt+1) < h
√
n | Xt = x} < c1;

(2) there exist two positive constants δ and c2 such that for any x ∈ Ω :
h
√
n ≤ f(x) < m,

P{f(Xt+1) < (1 + δ)f(Xt) | Xt = x} < e−c2f(x)2/n.

Then the process reaches a state x such that f(x) ≥ m within O(log n)
rounds, w.h.p.

Proof of Lemma 16. Define a set of hitting times T := {τ(i)}i∈N, where

τ(i) = inf
i∈N

{

t : t > τ(i− 1), f(Xt) ≥ h
√
n
}

,

setting τ(0) = 0. By the first hypothesis, for every i ∈ N, the expectation
of τ(i) is finite. Now, define the following stochastic process which is a
subsequence of {Xt}t∈N:

{Ri}i∈N = {Xτ(i)}i∈N.

Observe that {Ri}i∈N is still a Markov chain. Indeed, if {x1, . . . ,Xi−1} be
a set of states in Ω, then

P(Ri = x | Ri−1 = xi−1, . . . , R1 = x1)

= P(Xτ(i) = x | Xτ(i−1) = xi−1, . . . ,Xτ(1) = x1)

=
∑

t(i)>···>t(1)∈N

P(Xt(i) = x | Xt(i−1) = xi−1, . . . ,Xt(1) = x1)

· P (τ(i) = t(i), . . . , τ(1) = t(1))

= P(Xτ(i) = x | Xτ(i−1)=xi−1
)

= P(Ri = x | Ri−1 = xi−1).

By definition, the state space of R is {x ∈ Ω : f(x) ≥ h
√
n}. Moreover, the

second hypothesis still holds for this new Markov chain. Indeed:

P (f(Ri+1 < (1 + ǫ)f(Ri) | Ri = x)

= 1− P (f(Ri+1 ≥ (1 + ǫ)f(Ri) | Ri = x)
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= 1− P
(

f(Xτ(i+1) ≥ (1 + ǫ)f(Xτ(i)) | Xτ(i) = x
)

≤ 1− P
(

f(Xτ(i+1) ≥ (1 + ǫ)f(Xτ(i)), τ(i + 1) = τ(i) + 1 | Xτ(i) = x
)

= 1− P
(

f(Xτ(i)+1 ≥ (1 + ǫ)f(Xτ(i)) | Xτ(i) = x
)

= 1− P (f(Xt+1 ≥ (1 + ǫ)f(Xt) | Xt = x)

< e−c2f(x)2/n.

These two properties are sufficient to study the number of rounds required
by the new Markov chain {Ri}i∈N to reach the target value m. Indeed,

by defining the random variable Zi =
f(Ri)√

n
, and considering the following

“potential” function, Yi = exp
(

m√
n
− Zi

)

, we can compute its expectation

at the next round as follows. Let us fix any state x ∈ Ω such that h
√
n ≤

f(x) < m, and define z = f(x)√
n
, y = exp

(

m√
n
− z
)

. We have

E[Yi+1|Ri = x] ≤ P (f(Ri+1) < (1 + ǫ)f(x)) em/
√
n

+ P (f(Ri+1) ≥ (1 + ǫ)f(x)) em/
√
n−(1+ǫ)z

(from Hypothesis (2)) ≤ e−c2z2 · em/
√
n + 1 · em/

√
n−(1+ǫ)z

= em/
√
n−c2z2 + em/

√
n−z−ǫz

= em/
√
n−z(ez−c2z2 + e−ǫz)

≤ em/
√
n−z(e−2 + e−2) (9)

<
em/

√
n−z

e

=
y

e
,

where in (9) we used that z is always at least h and thanks to Hypothesis
(1) we can choose a sufficiently large h.

By applying the Markov inequality and iterating the above bound, we
get

P(Yi > 1) ≤ E[Yi]

1
≤ E[Yi−1]

e
≤ · · · ≤ E[Y0]

eτR
≤ em/

√
n

ei
.

We observe that if Yi ≤ 1 then Ri ≥ m, thus by setting i = m/
√
n+ log n =

(c3 + 1) log n, we get:

P
(

R(c3+1) logn < m
)

= P
(

Y(c3+1) logn > 1
)

<
1

n
. (10)

Our next goal is to give an upper bound on the hitting time τ(c3+1) logn.
Note that the event “τ(c3+1) logn > c4 log n” holds if and only if the num-
ber of rounds such that f(Xt) ≥ h

√
n (before round c4 log n) is less than

(c3 + 1) log n. Thanks to Hypothesis (1), at each round t there is at least
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probability 1 − c1 that f(Xt) ≥ h
√
n. This implies that, for any posi-

tive constant c4, the probability P
(

τ(c3+1) logn > c4 log n
)

is bounded by the
probability that, within c4 log n independent Bernoulli trials, we get less
then (c3 +1) log n successes, where the success probability is at least 1− c1.
We can thus choose a sufficiently large c4 and apply the multiplicative form
of the Chernoff bound (Theorem 5 in Appendix A), obtaining

P
(

τ(c3+1) logn > c4 log n
)

<
1

n
. (11)

We are now ready to prove the Lemma using Inequalities (10) and (11),
indeed

P (Xc4 logn ≥ m) > P
(

R(c3+1) logn ≥ m ∧ τ(c3+1) logn ≤ c4 log n
)

= 1− P
(

R(c3+1) logn < m ∨ τ(c3+1) logn > c4 log n
)

≥ 1− P
(

R(c3+1) logn < m
)

+ P
(

τ(c3+1) logn > c4 log n
)

> 1− 2

n
.

Hence, choosing a suitable big c4, we have shown that in c4 log n rounds
the process reaches the target value m, w.h.p.

Our goal is to apply the above lemma to the Undecided-State pro-
cess (which defines a finite-state Markov chain) starting with bias of size
o(
√
n log n) where we set f(Xt) = s(Xt), c3 = γ > 0 for some constant γ > 0,

and m = γ
√
n log n: this would imply the upper bound O(log n) on the

number of rounds needed to reach a configuration having bias Ω(
√
n log n),

w.h.p., breaking the symmetry because Theorem 1 then holds. To this aim,
with the next two lemmas we show that the Undecided-State process
satisfies the hypotheses of Lemma 16 in this setting, w.h.p.

Lemma 17. Let x be any configuration in which s ≤ βn and n
3

(

1−4ǫ
1+6ǫ

)

≤

q ≤ n
2 . Then, in the next round, it holds that n

3

(

1−4ǫ
1+6ǫ

)

≤ Q ≤ n
2 w.h.p.

Proof of Lemma 17. The fact thatQ ≥ n
3

(

1−4ǫ
1+6ǫ

)

with probability 1−exp(Θ(n))

(which is w.h.p.) comes from Lemma 4. At the same time, from Equation
4, it holds that

E[Q | x] ≤ (1− 6ǫ)n

6
+

1 + 6ǫ

4n

(

2q2 + (n− q)2
)

.

Denote this expression as f(q). For n
3

(

1−4ǫ
1+6ǫ

)

≤ q ≤ n
2 , the maximum of f

is obtained either at q1 =
n
3

(

1−4ǫ
1+6ǫ

)

or at q2 =
n
2 .
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f(q1) =
1− 6ǫ

3
n+

2(1 − 4ǫ)2 + 4(1 + 11ǫ)2

32 · 4(1 + 6ǫ)
n

=
6(1− 36ǫ2) + 3 + 36ǫ+ 258ǫ2

2 · 32(1 + 6ǫ)
n

=
9 + 36ǫ+ 42ǫ2

2 · 9(1 + 6ǫ)
n

=
1 + 4ǫ+ 14

3 ǫ
2

2(1 + 6ǫ)
n

≤
(

1

2
− c

)

n,

f(q2) =
1− 6ǫ

6
n+

3(1 + 6ǫ)

16
n

=
17 + 6ǫ

48
n

≤
(

1

2
− c

)

n,

for some suitable constant c > 0, and for ǫ < 1
6 . Thus, f(q) ≤ (1/2 − c)n

and we conclude by using the additive form of Chernoff bound (Theorem 6
in Appendix A), getting that Q ≤ n

2 , with probability 1− exp
(

c2n
)

. Then,
the intersection of two events holding with probability 1− exp(Θ(n)) is still
an event holding with probability 1− exp(Θ(n)).

Lemma 18. Let x be any configuration such that q(x) ∈
[

n
3

(

1−4ǫ
1+6ǫ

)

, n2

]

.

Then, it holds that

(1) for any constant h > 0 there exists a constant c1 > 0 such that

P(|S| < h
√
n) | Xt = x) < c1;

(2) there exist two positive constants δ and c2 such that

P(|S| ≥ (1 + δ)s | Xt = x) ≥ 1− e−c2
s2

n .

Proof of Lemma 18. As for the first item, let x and x0 be two states such
that |s(x)| < h

√
n, |s(x0)| = 0, q(x) = q(x0). A simple domination argu-

ment implies that

P(|S| < h
√
n | Xt = x) ≤ P(|S| < h

√
n | Xt = x0).

Thus, we can bound just the second probability, where the initial bias is
zero, which implies that a = b.
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Define Aq, Bq, Qq the random variables counting the nodes that were
undecided in the configuration x0 and that, in the next round, get the
opinion Alpha, Beta, and undecided, respectively. Similarly, Aa (Bb) counts
the nodes that support opinion Alpha (Beta) in the configuration x0 and
that, in the next round, still support the same opinion. Trivially, A =
Aq + Aa and B = Bq + Bb. Moreover, observe that, among these random
variables, only Aq and Bq are mutually dependent. Thus, conditioned to
the event {Xt = x0)}, if α = E[Aa | Xt = x0] = E[Bb | Xt = x0], it holds
that

P(|S| ≥ h
√
n) ≥ P(A ≥ B + h

√
n)

≥ P(Aq ≥ Bq + h
√
n)P(Aa ≥ α)P(Bb ≤ α).

The random variables Aa−α and Bb−α happen to be binomial distribution
with expectation 0 (recall that a = b), and finite second and third moment.
Thus, the Berry-Essen Theorem (Theorem 7 in Appendix A) allows us to
approximate up to an arbitrary-small constant ǫ1 > 0 (as long as n is large
enough) both the random variables with a normal distribution that has
expectation 0. Thus,

P(Aa ≥ α) = P(Bb ≤ α) ≥
(

1

2
− ǫ1

)

.

As for the random variable Aq−Bq, notice that conditioned to the event {q−
Qq = k}, it is the sum of k Rademacher random variables. The hypothesis
q ≤ n

2 allows us to use the Chernoff bound on Qq and show that Qq ≤ 3
4q

w.h.p. Thus, since q ≥ n
3

(

1−4ǫ
1+6ǫ

)

, it holds that q − Qq = Θ(n) w.h.p. It

follows that the conditional variance of Aq − Bq given q − Qq yields Θ(n)
w.h.p., and Aq − Bq conditioned to the event E = {q − Qq = Θ(n)} can
be approximated by a normal distribution up to an arbitrary-small constant
ǫ2 > 0. Then, we have that

P(Aq ≥ Bq + h
√
n) ≥ P(Aq ≥ Bq + h

√
n | E)P(E) ≥ ǫ2.

Setting c1 = ǫ1 · ǫ2, we get property (1).
As for property (2), it is easy to see that the hypothesis on q implies

that
E[S | Xt = x] ≥ s

(

1 +
ǫ

3

)

.

We can get the property applying the additive Chernoff bound (Theorem 6
in Appendix A) separately on A and B, and then the union bound, as we
did in the proof of Lemma 3, getting that E [S | x] ≥ s(1 + ǫ/6), w.h.p.

The reader may notice that Lemma 17 requires the number of undecided

nodes to be inside the interval
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

. We will later take care of this
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issue with Lemmas 21 and 22, showing that whenever this number is not
within the above interval, in at most O(log n) rounds it will lie in it. Fur-
thermore, Lemma 17 guarantees that the condition on the undecided nodes
holds “only” w.h.p., while Lemma 16 requires this condition to hold with
probability 1. We show this issue can be solved using a coupling argument
similar to that in [14]. The key point is that, starting from any configuration

x with q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

, the probability that the process goes in one of

those “bad” configurations with q outside the above interval is negligible.
Intuitively speaking, the configurations actually visited by the process be-
fore breaking symmetry do satisfy the hypothesis of Lemma 16. In order to
make this argument rigorous, we define a pruned process, by removing all
the unwanted transitions.

Let s̄ ∈ {0, 1, . . . , n}, and z(s̄) the configuration such that s(z(s̄)) = s̄,
and q(z(s̄)) = n

2 . Let px,y be the probability of a transition from the con-
figuration x to the configuration y in the Undecided-State process. The
Pruned process behaves exactly as the original process but every transition

from a configuration x such that q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

and s(x) = O(
√
n log n)

to a configuration y such that q(y) < n
3
1−4ǫ
1+6ǫ or q(y) > n

2 has probability
p′x,y = 0. Moreover, for any s̄ ∈ [n], starting from the configuration x, the
probability of reaching the configuration z(s̄) is

p′x,z(s̄) = px,z(s̄) +
∑

y: s(y)=s̄ and

q(y)/∈[n3
1−4ǫ
1+6ǫ

,n
2 ]

px,y.

All the other transition probabilities remain the same. Observe that the
Undecided-State process is defined in such a way that it has exactly the
same marginal probability of the original process w.r.t. the random variable
s(Xt); thus, Lemma 18 holds for the Pruned process as well and we can
apply Lemma 16. Then, the Pruned process reaches a configuration having
bias Ω(

√
n log n) within O(log n) rounds, w.h.p., as shown in the following

lemma.

Lemma 19. Starting from any configuration x such that q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

and s(x) = O(
√
n log n), the Pruned process reaches a configuration having

bias Ω(
√
n log n) within O(log n) rounds, w.h.p.

Proof of Lemma 19. Let γ > 0 be a constant and m = γ
√
n log n be the

target value of the bias in Lemma 16. Since q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

and s(x) =

O(
√
n log n), the Pruned process satisfies Lemma 18 with probability 1,

and thus we can apply Lemma 16 (setting the function f(Xt) = s(Xt)),
which gives us that the Pruned process process reaches a configuration y
having bias s(y) ≥ m = Ω(

√
n log n) within O(log n) rounds, w.h.p.
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We now want to go back to the original process. The definition of the
Pruned process suggests a natural coupling between it and the original one.
If the two process are in different states, then they act independently, while,
if they are in the same state x, they move together unless the Undecided-

State process goes in a configuration y such that q(y) /∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

. In that

case, the Pruned process goes in z(s(y)). In the proof of the next lemma,
we show that the time the Pruned process takes to reach bias Ω(

√
n log n)

stochastically dominates the one of the original process, giving the result.

Lemma 20. Starting from any configuration x such that q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

and s(x) = O(
√
n log n), the Undecided-State process reaches a configu-

ration having bias Ω(
√
n log n) within O(log n) rounds, w.h.p.

Proof of Lemma 20. Let {Xt} and {Yt} be the original process and the
pruned one, respectively. Call H the set of possible initial configuration
according to the hypothesis, and let x ∈ H. Note that if Xt = Yt = x, then

Yt+1 =

{

Xt+1 if Xt+1 ∈ H

z(s(Xt)) otherwise
.

Let τ = inf{t : N : |s(Xt)| ≥
√
n log n}, and let τ∗ = inf{t ∈ N : |s(Yt)| ≥√

n log n}. For any configuration x ∈ H, define ρtx the event that the two
processes {Xt} and {Yt} have separated at round t + 1, i.e. ρtx = {Xt =
Yt = xt} ∩ {Xt+1 6= Yt+1}. Observe that, if the two couple processes in
the same configuration x0 ∈ H and τ > c log n, then either τ∗ > c log n or
there exists a round t ≤ c log n such that for some x ∈ H the event ρtx has
occurred. Hence, if P′

x0,x0
is the joint probability for the couple (Xt,Yt)

which both start at x0, we have

P
′
x0,x0

(τ > c log n)

≤ P
′
x0,x0

(

{τ∗ > c log n} ∪ {∃t ≤ c log n,∃x ∈ H : ρtx}
)

≤ P
′
x0,x0

(τ∗ > c log n) + P
′
x0,x0

(∃t ≤ c log n,∃x ∈ H : ρtx).

As for the first item, since Lemma 16 holds for the Pruned process, we
have that it is upper bounded by 1/n−Θ(1). As for the second term, we get
that

P
′
x0,x0

(∃t ≤ c log n,∃x ∈ H : ρtx) ≤
c logn
∑

t=1

P
′
x0,x0

(

∃x ∈ H : ρtx
)

=

c logn
∑

t=1

∑

x∈H
P
′
x0,x0

(

ρtx
)

≤
c logn
∑

t=1

n2

e−Θ(n)
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≤ 1

n
,

where in the second inequality we used the probabilities computed in the
proof of Lemma 17, and the fact that |H| is at most all the combinations of
parameters q and s.

Now, we take care of those cases in which the starting configuration is

such that q /∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

. Indeed, if q < n
3
1−4ǫ
1+6ǫ , the following holds.

Lemma 21. Let x be any starting configuration such that q(x) ≤ n
2 , and

s(x) ≤ 2ǫ
(1+6ǫ)2

n. Then, at the next round, it holds that q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

,

w.h.p.

Proof of Lemma 21. Let f(q) = 3
4

(

1+6ǫ
n

)

q2 − 1+6ǫ
2 q + 5+6ǫ

12 n. By Equation
(6) we have that

f(q)− ǫ

(1 + 6ǫ)
n ≤ E [Q | x] ≤ f(q).

Then, f(q) has its maximum in one of the two boundaries, namely q = 0 or
q = n

2 . Observe that

f(0) =
n

2
− 1− 6ǫ

12
n <

n

2

since ǫ < 1
6 . At the same time, we have that

f(n/2) = −1 + 6ǫ

16
n+

5 + 6ǫ

12
n ≤ n

2
− 1− 6ǫ

12
n <

n

2
.

Thus, for the additive form of Chernoff bound (Theorem 6 in Appendix A),
we have that

P

(

Q ≥ n

2
| x
)

≤ P

(

Q ≥ E [Q | x] + 1− 6ǫ

12
n

)

≤ exp

(

−2(1− 6ǫ)

144
n

)

.

On the other hand, the function

f(q)− ǫ

(1 + 6ǫ)
n =

3

4

(

1 + 6ǫ

n

)

q2 − 1 + 6ǫ

2
q +

5 + 6ǫ

12
n− ǫ

(1 + 6ǫ)
n

has its minimum in q̄ = n
3 . Then

f(q̄)− ǫ

(1 + 6ǫ)
n = −1 + 6ǫ

12
n+

5 + 6ǫ

12
n− ǫ

(1 + 6ǫ)
n =

n

3

(

1 + 3ǫ

1 + 6ǫ

)

,

which is at most E [Q | x] − 6ǫn
3(1+6ǫ) . From the additive form of Chernoff

bound (Theorem 6 in Appendix A), this implies the following.

P

(

Q ≤ 1− 3ǫ

1 + 6ǫ
| x
)

≤ P

(

Q ≤ E [Q | x]− 2ǫn

1 + 6ǫ
| x
)

≤ exp

(

− 8ǫ2n

(1 + 6ǫ)2

)

,

which, together with the previous result, gives the thesis.
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On the other hand, the number of undecided nodes decreases as long as
it is more than n/2, w.h.p. The following lemma shows this behaviour.

Lemma 22. Let x be any starting configuration such that q(x) > n
2 . Then,

at the next round, it holds that Q ≤ q
(

5
6 + ǫ

)

, w.h.p.

Proof of Lemma 22. Consider f(q) = 3
4

(

1+6ǫ
n

)

q2 − 1+6ǫ
2 q+ 5+6ǫ

12 n, which no
less than E [Q | x]. We see that, for q > n/2, the following is true:

f̃(q) = f(q)− q

(

2

3
+ 2ǫ

)

≤ 0.

Indeed,

f̃(q) =
3

4

(

1 + 6ǫ

n

)

q2 − 7 + 30ǫ

6
q +

5 + 6ǫ

12
n,

which has its maximum in one of the two boundaries, namely q = n/2 and
q = n. We compute the expression in these quantities.

f̃(n/2) =
(9 + 54ǫ)n − (28 + 120ǫ)n + (5 + 6ǫ)n

48
= −7 + 30ǫ

24
n < 0,

f̃(n) =
(9 + 54ǫ)n − (14 + 60ǫ)n + (5 + 6ǫ)n

12
= 0.

Then, we have that

E [Q | x] ≤ q

(

2

3
+ 2ǫ

)

.

The additive form of Chernoff bound (Theorem 6 in Appendix A) implies
that

P

(

Q ≥ q

(

5

6
+ ǫ

)

| x
)

= P

(

Q ≥ q

(

2

3
+ 2ǫ

)

+ q

(

1

6
− ǫ

)

| x
)

≤ P

(

Q ≥ E [Q | x] + q

(

1

6
− ǫ

)

| x
)

≤ P

(

Q ≥ E [Q | x] + n

2

(

1

6
− ǫ

)

| x
)

≤ exp

(

n

2

(

1

6
− ǫ

)2
)

.

which gives the thesis.

Finally, we are ready to prove Theorem 3.

Proof of Theorem 3: Wrap-Up. Let γ > 0 be a constant and m = γ
√
n log n

be the target value of the bias in Lemma 16. Let x be any initial configura-
tion having bias |s| < m. We have two cases.

36



(i) If the number of undecided nodes is such that q(x) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

,

then Lemma 20 implies that the Undecided-State process reaches
a configuration having bias Ω(

√
n log n) in O(log n) rounds, w.h.p.;

(ii) else, if the starting configuration is such that q(x) /∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

, then,

for Lemmas 21 and 22, the Undecided-State process reaches within

O(log n) rounds a configuration y having q(y) ∈
[

n
3
1−4ǫ
1+6ǫ ,

n
2

]

, w.h.p.

Then, either s(y) = Ω(
√

n log n), or we are in case (i). As Lemma 2
in the preliminaries implies, the intersection of O(log n) events that
hold w.h.p. is an event which holds w.h.p.

Then, Theorem 1 gives the desired result.

5 Simulations

We made computer simulations with values of the input size n ranging from
210 to 217, and for noise probabilities of p = 1/12, p = 1/8, p = 1/7,
and p = 1/5. Besides confirming the phase transition predicted by our
theoretical analysis, the outcomes show this behaviour emerges even for
reasonable sizes (i.e. n) of the system. Indeed, we made the Undecided-

State dynamics run for 400 rounds for the above values of p.

Size n
Average times

p = 1/12 p = 1/8 p = 1/7

210 24 Failed Failed

211 24 39 Failed

212 28 41 Failed

213 27 53 Failed

214 32 52 77

215 32 54 88

216 36 57 96

217 39 68 103

Table 2: The average time to reach a meta-stable almost-consensus phase.

In the first three settings of p, we started from complete balanced config-
urations (i.e. when both opinions are supported by, respectively, n

2 agents)
we found a fast convergence to the meta-stable regime of almost consensus,
which then did not break for all the rest of the simulation. Furthermore, we
have noticed that the symmetry is always broken when the bias is “roughly”
10
√
n log n. As for the case p = 1/5, we started from a configuration of com-

plete consensus and we observed that, within a short time, the system looses
any information on the majority opinion (say, the bias becomes less than
10
√
n log n) and it keeps this meta-stable phase with many switches of the

37



Size n
p = 1/5

Average time Number of switches

210 1 39

211 4 42

212 7 42

213 10 37

214 14 38

215 18 38

216 22 44

217 27 39

Table 3: The average time the bias goes below 10
√
n log n, and the number

of switches.

majority opinion. In Table 2, we can see the average time (computed over
100 trials and approximated to the closest integer) in which the system en-
ters the predicted meta-stable phase of almost consensus for any value of
p = 1/12, p = 1/8, and p = 1/7, for different input sizes. We also see that,
when p gets close to 1/6, the emergent behaviour is observed only for large
values of n and some of the experiments fail. In Table 3, we see the average
times in which the bias of the system goes below 10

√
n log n for different

input sizes, and the corresponding number of switches of majority opinion
during the remaining time.

6 Conclusions

While our mathematical analysis for the Undecided-State dynamics does
not directly apply to other opinion dynamics, it suggests that a general
phase-transition phenomenon may hold for a large class of dynamics charac-
terized by an exponential drift towards consensus configurations. Our work
thus naturally poses the general question of whether it is possible to provide
a characterization of opinion dynamics with stochastic interactions, in terms
of their critical behavior with respect to uniform communication noise.

As for the specific mathematical questions that follow from our results,
our assumption of a complete topology as underlying graph is, for several real
MAS, a rather strong condition. However, two remarks on this issue follow.
On one hand, we observe that, according to the adopted communication
model, at every round, every agent can pull information from just one other
agent: the dynamic communication pattern is thus random and sparse. This
setting may model opportunistic MAS where mobile agents use to meet
randomly, at a relatively-high rate. On the other hand, we believe that a
similar transition phase does hold even for sparse topologies having good
expansion/conductance [32]: this is an interesting question left open by this
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work.

A Appendix: Useful Tools

Here we present the concentration results we have used all over the analysis.
For an overview on the forms of Chernoff bounds see [24] or [22].

Theorem 5 (Multiplicative forms of Chernoff bounds). Let X1,X2, . . . ,Xn

be independent {0, 1} random variables. Let X =
∑n

i=1Xi and µ = E[X].
Then:

(i) for any δ ∈ (0, 1) and µ ≤ µ+ ≤ n, it holds that

P
(

X ≥ (1 + δ)µ+

)

≤ e−
1
3
δ2µ+ , (12)

(ii) for any δ ∈ (0, 1) and 0 ≤ µ− ≤ µ, it holds that

P
(

X ≤ (1− δ)µ−
)

≤ e−
1
2
δ2µ− . (13)

Theorem 6 (Additive forms of Chernoff bounds). Let X1,X2, . . . ,Xn be
independent {0, 1} random variables. Let X =

∑n
i=1 Xi and µ = E[X].

Then:

(i) for any 0 < λ < n and µ ≤ µ+ ≤ n, it holds that

P
(

X ≥ µ+ + λ
)

≤ e−
2
n
λ2
, (14)

(ii) for any 0 < λ < µ− and 0 ≤ µ− ≤ µ, it holds that

P
(

X ≤ µ− − λ
)

≤ e−
2
n
λ2
. (15)

The Berry-Eseen theorem is well treated in [33], and it gives an estima-
tion on “how far” is the distribution of the normalized sum of i.i.d. random
variables to the standard normal distribution.

Theorem 7 (Berry-Eseen). Let X1, . . . ,Xn be n i.i.d. (either discrete or
continuous) random variables with zero mean, variance σ2 > 0, and finite
third moment. Let Z the standard normal random variable, with zero mean
and variance equal to 1. Let Fn(x) be the cumulative function of Sn

σ
√
n
, where

Sn =
∑n

i=1Xi, and Φ(x) that of Z. Then, there exists a positive constant
C > 0 such that

sup
x∈R

|Fn(x)−Φ(x)| ≤ C√
n

for all n ≥ 1.
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B Appendix: Proofs

Equations 3 and 4.

E
[

S
∣

∣ x
]

= E
[

A
∣

∣ x
]

− E
[

B
∣

∣ x
]

=
1− 2p

n
[s(a+ b) + 2qs] +

p

n
[s(a+ b)]

= s
1− 2p

n
[n+ q] + s

p

n
[n− q]

= s
(

1− p+ (1− 3p)
q

n

)

,

E
[

Q
∣

∣ x
]

= +
a

n
[p(a+ q) + (1− 2p)b]

+
b

n
[p(b+ q) + (1− 2p)a]

+
q

n
[p(a+ b) + (1− 2p)q]

=
p

n

[

a2 + b2 + 2q(a+ b)
]

+
1− 2p

n

[

2ab+ q2
]

= pn+
1− 3p

n

[

2ab+ q2
]

= pn+
1− 3p

2n

[

2q2 + (n− q)2 − s2
]

.

Proof of Lemma 1. The equivalence between the two processes is showed
through a coupling. Formally, consider the complete graph of n nodes,
namely Kn, over which the former process runs. We define another graph
Gn, which contains a sub-graph isomorphic to Kn in the following way. Let
K ′

n be a copy of Kn, and let H be a graph of nstub = pnoise

1−pnoise
n isolated

nodes (which will be the stubborn agents). Then, each node u ∈ H is
connected by edges to all nodes of K ′

n, namely, each node of K ′
n has as its

neighborhood the whole set of nodes of K ′
n∪H, while each node of H has as

its neighborhood only the set of nodes of K ′
n. The nodes of H are such that

nstub · p1 are stubborn agents supporting opinion 1, nstub · p2 are stubborn
agents supporting opinion 2, and so on. Observe that

∑m
i=1 pi = 1, so this

partition is well defined.
The Undecided-State dynamics behaves in exactly the same way over

Gn, with the exception that the stubborn agents never change their opinion
and that there is no noise perturbing communications between agents. The
coupling is any bijective function f : Kn → K ′

n such that, for each v ∈ Kn, v
and f(v) support the same opinion at the beginning of the process. Consider
the two resulting Markov processes {Xt}t≥0 over Kn and {X′

t}t≥0 over K ′
n,
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denoting the opinion configuration at time t in Kn and in K ′
n, respectively.

It is easy to see that the two transition matrix are exactly the same (this
is the meaning of equivalence between the two processes). Indeed, in the
former model (a), the probability an agent pulls opinion j at any given
round is

(1− pnoise)
cj
n

+ pnoise · pj ,

where cj is the size of the community of agents supporting opinion j; in the
model defined in (b), the probability a non-stubborn agent pulls opinion j
at any given round is

cj + nstub · pj
n+ nstub

=
cj +

pnoise
1−pnoise

n · pj
n+ pnoise

1−pnoise
n

= (1− pnoise) ·
cj
n

+ pnoise · pj .
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