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Abstract

In this paper, a method of pitch tracking based on variance minimization of locally pe-

riodic subsamples of an acoustic signal is presented. Replicates along the length of the

periodically sampled data of the signal vector are taken and locally averaged sample vari-

ances are minimized to estimate the fundamental frequency. Using this method, pitch

tracking of any text independent voiced signal is possible for different speakers.

I. INTRODUCTION

Extraction or determination of fundamental frequency (or pitch) of a speech signal is a fundamental
problem in both speech processing and speaker recognition. The typical pitch range for a male human
being is 80-200 Hz, and for females 150-350 Hz. Many methods to extract the pitch of speech signals have
been proposed. Improvements in accuracy of performance, robustness against noise of these methods are
still desired. As a whole, we do not have any reliable and accurate method for pitch extraction. Also
measuring the period of a speech waveform, varying in and with the detailed structure of the waveform,
can be quite difficult. Another problem is automatic selection of the window of the voiced speech segments.

Autocorrelation method [Rabiner, 10] and the average magnitude difference function (AMDF) method
[Ross et. al., 15] are known to be the most primitive standard methods to find pitch. Based on these
two methods several refinements like auditory modeling [Cosi et. al., 3], probabilistic AMDF modeling
[Jamieson et. al., 5], real-time digital hardware pitch detector [Rabiner et. al., 12], semiautomatic
pitch detector (SAPD) [Rabiner et. al., 13], automatic formant analysis [Rabiner et. al., 14], weighted
autocorrelation [Shimamura et. al., 16], modified autocorrelation and AMDF [Tan et. al., 17], projection
measure technique [Yuo et. al., 18], pseudo-pitch synchronous analysis [Zilca et. al., 19] and many more
[Rabiner et. al., 11] are proposed. Some other ideas on pitch extraction have also been discussed in the
paper [Marchand, 9] and some tutorials [Gerhard, 4] and [Campbell, 6].

For an idealized speech signal in a stationary noisy environment the following mathematical abstraction
has been consistently assumed in this paper.

yn =
∑

j

aj exp {if(j)n}+
∑

j

cjzj exp {ijn} , (1)

where {zj} is an uncorrelated sequence of random variables or white noise and {cj} are coefficients
of discrete spectrum of stationary noise. In case the main signal {yn} possesses a pure fundamental
frequency (or pitch), which is again another idealized view, it is assumed in this paper that f(j) = jfp
for a suitable pitch value fp. The actual situation can become complicated further if the idealized signal
contains multiple pitch streams or is convoluted with a channel filter. Therefore, from a practical point
of view, the estimation of the pitch of a signal is essentially a statistical problem. Here we propose
a new method for extraction of fundamental frequency of speech signal in clean and to some extent
noisy environment using simple statistical techniques. Motivationally, the technique has similarity with
Zero Crossing based techniques (Kedem, [8] and Gerhard, [4]), however, the theory is much simpler and
statistical in nature. The main novelty of our approach actually lies in formulating the problem in this
manner and putting a certain number of standard measures (such as, Autocorrelation and AMDF) of
pitch in the same framework with our proposed measure (Average Squared Mean Difference Function or
ASMDF). This way a more comprehensive approach is presented and left open for further refinements.

The remainder of this paper is organized as follows. Section II describes the motivation and the
principle of the proposed method. In Section III, we show the results of preliminary tests for the proposed
method and comparing with some standard pitch detection methods we confirm the effectiveness of our
method. In Section IV, we give an error analysis of the method. In section V, we conclude this paper
giving views regarding further development that can be done. In the appendix, given as in Section
VI, important calculations, which show the link between the proposed method and the autocorrelation
function, are explained with a short note on computational complexity of the proposed method.

http://arxiv.org/abs/cs/0701177v4
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II. PROPOSED METHOD

Given a discrete time signal y = (y1, y2, . . . , yn) (which is the real part of the complex idealized signal
(1)), the autocovariance function is defined as

ry(k) =
1

n− |k|

n−|k|
∑

i=0

(yi − y)(yi+k − y), (2)

and the autocorrelation function is defined by

ρy(k) =
ry(k)

ry(0)
(3)

defined for all n and lag k.
A variation of autocorrelation analysis for measuring the periodicity of voiced speech uses the average

magnitude difference function (AMDF), defined by the relation

Dy(k) =
1

n− |k|

n−|k|
∑

j=1

|yj+k − yj| .

In case of AMDF, Dy(k) has been approximated by a scalar multiple of

1

n− |k|







n−|k|
∑

j=1

(yj+k − yj)
2







1/2

which again has been approximated by the scalar multiple of [2 {ry(0)− ry(k)}]
1/2 , where ry(k) is the

autocovariance defined as above. These approximations may suppress calculations important for pitch
extraction.

Also AMDF can be considered as a replica of Ginis mean difference formula ([Goon et. al., 7], page
233-234). But the new method described below gives more optimal results as it is a replica of variance of
the data set. So we propose a new function which has been linked to the autocorrelation and refined in
the Appendix.

Consider the voiced segment y = (y1, y2, . . . , yn) in a digital speech signal. Since most speech signals
can be viewed as a quasi-periodic sequence the fundamental frequency may not be uniquely defined
mathematically. In our approach we estimate the fundamental frequency by statistically enhancing the
most significant harmonics present in y.

We describe below our algorithm for estimation of the pitch in this voiced segment. For 1 ≤ i ≤ n,
and k ≥ 1 we consider the downsampled subsets (windows) of the original signal,

yi,k = (yi+pk : p = 0,±1,±2, . . .).

Note that due to finiteness of the data stream, for each (i, k) pair we have to consider only those values
of p so that yi+pk is within the range. Furthermore, for several (i, k) pairs, yi,k will become singleton
and they will not come under further considerations. It is worth bringing in the issue of aliasing here.
The parameter k is treated like a trial wavelength parameter so that smaller values of k relates to higher
frequencies and vice versa. We restrict lower limit of this parameter and assume k ≥ k0 as an adjustment
for the Nyquist rate based on the original sampling rate of the signal. However, as our goal is estimation of
the fundamental frequency of the voiced part we shall generally be interested in the higher range of values
of k. This raises the issue of aliasing. Again based on the sampling rate of the signal an upperbound for
k, namely kmax, needs to be set so that overall sampling rate after downsampling stays above 40 kHz.
One of the basic assumption is that the fundamental frequency of the voiced part is estimable (in terms
of both Nyquist rate and aliasing) for the given signal.

Next, let for each k ≥ k0, define

Sk = {i : 1 ≤ i ≤ n; yi,k has at least two elements} ,

and, let qk be the number of elements in Sk. This automatically sets an upperbound for k ≤ kmax <
([(n+ 1)/2]− 1) ([x] being the greatest integer less than x). Finally define for k values with qk > 0,

g(k) =
1

qk

∑

i∈Sk

Var(yi,k), (4)

where Var(yi,k) denotes the sample variance of the signal values in the subset yi,k. It is interesting to
note that aliasing, statistical precision of the sample variances (requiring larger values of qk over a large
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range of k) of downsampled signals and robustness of the method under noisy environments considered
are largely related issues.

Let f0 be the sample rate of the original speech signal and f(k) = f0
k , where k0 ≤ k ≤ kmax. In

view of (4), g can be thought of as a function of f . Also g can be thought of as a mean squared mutual
difference function which can be approximated with the standard autocorrelation function.

Let i be the index of the second minimum of the components of g(k), i.e. g(i) = minkg(k) Then
fp = f(i) is referred as the estimated fundamental frequency of the speech signal of y.

We further assume that the white noise sequence {zj} in (1) is Gaussian and carry out the Likelihood
Ratio test of the null hypothesis, H0 : E(yi,k) = µi(1, 1, . . .), the ASMDF statistic g(k) coincides with a
measure of departure from this null hypothesis. This is the motivation behind the main proposal in the
present paper.

III. EXPERIMENTS
A. Synthetic Data

Experiment No. 1. We have taken the function yn = sin(xn) for xn = 2nπ
55 ;n = 0, 1, 2, . . . , 11000.

Then we have plotted g(k) for the 100th window for different k and also plotted ry(k) (autocorrelation
values) and Dy(k) (AMDF values) against k in the same graph.

Figure 1 : Graph of g(k) Figure 2 : Graph of g(k), ry(k) (dashed) Figure 3 : Graph of pitch

against k for y = sin(x) and Dy(k) (dotted) for y = sin(x) for y = sin(x)

Here we see that peaks in the autocorrelation graph and dips in the AMDF and ASMDF occur for
the same k. Next we present the graph of fundamental frequency, which is expected to be 100Hz, for the
same data with sample rate 11000Hz, a window size of 400 samples and shifting the window along 55
consecutive samples, using ASMDF. Autocorrelation and AMDF give identical graph.

Experiment No. 2. We have taken an = sin(bn) for bn = 2nπ
55 ;n = 0, 1, 2, . . . , 5500 and cn =

cos(dn) for dn = 5nπ
56 ;n = 0, 1, 2, . . . , 5500. Then y has been taken as a linear combination of an and

cn as y = 0.47an + 0.59cn. Now we plot g(k) for the 100th window for different k and also plot ry(k)
(autocorrelation values) and Dy(k) (AMDF values) against k in the same graph.

Figure 4 : Graph of g(k) Figure 5 : Graph of g(k), ry(k) (dashed)

against k for y = 0.47an + 0.59cn and Dy(k) (dotted) against k for y = 0.47an + 0.59cn

Here we see that peaks in the autocorrelation and dips in AMDF graphs tally with each other but
dips in ASMDF sometimes matches the above two and sometimes falls just short of them. The reason
is the peaks and the dips for all three methods are supposed to appear at the indices which are mul-
tiples (approximately) of the smallest index. Here the first peak and dip are at the 22nd index for all
three methods. The second peak appears for autocorrelation at the 46th index and the second dip for
AMDF appears there too. But for ASMDF, the second dip appears at the 45th index which is a better
approximation to find pitch. Thus the graph of fundamental frequency, which is expected to be 250Hz
(5500/ {2× gcd([55], [56× 2/5]) = 250}) for the same data with sample rate 5500Hz, a window size of
400 samples and shifting the window along 55 consecutive samples, is found the following way
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Figure 6 : Graph of pitch for AMDF Figure 7 : Graph of pitch for autocorrelation and

for y = 0.47an + 0.59cn ASMDF for y = 0.47an + 0.59cn (since they are identical)

B. Speech Data

Experiment No. 3. Clean speech signals with unknown true pitch values were obtained from IViE
Corpus [1]. Speech samples were uttered by one female speaker (F1) and one male speaker (M1). Each of
such speech signals consisted of a maximum of five English words, which were sampled at different rates.
Taking window size of 1000 samples we found data sets of pitch and the following graphs.

To investigate the accuracy of the ASMDF, we have conducted experiments which compare it with
two conventional methods. They are the methods of Autocorrelation and AMDF.

Autocorrelation method does the correlation analysis frame-by-frame to the estimated average pitch
period of the speaker. The property of this function is that ry(k) is large when yn has similar value with
yn+k. If yn has a pitch period i, then ry(k) has peaks at the integral multiples of i. Obviously ry(0)
is maximum among these values, the second largest being ry(i). Other maxima usually decrease as k
increases. Therefore using this method we can estimate i from the location of the peak at k = i.

A variation of autocorrelation analysis for measuring the periodicity of voiced speech uses the AMDF.
The separation of the nulls that appear in calculating Dy(k) is a direct measure of the pitch period.

Figure 8 (a) : Graph for pitch of Figure 9 (a) : Graph for pitch of

speaker F1 using ASMDF speaker M1 using ASMDF

Figure 8 (b) : Graph for pitch of Figure 9 (b) : Graph for pitch of

speaker F1 using AMDF speaker M1 using AMDF

Figure 8 (c) : Graph for pitch of Figure 9 (c) : Graph for pitch of

speaker F1 using Autocorrelation speaker M1 using Autocorrelation



5

Observations : F1 : Here major fluctuations around 280th, 470th and 920th ms for the method
autocorrelation and AMDF are observed, whereas no major fluctuations but minor ones are there in the
segment for the method ASMDF.

M1 : Here the method ASMDF is much consistent with the methods autocorrelation and AMDF.
From 180th and 230th ms major fluctuations are there for the methods autocorrelation and AMDF but
not for ASMDF.

Experiment No. 4. One male (RL) and one female speaker (SB) each spoke 50 sentences, out of
which, fifteen speeches (with known pitch or Laryngeal frequency contour in XMG format) were taken
from FDA Evaluation Database [2] for experiment. Taking window size of 400 samples, we found data
sets of pitch and the following graphs (where sample rate of each the Laryngograph waveform is given to
be 20000Hz) of the first (001) speeches. All other graphs were observed to have similar behaviour. All
the graphs have time (in ms) as horizontal axis and pitch (in Hz) as vertical axis.

Graphs of pitch of speaker RL speaking speech 001:

Fig. 10 (a), (b): Graphs of true and ASMDF pitch values respectively.

Fig. 10 (c), (d): Graphs of Autocorrelation and AMDF pitch values respectively.

Graphs of pitch of speaker SB speaking speech 001:

Fig. 11 (a), (b): Graphs of true and ASMDF pitch values respectively.



6

Fig. 11 (c), (d): Graphs of Autocorrelation and AMDF pitch values respectively.

C. Synthetic and Noisy Data (without true pitch values)

Experiment No. 5. Tones of seven notes, each of length 1.6 seconds (approx.), have been played by
a synthesizer of model no. SA21 from Casio in its harmonica mode and recorded in Acer Travelmate 240
Laptop using Audacity 1.2.3 with sample rate 44100 Hz. Following pitch graphs (with pitch axis against
k axis) of the note “Do” have been found using the three methods. All other graphs from the remaining
notes were observed with similar behaviour.

Fig. 12 (a), (b), (c): Graphs of pitch for Do in Casio SA21 (Harmonica) by ASMDF, AMDF and Autocorrelation
respectively.

From the graphs we see that the noises and various encoding-decoding mismatches of signals are
causing the distortions, but mainly the harmonica mode in the synthesizer here, being a well-known
multiphonic device itself, has no fixed pitch value. Here too, ASMDF is much robust against mismatches
and noises than those of autocorrelation and AMDF, which supports our claim.

IV. ERROR ANALYSIS (of exp. no. 4)

Let Pc , Pm and Ps be the pitch contour found using autocorrelation, AMDF and ASMDF respectively
calculated over the same window for the above three speeches of the two speakers. Let P be the true
pitch value over the same window. Let us denote

es = (P − Ps)/P , ec = (P − Pc)/P and em = (P − Pm)/P

as the relative pitch error or percentage gross error. Let us define the standard deviation of the relative
pitch error as

σe =

√

√

√

√

1

Le − 1

Le
∑

i=1

e2(i)− e2

where e(i) = es(i), em(i), ec(i); Le being the length of each of the relative pitch error and e = 1
Le

∑Le

i=1 e(i)
is the mean pitch error. The experimental values of σe viz. σe(c), σe(m) and σe(s) for autocorrelation,
AMDF and ASMDF respectively, is given in the following table:
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Here, “σe(s) for speech RL001 is 0.0248” means that standard deviation of gross pitch error for speech
RL001 by ASMDF is 2.48% with respect to the true pitch value. If the standard deviation of gross pitch
error is more than 20% (threshold) with respect to the true value, it’s consistency is questionable.

Also the correlation chart where correlation coefficients of (P, Ps), (P, Pc) and (P, Pm) are calculated
as rs , rc and rm respectively and are given as follows:

V. CONCLUSION

Based on the experimental results and error calculations it has been shown that ASMDF is useful in
clean environment. It also makes a refinement of the autocorrelation-based methods to a great extent.
The idea behind this method also leads to methods of extraction of other features of speech signals. Also
there is a scope of using cutting and smoothing technique(s) for evaluation of pitch. The limitation of
this method is the procedure to obtain the minimum values from the data set which are often used to
fall behind the known limits viz. 80-200 Hz for males and 150-350 Hz for females.

VI. APPENDIX
A. RELATIONSHIP BETWEEN ASMDF AND THE AUTOCORRELATION FUNCTION

Note that, g(k) can alternatively be defined as follows. Define the set

Ck = {(i, j) : 1 ≤ i, j ≤ n, i 6= j, |i− j| is divisible by k},

for k0 ≤ k ≤ kmax, where |Ck| denotes the cardinality of Ck. Then

g(k) =
1

2|Ck|

∑

(i,j)∈Ck

(yi − yj)
2,

provided Ck is non-empty. Otherwise g is not defined. This follows from standard algebra with the
formula for variance. Then it can be shown that

E{g(k)} =
1

2|Ck|

∑

(i,j)∈Ck

2{ry(0)− ry(|i− j|)} +
1

2|Ck|

∑

(i,j)∈Ck

(Eyi − Eyj)
2
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≈ ry(0)

{

1− lim
N→∞

1

N

N
∑

p=1

(

1−
p

N

)

ρy(pk)

}

+
1

2|Ck|

∑

(i,j)∈Ck

(Eyi − Eyj)
2,

for large n (ry and ρy have already been defined in (2) and (3)). The bias term (second term) is being
minimized in ASMDF based on g(k). Note that the first term is added due to the noisy environment and
is constant (equal to ry(0)) for white noise error. Otherwise, even for well behaved stationary errors it is
a slowly varying function ensuring robustness of our procedure under (1).

B. COMPUTATIONAL COMPLEXITY

Computational complexity of ASMDF (comes out roughly to be n(4n+5.5)), which is of order of n2,
is a bit higher than that of autocorrelation function (viz. 2n(n-1)) and AMDF (viz. (n-1)(3n-1)), which
are also of orders of n2, n being length of a window.
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