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Abstract

The key contribution of this work is to develop transmitter and receiver algorithms in discrete-time for turbo-

coded offset QPSK signals. The proposed synchronization and detection techniques perform effectively at an

SNR per bit close to 1.5 dB, in the presence of a frequency offset as large as 30 % of the symbol-rate and a

clock offset of 25 ppm (parts per million). Due to the use of up-sampling and matched filtering and a feedforward

approach, the acquisition time for clock recovery is just equal to the length of the preamble. The carrier recovery

algorithm does not exhibit any phase ambiguity, alleviating the need for differentially encoding the data at the

transmitter. The proposed techniques are well suited for discrete-time implementation.

Index Terms

Offset QPSK (quadrature phase shift keying), frequency offset, clock offset, synchronization, matched filter-

ing, additive white Gaussian noise (AWGN).

I. I NTRODUCTION

Geosynchronous satellites provide line-of-sight communications with the ground stations. Such communica-

tion links offer distortionless transmission, with the only impairment being AWGN. Whereas transmit power

is not so much of an issue at the ground station, it is a precious commodity on-board the satellite. With the

growing demand for satellite broadcast services, it has become necessary for the end users to receive signals

directly from the satellite. This calls for a vastly reducedsize and cost of the receiving equipment at the ground

station (which is usually the users premises or the handset)and superior modulation, coding and synchronization

techniques. With the discovery of turbo codes, the aforementioned scenario has become a reality.

In order to further improve the performance and bring down the cost of the receivers, we propose offset

QPSK as the modulation technique, which allows the use of power efficient non-linear amplifiers and data-

aided synchronization algorithms which have a faster acquisition time than the non-data-aided counterparts

proposed in [1]. We also use the upsampled version of the matched filter as an interpolator [2], enabling the

implementation of a feedforward timing acquisition method, that is faster than the feedback approach discussed

This project is supported by Defence Electronics Applications Lab (DEAL), Dehradun (ref. no. DEAL/02/4043/2005-2006/02/016). The

project investigator is with the Dept. of Electrical Engg.,Indian Institute of Technology, Kanpur. Email: vasu@iitk.ac.in
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in [1]. Though there are other interpolation techniques [3], [4] for timing acquisition, we believe that they are

well suited for feedback methods.

Before we proceed, a brief review of the literature on carrier and timing synchronization is in order. An

improved phase lock loop that operates effectively at medium to low SNR is proposed in [5]. A data-aided

carrier recovery loop for duobinary encoded offset QPSK is given in [6]. A tutorial on carrier and timing

synchronization is given in [7]. Joint carrier recovery andequalization of digitally modulated signals is discussed

in [8], [9]. A data-aided carrier recovery algorithm for estimating phase and frequency offsets is discussed in

[10], [11] and also in [12], [13] for digital land mobile radio and satellite communication. Detection of bursty

QPSK signals at low SNR is described in [14]. A digital modem for offset-QPSK is dealt with in [15]. Carrier

synchronization for trellis-coded signals is given in [16]. A digital PLL for QPSK signals is described in [17]

and an all-digital implementation of carrier synchronization for digital radio systems is proposed in [18]. A

comparison of different carrier recovery techniques is presented in [19]. A carrier recovery algorithm forM -ary

QAM with a capability to track large frequency offsets is discussed in [20]. A non-data-aided carrier recovery

method for modified 128-QAM is proposed in [21].

Timing recovery can be broadly classified into synchronous and asynchronous methods. In the synchronous

methods, the local clock at the receiver is regenerated fromthe incoming signal. Such techniques are imple-

mented in hardware and are usually employed in analog modems[22]. In the asynchronous approach, the local

clock at the receiver is free running, due to which the ratio of the receiver sampling frequency to the incoming

symbol-rate is not an integer. If this ratio were to be an integer (equal to say,M ), then timing acquisition alone

would have sufficed – we could recover the symbols from the matched filter output everyM th sample. Let us

denote the sampling epoch asm0 modulo-M . However, in practical situations the transmitter and receiver clocks

are asynchronous (their frequencies are not exactly identical), therefore the above mentioned ratio is not an

integer. Hence timing needs to be acquired and tracked (thisis explained in the next para and in section III-C).

In the present context, the word “timing” implies knowing when to recover the symbols from the matched

filter output. In the asynchronous methods of timing recovery, signal processing techniques are used which are

suitable for software implementation [23]–[25].

The transmit and receive clocks are usually specified asF0 Hz, ±δ parts per million (ppm). This implies

that the actual frequency of the transmit and receive clockslies in the rangeF0(1± δ × 10−6) Hz. The worst

case frequency difference is±2F0δ × 10−6 Hz. For ease of understanding, we could assume that the transmit

clock is exact (F0 Hz) and the receive clock isF0 Hz, ±2δ ppm. Let us now assume that the transmitted signal

is sampled using the exact clock (with frequencyF0 Hz) and106 samples are obtained over a period of time.

If the same transmitted signal is sampled using the receive clock (having an accuracy of±2δ ppm) over the

same time interval, we would obtain106 ± 2δ samples. For example, ifδ = 0.5, then we would obtain one

sample more or less over106 samples, which further implies that the sampling epoch would change by one

sample over106 samples (the new sampling epoch would be(m0 ± 1) modulo-M ).

More recently, iterative timing recovery is proposed in [26]. The Cramér-Rao bound for non-data-aided timing

recovery for linearly modulated signals with no ISI is presented in [27].

This paper is organized as follows. Section II discusses thesystem model. In Section III we discuss the

receiver algorithms. The performance results are discussed in Section IV. Finally, in Section V we present our
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conclusions.

II. SYSTEM MODEL

Data
Ld

Preamble
Lp

Postamble
Lo

Fig. 1. The burst structure.

We assume that the data to be transmitted is organized into bursts (or frames). The burst consists of a known

preamble of lengthLp (QPSK) symbols, followed by turbo-coded data of lengthLd symbols and a known

postamble of lengthLo symbols. Thus, the total length of the frame is

L = Lp + Ld + Lo. (1)

The Ld QPSK symbols are obtained by passing an uncoded bit stream through a rate-1/2 turbo code. The

generator matrix of each of the constituent encoders is given by [28]:

G(D) =

[

1 1 +D2 +D3 +D4

1 +D +D4

]

. (2)

The received signal can be written as:

r(t) =
√

4/T ℜ
{

s̃(t)e j [2π(Fc+∆F )t+θ0]
}

+ w1(t) (3)

whereℜ{·} denotes the real-part,1/T is the baud-rate,Fc is the nominal carrier frequency,∆F is the frequency

offset (which can be positive or negative),θ0 is the carrier phase andw1(t) is additive white Gaussian noise with

two-sided power spectral densityN0/2 (watts/Hz). The term̃s(t) (we use tilde to denote complex quantities)

in (3) is the complex envelope of the offset QPSK signal and isgiven by:

s̃(t) = sI(t) + j sQ(t)

=

L−1
∑

k=0

Sk, Ip(t− kT − α)

+ j

L−1
∑

k=0

Sk, Qp(t− kT − T/2− α) (4)

whereSk, I ∈ ±1 andSk,Q ∈ ±1 are the in-phase and quadrature components of the QPSK symbol and p(t)

is the impulse response of the transmit filter, which is assumed to have the root-raised cosine spectrum with

40% roll-off. The variableα denotes the random timing phase which is assumed to be uniformly distributed

in [0, T ). Observe thatp(t) extends over−∞ < t <∞. However in practice, it can be delayed and truncated

to obtain a causal and finite impulse response, with negligible intersymbol-interference (ISI) at the matched

filter output. The task of the receiver is to estimate the QPSKsymbols such that the error-rate is close to the

theoretical limit.

Since we deal with discrete-time signals in this paper, the first task is to convertr(t) in (3) into a discrete-time

signal. This is accomplished by passingr(t) through a bandpass filter (BPF) followed by bandpass sampling.

For convenience of subsequent analysis, we assume an ideal BPF having unit energy with a gain of
√

T/4 in
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the passband extending over[Fc − 1/T, Fc + 1/T ] Hz. This ensures that the noise power at the BPF output

is N0/2. Assuming a sampling frequency ofFs = 1/Ts, the bandpass sampling requirements can be stated as

follows [29]:

2π(Fc − 1/T )

Fs
≥ kπ

2π(Fc + 1/T )

Fs
≤ (k + 1)π (5)

wherek is a positive integer. We assume that the conditions in (5) are satisfied with an equality so thatFs = 4/T

or equivalentlyT/Ts = 4. Therefore, the symbols can be delayed byT/2 ≡ 2 samples in discrete-time. We

further assume that

2πFc

Fs
= kπ + π/2 = π/2 mod 2π (6)

if k is even. Thus the output of the analog-to-digital (A/D) converter after bandpass sampling can be written as

r(nTs) = ℜ
{

s̃(nTs)e
j [(π/2+ω0)n+θ0]

}

+ w(nTs) (7)

where

s̃(nTs) = s̃(t)|t=nTs

= sI(nTs) + j sQ(nTs)

w(nTs) = w(t)|t=nTs

ω0 = 2π∆F/Fs (8)

wherew(t) is noise at the BPF output. Note thatw(nTs) denotes samples white Gaussian noise with variance

N0/2. The simulation model of the transmitter and its input are illustrated in Figures 2 and 3.

sp(nTs) r(nTs)

w(nTs)
sQ(nTs)

p(nTs − T/2− α)

sI(nTs)
p(nTs − α)

cos(2π(Fc +∆F )nTs + θ0)

− sin(2π(Fc +∆F )nTs + θ0)

s1, I, n

s1, Q, n

Fig. 2. Simulation model of the transmitter.

Having assumed thatT/Ts = 4, it is now necessary to find out what is the maximum frequency offset that

can be tolerated. With40% roll-off, the bandwidth of the complex baseband signal is1.4/(2T ) = 0.7/T . The

spectrum of the discrete-time sampled signal is shown in Figure 4, when the frequency-offset∆F = 0. Here

ω1 = π/2− 2π × 0.7/(TFs) = 0.15π

ω2 = π/2 + 2π × 0.7/(TFs) = 0.85π = π − ω1. (9)



6

nTs

nTs

+1

Ts

−1

Sk−1, I

Sk−2, I

Sk−3, ISk, I

+1 Sk,Q

−1 Sk−1, Q

Sk−3, Q

T

Sk−2, Q

s1, I, n

s1, Q, n

Fig. 3. Symbol sequence input to the transmitter. HereT/Ts = M = 4.

0 π/2−ω2 −ω1−π/2 π−π ω2ω1

ω = 2πF/Fs

Fig. 4. The spectrum of the discrete-time sampled signal with ∆F = 0.

In order to avoid aliasing of the spectrum, we require

|2π∆F/Fs| ≤ ω1

⇒ |ω0| ≤ ω1. (10)

Substituting forω1 from (9) and usingT/Ts = 4, we obtain

|∆F | ≤ 0.3/T (11)

which is less than or equal to 30% of the symbol-rate. Having justified the maximum frequency offset used in

this work, we next discuss the procedure for simulating the clock offset.

Assume thatr(t) in (3) is sampled at a rate of

F ′

s = Fs(1± 2δ × 10−6). (12)

The corresponding sampling period is:

T ′

s = 1/F ′

s = Ts(1∓ 2δ × 10−6)
∆
= Ts + ǫ. (13)

Then

r(nT ′

s) = ℜ
{

s̃(nT ′

s)e
j [2π(Fc+∆F )nT ′

s+θ0]
}

+ w1(nT
′

s). (14)

Define

ω3 = 2π
∆F ∓ (Fc +∆F )2δ × 10−6

Fs
. (15)

Then

r(nT ′

s) = ℜ
{

s̃(nT ′

s)e
j [(π/2+ω3)n+θ0]

}

+ w1(nT
′

s). (16)
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Thus, one of the effects of having an error in the sampling frequency is to introduce an additional frequency

offset equal to:

∓ 2π
(Fc +∆F )2δ × 10−6

Fs
radians. (17)

Henceforth, we assume that|ω3| ≤ ω1 to avoid aliasing (see also (10)). We now study the effect ofT ′

s on the

complex baseband signals̃(·) in (16).

We have

s̃(nT ′

s) =

L−1
∑

k=0

Sk, Ip(nT
′

s − kT − α)

+ j
L−1
∑

k=0

Sk, Qp(nT
′

s − kT − T/2− α) (18)

Let the impulse response of the transmit filter extend over[0, N ] samples, at a sampling rate ofFs = 4/T . Let

nTs − kT = iTs (19)

wherei is an integer. Using (13), (18) can be rewritten as:

s̃(nT ′

s) =
L−1
∑

k=0

Sk, Ip(nTs + nǫ− kT − α)

+ j

L−1
∑

k=0

Sk, Qp(nTs + nǫ− kT − T/2− α)

=

N
∑

i=0

p(iTs + nǫ− α)S(n−i)/4, I

+ j
N
∑

i=0

p(iTs + nǫ− T/2− α)S(n−i)/4, Q (20)

where it is understood thatS(n−i)/4, I andS(n−i)/4, Q are non-zero every4th value ofn, all other values are

zero (see Figure 3).

The above equation suggests that the complex baseband signal must be generated using time-varying transmit

filter coefficients [30]. Note that ifǫ = 0, the transmit filter would be time-invariant, sinceα is a constant for a

given burst. Clearly, it doesn’t make sense to allownǫ to grow without bound. In fact, it needs to be periodically

“normalized”. How this is done, is shown in Figure 5, for generating the in-phase part of the complex baseband

[30]. The sequences1, I, n is illustrated in Figure 3. The procedure for generating thequadrature part of the

complex baseband is similar. Note that the signalsI(nT
′

s) obtained from Figure 5(b) is approximately equal

to that obtained in parts (c) and (d), as long as the first and the last transmit filter coefficients contribute

insignificantly to the energy of the overall transmit filter.This can be ensured by having a large enoughN .

The simulation model for the transmitter is similar to Figure 2 with Ts replaced byT ′

s. SinceT ′

s ≈ Ts, we

continue to assume that the samples ofw(nT ′

s) are uncorrelated with zero mean and varianceN0/2. The next

step is to discuss the receiver.

III. R ECEIVER

Let ω̂3 andω̂f denote the “coarse” and the “fine” estimates of the frequencyoffset respectively, corresponding

to the sampling frequency of1/Ts. The receiver in Figure 6 operates in the following steps:
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s1, I, 0

p(NTs − α)

Time n = 0

p(−α)

sI(0)

s1, I, n

sI(nT
′

s)

p(nǫ− α) p(NTs + nǫ− α)

p(Ts − α)

p(Ts + nǫ− α)

s1, I, n− 1 s1, I, n−N

Time n.

(a)

(b)

(c)

(d)

sI(nT
′

s)

p(ǫ′ − α) p(Ts + ǫ′ − α) p(NTs + ǫ′ − α)

sI(nT
′

s)

s1, I, n+ 1

Shift the contents of the tapped delay line one place to the right.

s1, I, n s1, I, n+ 1−N

p(ǫ′ − α) p(Ts + ǫ′ − α) p(NTs + ǫ′ − α)

Shift the contents of the tapped delay line one place to the left

s1, I, n− 1
s1, I, n− 2 s1, I, n− 1−N

Time n. nǫ > Ts. Setǫ′ = nǫ− Ts

Time n. nǫ < −Ts. Setǫ′ = nǫ+ Ts

Fig. 5. Illustrating the process of generatingsI(nT ′

s) (a) Timen = 0. (b) Time n. (c) Adjustments at timen when nǫ > Ts. (d)

Adjustments at timen whennǫ < −Ts.

1) Demodulater(nT ′

s) with ω̂3 = ω̂f = 0 in Figure 6 and detect the start of frame using the “differential”

correlation method. Store the samplesr(nT ′

s) corresponding to a frame. Index the first incoming sample

as 0, the next sample as 1 and so on. Obtain a coarse estimate ofthe frequency offset and denote it as

ω̂3.

2) Demodulate the stored values ofr(nT ′

s) usingπ/2+ ω̂3. Estimate the start of frame for the second time

using the differential correlation method.

3) Obtain the maximum likelihood estimate of the residual frequency offset which is equal toωf = ω3− ω̂3.

Denote this estimate aŝωf .

4) Demodulate the stored values ofr(nT ′

s) usingπ/2 + ω̂3 + ω̂f . Estimate the start of frame for the third

time using the correlation method. Estimate the symbol amplitude,θ0 and the variance of additive noise.

5) Detect the data using the turbo decoder. Track the timing and carrier phase resulting due to the clock
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freq. offset
est.

and
Tim.

p(nTs1)

Delay

T/2

Hard

decision

decision

Hard

ℑ{·}

ℜ{·}

Est.

θ(lT )

To turbo decoder

Ŝi, I

Ŝi,Q

A

To
A

↑ I = 4

↑ I = 4

2 cos(n(π/2 + ω̂3 + ω̂f ))

−2 sin(n(π/2 + ω̂3 + ω̂f ))

r(nT ′

s)
samplerx̃i(nT

′

s1)
i = 1, 2, 3 (samples the MF output

at times≈ kT/2)

e−j θ̂(lT )

Fig. 6. The discrete-time receiver which up-samples the local oscillator output by a factor ofI and then performs matched filtering at a

sampling frequencyFs1.

offset and residual frequency offset given byωf − ω̂f respectively.

Before we proceed to elaborate on the above steps, let us lookinto the operation of up-sampling and matched

filtering [31].

A. Up-Sampling and Matched Filtering

For ease of exposition, we assume thatδ = 0 (T ′

s = Ts). The samples of the transmitted pulse is shown in

Figure 7(a) by solid impulses (Kronecker delta function). We assume thatp(t − α) spans overN + 1(= 13)

(0 ≤ n ≤ N ) samples and the sampling frequency1/Ts is such that it satisfies the Nyquist criterion for no

aliasing of the spectrum ofp(t). The corresponding discrete-time matched filter is shown inFigure 7(b) by

solid impulses. The matched filter output can be obtained using the frequency-domain approach. LetP (F )

denote the Fourier transform ofp(t), assumed to be bandlimited to|F | ≤ B. Then the discrete-time Fourier

transform ofp(nTs − α) is obtained as follows:

p(t− α) = g(t)

⇋ G̃(F )

=







P̃ (F )e−j 2πFα −B ≤ F ≤ B

0 otherwise

(21)

Therefore

p(nTs − α) = g(nTs)

⇋ G̃P(F )
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t/T

A
m
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itu

de

t/T

A
m
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itu

de

t/T

A
m

pl
itu

de p(nTs1)

p(t)

(c)

(b)

(a)

p(t− α)

p(nTs − α)

p(12Ts − nTs − α)

p(6T − t− α)

Fig. 7. (a) The received pulsep(t − α) and its samples taken atT/Ts = 2. α = Ts/4. (b) Filter matched to the received pulse

p(6T − t−α) and its samples taken atT/Ts = 2. (c) Filter matched top(t) (in this case isp(6T − t) = p(t) itself) sampled at a higher

frequencyT/Ts1 = 4. Observe that one set of samples (shown by solid impulses) correspond to the samples of the matched filter in part

(b), for α = Ts/4.

=







G̃(F )/Ts 0 ≤ |F | ≤ B

0 B ≤ |F | ≤ Fs/2
(22)
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whereG̃P(F ) denotes a periodic function of frequency, that is [29]

G̃P(F ) = G̃P(F + kFs) =
1

Ts

∞
∑

i=−∞

G̃(F − iFs). (23)

Now, whenp(nTs − α) is convolved withp(NTs − α− nTs), the peak occurs att = NTs, independent ofα.

Note thatp(NTs −α−nTs) represents the discrete-time causal matched filter forp(nTs −α). The peak value

is equal toRpp(0)/Ts [29], whereRpp(t) is the continuous-time autocorrelation ofp(t). In practice however

since the receiver does not knowα, it is not possible to obtain the exact matched filter as in Figure 7(b). The

solution lies in samplingp(NTs − t) at a higher frequency (sayFs1 = 1/Ts1) compared to1/Ts, as illustrated

in Figure 7(c).

Let us denoteTs/Ts1 = I which is referred to as the interpolation factor. Constructthe up-sampled sequence

from the incoming signalp(nTs − α) as follows:

g1(nTs1) =







g(nTs/I) for n = mI

0 otherwise
(24)

whereg(nTs) is defined in (22). The discrete-time Fourier transform (DTFT) of g1(nTs1) is [32]:

g1(nTs1) ⇋ GP(FI). (25)

Let us define a new frequency variableF1 = FI with respect to the new sampling frequencyFs1. Now, if

p(NTs − t) is sampled at a rateFs1 the DTFT of the resulting sequence is:

p(NTs − nTs1) = g2(nTs1) ⇋ G̃P, 2(F1) (26)

where

G̃P, 2(F1)

=







P̃ ∗(F1)
Ts1

e−j 2πF1NTs 0 ≤ |F1| ≤ B

0 B ≤ |F1| ≤ Fs1/2.

(27)

The convolution ofg1(nTs1) with g2(nTs1) can be written as [29]:

g1(nTs1) ⋆ g2(nTs1)

=
1

TsTs1Fs1

∫ B

F1=−B

∣

∣

∣P̃ (F1)
∣

∣

∣

2

× e j 2πF1(nTs1−α−NITs1) dF1. (28)

Clearly if α = n0Ts1, wheren0 is an integer, the above convolution becomes

g1(nTs1) ⋆ g2(nTs1) =
Rpp((n− n0 −NI)Ts1)

Ts
(29)

with a peak value equal toRpp(0)/Ts, occurring at(n0 + NI)Ts1. When α is not an integer multiple of

Ts1, Rpp(0) occurs in between two consecutive samples and we can get close to the peak by increasingI.

Henceforth, we assume that the first symbol in the frame occurs at timeα + NITs1 andRpp(0)/Ts = 1. If
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the clock offsetδ = 0 then the subsequent symbols can be extracted from the matched filter output at times

(n0 +NI)Ts1 + kT/2 = (n0 +NI)Ts1 + 2kITs1 where we have used the fact that

T

Ts1
=

T

Ts
·
Ts
Ts1

= 4I. (30)

If δ 6= 0, then the sampling instants at the MF output varies with timeand needs to be tracked. This aspect

will be taken up in subsection III-C. However, the matched filter coefficients are obtained atFs1 and not at

F ′

s1, since in practiceF ′

s1 is not known at the receiver.

The derivation of the signal at the input and the output of thematched filter in the presence of a frequency

offset and clock offset is too involved. We are only interested in the signal at the output of the sampler. This

will be taken up in the next subsection.

B. Timing and Carrier Acquisition using the Preamble

This section is an elaboration of the first four steps listed in section III. Recall that in the first step, the start

of frame and a coarse estimate of the frequency offset is obtained. The demodulation is done using a local

oscillator frequency ofπ/2 radians. Let

t0 = α+NITs1 ≈ α+NIT ′

s1. (31)

We proceed by making a key observation that at the right instants, theT -spaced sampler output can be

approximated as (sinceRpp(0)/Ts = 1):

x̃1(t0 + kT ) ≈ β̃(kT )e j (ω3Mk+θ0) + ṽ1(t0 + kT ) (32)

for 0 ≤ k ≤ L− 1 where

β̃(kT ) = Sk, I + j γk, Q (33)

whereSk, I is defined in (4) andγk, Q denotes the intersymbol interference (ISI) in the quadrature arm. Note

that,γk, Q is a function of the past, current and future quadrature symbols as given by (see Figure 8):

γk, Q =

2LISI−1
∑

j=0

Sk+LISI−1−j,Qhj (34)

whereLISI denotes the span ofRpp(t) (in symbol durations) on the either side ofRpp(0) and hj denotes

coefficients of the filter having a raised-cosine frequency response. In the simulations,LISI was taken to be 3.

The termṽ(·) in (32) denotes samples of zero-mean Gaussian noise with autocorrelation [29]

(1/2)E [ṽ1(kT )ṽ
∗

1(kT −mT )] = N0δK(mT ) (35)

whereδK(·) is the Kronecker delta function. The approximation in (32) is due to the presence of ISI, besides

noise. Asω3 andδ tend to zero, and whent0 is an integer multiple ofTs1, the ISI approaches zero, and the

approximation becomes an equality.

Define

µ̃1(n, k) = x̃1(nT
′

s1)β̃
∗(kT )

ỹ1(nT
′

s1) =

Lp−LISI−1
∑

i=0

µ̃∗

1(n+ iMI, i)

× µ̃1(n+ (i+ 1)MI, i+ 1). (36)
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Fig. 8. Procedure for obtaininghj . Signal in the quadrature arm is(1/Ts)
∑

k Sk,QRpp(t− kT − T/2). From the dots at timet = 0

we geth0 = 0.041, h1 = −0.147, h2 = 0.612, h3 = 0.612, h4 = −0.147 andh5 = 0.041.

Since the preamble andp(t) are known,γk,Q and hencẽβ(kT ) can be precomputed and stored at the receiver

for 0 ≤ k ≤ Lp − LISI using (33) and (34).

The start of frame is detected using the following rule: choose that value ofnT ′

s1 which maximizes|ỹ(nT ′

s1)|
2.

Mathematically, this can be stated as [31], [33], [34]:

|ỹ1(n1T
′

s1)|
2
= max

n
|ỹ1(nT

′

s1)|
2
. (37)

Note thatn1T
′

s1 is an estimate oft0 in the first attempt. The result of applying the detection rule in (37) is

depicted in Figure 9(a) and (d) for preamble lengths ofLp = 250 andLp = 500 respectively. Assuming that

δ = 0, t0 = n1T
′

s1, and in the absence of noise we have

ỹ1(n1T
′

s1) = e jω3M

Lp−LISI−1
∑

i=0

∣

∣

∣β̃(iT )β̃((i + 1)T )
∣

∣

∣

2

(38)

therefore

ω̂3 = (1/M) arg [ỹ1(n1T
′

s1)] radians. (39)

We refer to (37) and (39) as the “differential” correlation method of estimating the start of frame and frequency

offset.

In practice, the start of frame could be detected by computing the following ratio for theith frame:

Ri =
|ỹ1(n1T

′

s1)|
2
i

〈

|ỹ1(nT ′

s1)|
2
〉

i

(40)
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Fig. 9. Frame detection at 1 dB SNR for preamble lengths ofLp = 250 andLp = 500.

where< · > denotes the time-average. In the simulations, the time average was computed over 2048 samples

(spaced atT ′

s1), which includes the peak value. It is convenient to defineRavg andRmin, which are the average

and minimum values ofRi over several frames. In Figure 9Rmin andRavg were computed over105 frames.

We could also define a threshold slightly less thanRmin. A frame could be declared as “detected” ifRi exceeds

the threshold.
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TABLE I

NORMALIZED VARIANCE OF TIMING ERROR AT AN SNRPER BIT OF1 DB FORLp = 250 AND α = δ = 0.

1st attempt 2nd attempt Correlation

(samples)
error

Maximum

Variance
Normalized

9.7× 10−3 2.7× 10−3

8 3 3

1.5× 10−3

Differential correlation Differential correlation
(a) (b) (c)

TABLE II

NORMALIZED VARIANCE OF TIMING ERROR AT AN SNRPER BIT OF1 DB FORLp = 500 AND α = δ = 0.

1st attempt 2nd attempt Correlation

(samples)
error

Maximum

Variance
Normalized

4.3× 10−3 1.3× 10−3

5 2 1

6× 10−4

Differential correlation Differential correlation
(a) (b) (c)

The timing and frequency offset estimates obtained from (37) and (39) are not very accurate whenω3 is

large, e.g.0.15π radians. This is clear from column (a) in Tables I, III forLp = 250 and II, IV for Lp = 500.

The main reason is due to the approximation in (32), which gets better asω3 gets smaller. This is why we

need to estimate the timing and frequency offset for the second time.

The normalized (with respect toT ) variance of the timing error in the first attempt of the differential

TABLE III

RMS AND MAXIMUM FREQUENCY OFFSET ESTIMATION ERROR IN RADIANS ATAN SNRPER BIT OF1 DB FORLp = 250.

ML step 1

RMS

Max

0.0286 5.91× 10−4

0.127 2.6× 10−3

ML step 21st attempt 2nd attempt

0.01255

0.0565

1.52× 10−4

6.75× 10−4

Differential correlation Differential correlation
(a) (b) (c) (d)

TABLE IV

RMS AND MAXIMUM FREQUENCY OFFSET ESTIMATION ERROR IN RADIANS ATAN SNRPER BIT OF1 DB FORLp = 500.

ML step 1

RMS

Max

ML step 21st attempt 2nd attempt

0.0255 8.8× 10−3 5.9× 10−4 5.3× 10−5

0.087 0.0429 2.8× 10−3 2.5× 10−4

Differential correlation Differential correlation
(a) (b) (c) (d)
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correlation method is given by
〈

(

n1T
′

s1 − t0
T

)2
〉

. (41)

The average was computed over105 frames. The maximum timing error in samples is given by

max
|n1T

′

s1 − t0|

T ′

s1

(42)

which is taken over105 frames. Observe that it is necessary to setδ = 0 andα equal to an integer multiple of

T ′

s1 (see (29)) to compute (41) and (42). In the simulations,α was set to zero, for computing (41) and (42). The

root mean square (rms) error in the frequency offset estimate in the first attempt of the differential correlation

method is given by:

√

< (ω3 − ω̂3)2 > (43)

with the average computed over105 frames. Similarly, the maximum error in the frequency offset estimate for

the first attempt is:

max |ω3 − ω̂3| (44)

The second attempt is initiated by first demodulatingr(nT ′

s) using the local oscillator frequency asπ/2+ ω̂3.

The resultant frequency offset isωf = ω3− ω̂3. Let us denote the matched filter output asx̃2(nT
′

s1). The effect

of applying (37) and (39) again with̃x1(nT ′

s1) replaced byx̃2(nT ′

s1), is given in column (b) of Tables I, III

for Lp = 250 and II, IV for Lp = 500. While there is a significant improvement in the timing estimate, the

accuracy of the frequency offset estimate is still inadequate. For example, in Table IV withLp = 500, the

second attempt yields a root mean square (RMS) error equal to8.8× 10−3 radians. WithT/Ts =M = 4, the

phase change over 10 symbols is0.0088× 4× 10 = 0.352 radians, which is too fast for a phase tracking loop.

This motivates us to use the maximum likelihood (ML) method of estimatingωf .

Assume that in the second attempt the outcome of (37) withx̃1(nT
′

s1) replaced byx̃2(nT ′

s1), is n2T
′

s1.

Observe thatn2T
′

s1 is the second estimate oft0. Then (see also (32))

x̃2(n2T
′

s1 + kT ) ≈ β̃(kT )e j (ωfMk+θ0) + ṽ2(n2T
′

s1 + kT ). (45)

The ML rule for estimating the frequency offset can be statedas follows: set̂ωf = ωi if ωi maximizes
∣

∣

∣

∣

∣

∣

Lp−LISI
∑

k=0

x̃2(n2T
′

s1 + kT )β̃∗(kT )e−jωiMk

∣

∣

∣

∣

∣

∣

(46)

where

ωi = ωmin + iωs

ωmin < ωi < ωmax

ωmin = ω̂3 − 0.2

ωmax = ω̂3 + 0.2 (47)

whereωs = 4 × 10−5 radians, denotes the resolution. Observe that the FFT cannot be used in (46), since the

search is only over a narrow portion of the digital spectrum in the range[ω̂3 − 0.2, ω̂3 + 0.2]. The reason for
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choosing 0.2 radians can be traced to the maximum estimationerror in column (a) of Table III, which is equal

to 0.127 radians over105 frames. The maximum estimation error over103 frames was found (from simulations)

to be 0.091 radians. Thus we find that increase in the number offrames by two orders of magnitude, results

in only a marginal increase in the maximum estimation error.Hence we expect the probability of estimation

error exceeding 0.2 radians, to be very small. We now discussthe complexity of the ML approach.

For obtaining a resolution ofωs = 4× 10−5 radians, the search interval of 0.4 radians must be divided into

104 frequency bins. The complexity of the DFT is of the order of104Lp. With Lp = 250 andLp = 500, this

translates to2.5× 106 and5× 106 operations respectively. We now propose a two-step approach to reduce the

complexity. In the first step, we divide 0.4 radians intoB1 frequency bins and the length of the DFT is taken

to beL1 < Lp. The resolution of the first step is thus0.4/B1 radians. LetωML, 1 denote the estimate ofωf in

the first step of the ML approach. In the second step, the search interval is taken as

± 8×
0.4

B1
(48)

aboutωML, 1, to ensure that the maximum estimation error lies within thesearch interval. This is evident from

column (c) of Tables III and IV for the parameters given in (49) below. The search interval in (48) is divided

intoB2 frequency bins and the length of the DFT isLp−LISI, as given in (46). The complexity of the two-step

approach is of the order ofL1B1 + LpB2. In the simulations, we have taken

L1 = 100

B1 = 800

B2 = 200 (49)

so that the final resolution is equal to

16×
0.4

B1B2
= 4× 10−5 radians (50)

which is identical to the single stage ML approach. WithLp = 250 andLp = 500, this translates to1.3× 105

and1.8× 105 operations respectively, which is more than an order of magnitude reduction in complexity. This

is shown in Table V. We emphasize thatL1, B1 andB2 have not been optimized to minimize the complexity.

In fact, we can even have more than two steps for reducing the complexity. This could be a subject for future

research. In any case, letω̂f denote the estimate ofωf in the second step.

The received samplesr(nT ′

s) are demodulated again using the local oscillator frequencyequal toπ/2+ ω̂3+

ω̂f . From column (d) of Table III we find that the RMS estimation error for the ML method is1.52×10−4, for

Lp = 250. The average phase change over the preamble is1.52×10−4×250×4 = 0.152 radians. Similarly, from

column (d) of Table IV, we obtain the average phase change over the preamble as5.3×10−5×500×4 = 0.106

radians. These results imply that the phase can be considered to be constant over the duration of the preamble,

thereby facilitating the use of the correlation method for estimating the start of frame for the third time. This

feature (phase being constant over a large number of symbols) also enables the use of narrowband lowpass

filters in the phase tracking loop, to average out the effectsof noise. The symbol amplitude and the noise

variance estimates (which is required for turbo decoding) are the by-products of the correlation method. These

issues are discussed next.



18

TABLE V

COMPARISON OF THE COMPLEXITY OF THE SINGLE-STEP AND TWO-STEPML METHOD OF ESTIMATINGωf . IN BOTH CASES, THE

FINAL RESOLUTION ISωs = 4× 10−5 RADIANS.

ML
single step

ML
two-step

L1B1 + LpB2

Lp

250

500

2.5× 106

5× 106

1.3× 105

1.8× 105

104Lp

Let x3(nT ′

s1) denote the samples at the matched filter output after demodulation byπ/2 + ω̂3 + ω̂f . Define

µ̃3(n, k) = x̃3(nT
′

s1)β̃
∗(kT )/

∣

∣

∣
β̃(kT )

∣

∣

∣

2

ỹ3(nT
′

s1) =

Lp−LISI
∑

i=0

µ̃3(n+ iMI, i). (51)

The correlation method for estimating the start of frame canbe stated as:

|ỹ3(n3T
′

s1)|
2
= max

n
|ỹ3(nT

′

s1)|
2 (52)

wheren3T
′

s1 is the third estimate oft0. Observe that

x̃3(n3T
′

s1 + kT ) = β̃(kT )e j ((ωf−ω̂f )Mk+θ0) + ṽ3(n3T
′

s1 + kT )

≈ β̃(kT )e j θ0 + ṽ3(n3T
′

s1 + kT ) for 0 ≤ k ≤ Lp − 1 (53)

since the phase change overLp symbols due to the residual frequency offset,ωf − ω̂f , can be neglected and

ṽ3(·) denotes the noise term which has the property [29]:

(1/2)E [ṽ3(nT
′

s1 + kT )ṽ∗3(nT
′

s1 + kT −mT )] = N0δK(mT ). (54)

Assuming thatδ = 0, ωf = ω̂f and t0 = n3T
′

s1, and in the absence of noise we have

ỹ3(n3T
′

s1) = e j θ0

Lp−LISI
∑

i=0

∣

∣

∣β̃(iT )
∣

∣

∣

2

/
∣

∣

∣β̃(iT )
∣

∣

∣

2

= e j θ0 (Lp − LISI + 1) . (55)

Therefore

θ̂0 = arg [ỹ3(n3T
′

s1)] . (56)

The symbol amplitude (in our case is unity) is estimated as:

Â =
1

Lp − LISI + 1
ℜ
{

ỹ3(n3T
′

s1)e
−j θ̂0

}

. (57)

The noise variance is estimated as follows:

σ̂2 =
1

2(Lp − LISI + 1)

Lp−LISI
∑

k=0

(

ℜ
{

x̃3(n3T
′

s1 + kT )e−j θ̂0
}

Sk, I − Â
)2

+
(

ℑ
{

x̃3(n3T
′

s1 + kT + T/2)e−j θ̂0
}

Sk, Q − Â
)2

. (58)
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Note that

x̃3(n3T
′

s1 + kT + T/2) = (γk, I + jSk, Q) e
j ((ωf−ω̂f )(Mk+M/2)+θ0) + ṽ3(n3T

′

s1 + kT + T/2)

≈ β̃(kT + T/2)e j θ0 + ṽ3(n3T
′

s1 + kT + T/2) for 0 ≤ k ≤ Lp − 1 (59)

whereγk, I denotes the ISI in the in-phase arm. The mean and variance of the amplitude and noise variance

estimates are discussed in the appendix.

This completes the acquisition of the carrier frequency, symbol timing and estimation of the symbol amplitude,

carrier phase and noise variance using the preamble. In the next subsection, we discuss the algorithms for

decision directed tracking of the carrier phase and timing,along with data detection.

C. Decision Directed Tracking of the Timing and Carrier Phase

0 10 20 30 40 50 60 70 80 90 100

kT/2
0 2 3 41 5

nT ′

s1

0 1 5 6 7 8 9

2 6 9

(a)

(b)

(c)

nTs1

111 3 40 75

2 3 4

8 10

Fig. 10. (a) Offset QPSK symbols occur at timeskT/2. (b) Samples taken at an interval ofTs1 = T/4. Observe that the in-phase and

quadrature symbols are obtained at times 0 and 2-mod 4 respectively. (c) Samples taken at an interval ofT ′

s1 = 0.8Ts1. The receiver

does not knowT ′

s1, and it assumes that its sampling period isTs1 = T/4, that is, 4 samples per symbol. However, now the 1st in-phase

symbol is obtained at time 0-mod 4, the 1st quadrature symbolat time 2-mod 4, the 2nd in-phase symbol at time 1-mod 4 and so on.

Therefore, the sampling instant changes mod-4. In any case,note that the symbols are obtained at times approximately equal to kT/2,

independent of the sampling interval.

Based on (13), the sampling interval at the matched filter output is:

T ′

s1 = 1/F ′

s1 = Ts1(1∓ 2δ × 10−6)
∆
= Ts1 + ǫ′. (60)

Since

nT ′

s1 = nTs1 + nǫ′ (61)

a sample is gained or lost (in other words, the sampling instant changes) at the matched filter output when

nǫ′ ≥ Ts1

⇒ n ≥ 106/(2δ) samples. (62)

The term “sampling instant” refers to the time when a symbol is recovered at the matched filter output. This

is illustrated in Figure 10(c) forǫ′ = −0.2Ts1. In a more realistic situation whereδ = 25 ppm, we get

n ≥ 20000 samples≡ 20000/(MI) symbols= 1250 symbols (63)
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for M = I = 4. Thus, a sample is gained or lost (the sampling instant-mod MI changes) every 1250 symbols

(recall that there are nominallyMI samples per symbol at the matched filter output). Since the preamble length

is only Lp = 250 or Lp = 500, there is no change in the sampling instant during the preamble. Therefore,

there is no need to track the timing during the preamble. Similarly, there is no need to track the carrier phase

during the preamble, since the residual frequency offset,ωf − ω̂f is small enough, such that the carrier phase

can be considered to be nearly constant (refer to column (d) of Tables III, IV and (53), (59)). However, the data

portionLd is much larger thanLp (in our case ten times), hence both timing and carrier need tobe tracked.

This is the subject of this subsection.

Let

t1 = t0 + LpT ≈ n3Ts1 + LpT ≈ n3T
′

s1 + LpT (64)

wheret0 is defined in (31) andn3T
′

s1 is defined in (52). Then, the first (in-phase) data symbol is obtained at

time t1. Let

ωr = ωf − ω̂f . (65)

The output of the sampler can be expressed as:

x̃3(t0 + kT/2) = β̃(kT/2)ej θ(kT/2) + ṽ3(t0 + kT/2) for 0 ≤ k ≤ 2(Lp + Ld)− 1 (66)

where it is understood that the in-phase and quadrature symbols are detected whenk is even and odd respectively

and

θ(kT/2) = ωrMk/2 + θ0 for 0 ≤ k ≤ 2(Lp + Ld)− 1. (67)

The data-aided phase tracking loop operates at symbol-rate(k = 2l) as follows [31]:

z̃(t1 + lT ) = x̃3(t1 + lT )
(

β̂(LpT + lT )
)∗
/

∣

∣

∣β̂(LpT + lT )
∣

∣

∣

2

z̃avg(t1 + lT ) = ρcz̃avg(t1 + (l − 1)T ) + (1 − ρc)z̃(t1 + lT )

θ̂(lT ) = arg [z̃avg(t1 + lT )] for −LISI + 1 ≤ l ≤ Ld − 1 (68)

whereβ̂(·) is the estimate of̃β(·). The parameterρc was taken to be 0.97 forLp = 250 and 0.98 forLp = 500.

Note thatθ̂(lT ) in (68) is computed in the range[0, 2π), hence there is no phase ambiguity.

Observe that̃zavg(·) in (68) is computed recursively. Its initial value is set to zero at the beginning of the

preamble. During the preamble, it is recursively computed at symbol-rate as follows:

z̃(t0 + lT ) = x̃3(t0 + lT )
(

β̃(lT )
)∗
/

∣

∣

∣β̃(lT )
∣

∣

∣

2

z̃avg(t0 + lT ) = ρcz̃avg(t0 + (l − 1)T ) + (1− ρc)z̃(t0 + lT ) for 0 ≤ l ≤ Lp − LISI

θ̂(lT ) = arg [z̃avg(lT )] for l = Lp − LISI. (69)

After the preamble,̃zavg(·) is used in (68).

Finally, the QPSK symbols at timei = l+LISI are estimated as follows (note thatβ̃(·) in (68) is a function

of LISI − 1 future symbols, as given in (34) and Figure 8, hence we assumethat these symbols have already
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been estimated):

Ŝi, I = sgn
[

ℜ
{

x̃3(t1 + iT )e−j θ̂(lT )
}]

Ŝi, Q = sgn
[

ℑ
{

x̃3(t1 + iT + T/2)e−j θ̂(lT )
}]

for 0 ≤ i ≤ Ld − 1 (70)

wheresgn [·] denotes the signum function.

Similarly the algorithm which tracks the timing, operates at symbol-rate, and is initiated during the preamble.

This algorithm tracks the autocorrelation peak,Rpp(0), which may lie in-between consecutive samples ofnT ′

s1.

We denote the sampling instant for obtaining the in-phase part of a symbol aslT (see Figure 10(c)). Define

for 0 ≤ l ≤ Lp − 1

u(lT + iT ′

s1) = ℜ
{

x̃3(t0 + lT + iT ′

s1)e
−j θ̂0

}

Sl, I for −2 ≤ i ≤ 2 (71)

wherei = 0 denotes the “middle” sample (the correct sampling instant), i < 0 denotes the “early” samples and

i > 0 denotes the “late” samples. Compute for0 ≤ l ≤ Lp − 1

uavg(lT + iT ′

s1) = ρtuavg((l − 1)T + iT ′

s1) + (1 − ρt)u(lT + iT ′

s1) for −2 ≤ i ≤ 2. (72)

The initial value ofuavg(·) is set to zero. ForLp ≤ l ≤ Lp + Ld − 1 we have

u(lT + iT ′

s1) = ℜ
{

x̃3(t0 + lT + iT ′

s1)e
−j θ̂((l−LISI)T )

}

Ŝl, I for −2 ≤ i ≤ 2 (73)

whereŜl, I obtained from (70). Note that the averaging in (72) is done toreduce the effects of noise and ISI.

uavg(lT − 2T ′

s1) uavg(lT + 2T ′

s1)

Fig. 11. The array elements are labeleduavg(lT + iT ′

s1) −2 ≤ i ≤ 2.

As mentioned earlier, timing is not tracked during the preamble, it is only acquired. Tracking is done during

the data part as given below. We assume that the values ofuavg(lT + iT ′

s1) are stored in an array as shown in

Figure 11.

1) For the current sampling instant≈ lT , for Lp ≤ l ≤ Lp +Ld − 1, find the maximum ofuavg(lT + iT ′

s1)

for −1 ≤ i ≤ 1 (not −2 ≤ i ≤ 2), since we expect the sampling instant to change by only one sample

at a time.

2) If uavg(lT + iT ′

s1) is maximum, setc = i, for −1 ≤ i ≤ 1

3) Obtain the quadrature symbol at timelT +MIT ′

s1/2 ≈ lT + T/2 (afterMI/2 samples)

4) Do the following:

a) If c = 1, left-shift the contents of the array by one place and initialize uavg(lT + 2T ′

s1) = 0.

b) Else if c = −1, right-shift the contents of the array by one place and initializeuavg(lT −2T ′

s1) = 0.

5) The next in-phase symbol is obtained at timelT +MIT ′

s1 + cT ′

s1 ≈ (k + 1)T (afterMI + c samples)

6) Resetc = 0 and go back to step (1) withl = l+ 1

Finally, the noisy symbols are obtained from (70) with the signum function removed, and fed to the BCJR

algorithm [29] for turbo decoding. The details of the BCJR algorithm will not be discussed here. Having
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presented the various receiver algorithms, it becomes necessary to discuss the receiver complexity. This is done

in the next subsection.

D. Receiver Complexity

We begin by discussing the complexity of demodulation and matched filtering. Recall that this operation has

to be done thrice. However the first two times, demodulation needs to be done only over the preamble. During

the third attempt, demodulation needs to be done over the preamble and the data. The length of the matched

filter is 97 samples (taken at a sampling frequency ofFs1), the interpolation factorI = 4 and the number of

samples per symbol at the input of the receiver is nominallyM = 4. Hence the number of samples per symbol

at the matched filter output is nominallyMI = 16. For obtaining each complex output sample(97/4)×2 ≈ 48

real multiplications and 48 real additions are required. Therefore for obtaining all the samples corresponding

to the preamble,48 × 3 × LpMI real multiplications and the same number of real additions are required for

the three demodulation steps. During the third step, the complexity of demodulating the data is48 × Ld × 5

real multiplications and the same number of additions, since only five samples per symbol are computed (see

subsection III-C). We assume that the sine and cosine operations are performed using a table lookup. Next, we

look into the complexity of the differential correlation method.

For computingµ1 in (36), one complex multiplication is involved. Therefore, for computingỹ1(nTs1) in

(36), approximately2Lp complex multiplications andLp complex additions are involved. Note that until a burst

is detected, the only operations performed by the receiver are demodulation and differential correlation. The

correlation method, used to detect the start of frame for thethird time requiresLp complex multiplications and

the same number of complex additions. The complexity of the ML method of frequency offset estimation has

been discussed in subsection III-B. The complexity of turbodecoding can be found in [29].
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Fig. 12. BER performance forLp = 250.
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Fig. 13. BER performance forLp = 500.

IV. SIMULATION RESULTS

In the simulations,p(t) was taken to be the pulse having the root-raised cosine spectrum with a roll-off of

0.4 and truncated toN+1 = 25 samples. The parameterT/Ts =M = 4 samples per symbol and interpolation

factor I = 4. FurtherLp = 250, 500, Ld = 104 andLo = 12 QPSK symbols. Simulations were carried out

over 105 frames (total of109 data bits). The frequency offsetω3 = 0.15π (refer to the sentence after (17)).

We assume thatα is uniformly distributed in[0, T ) in the BER simulations. The clock error in the transmitter

and receiver isδ = 25 ppm, so that the resulting offset is2δ = 50 ppm. The SNR per bit is defined as [29]:

Eb/N0 = 10 log10
(

|Sk|
2/(2N0)

)

. (74)

Finally, the BER results are presented in Figures 12 and 13 for Lp = 250 andLp = 500 respectively. For

Lp = 250, ρc = 0.97 and ρt = 0.995 were found to be optimum. Similarly forLp = 500, ρc = 0.98 and

ρt = 0.995 were found to be optimum. The performance loss at a BER of10−7 is about 1.5 dB forLp = 250.

However, the performance loss is only about 0.5 dB forLp = 500, for the same BER. ForLp = 500 the BER

is less than10−9 for an SNR per bit of 3 dB. Hence there is no error floor.

V. CONCLUSIONS ANDFUTURE WORK

In this work, we have presented discrete-time algorithms for synchronization and detection of bursty offset

QPSK signals. These algorithms can be readily implemented on a DSP processor. The simulation parameters

chosen in this paper may not be optimum in the sense of reducing the computational complexity without

compromising the BER performance. We have also shown via simulations that the acquisition time for a burst

is equal to the preamble length. Future work could be in the direction of receiver design for fading channels.
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APPENDIX

A. Mean and Variance of the Amplitude and Noise Variance Estimates

Assuming thatt0 = n3Ts1, θ0 = θ̂0 in (57), the mean and variance of̂A is

E
[

Â
]

= A = 1

E

[

(

Â− 1
)2
]

=
1

(Lp − LISI + 1)2
E













Lp−LISI
∑

k=0

1
∣

∣

∣β̃(kT )
∣

∣

∣

2ℜ
{

ṽ3(n3Ts1 + kT )e−j θ0 β̃∗(kT )
}







2





=
N0

(Lp − LISI + 1)2

Lp−LISI
∑

k=0

1
∣

∣

∣β̃(kT )
∣

∣

∣

2 (75)

where we have made use of (54) and the following relations [29]:

ṽ3(·)
∆
= v3, I(·) + j v3, Q(·)

E[v3, I(nTs1)v3, Q(mTs1)] = 0 for all m andn. (76)

The rms error in the estimate ofA is the square root of the variance computed in (75). The theoretical and

simulated rms error in the amplitude estimate is shown in Table VI.

TABLE VI

THE RMS ERROR IN THE AMPLITUDE ESTIMATES AT ANSNRPER BIT OF1 DB.

TheoreticalLp

250

500

Simulated

0.047230.04724

0.033237 0.033231

Assuming thatt0 = n3Ts1, θ̂0 = θ0 andÂ = A = 1 in (58), the mean value of̂σ2 is

E
[

σ̂2
]

=
1

2(Lp − LISI + 1)

Lp−LISI
∑

k=0

E
[

(

ℜ
{

ṽ3(n3Ts1 + kT )e−j θ0
}

Sk, I

)2

= +
(

ℑ
{

ṽ3(n3Ts1 + kT + T/2)e−j θ0
}

Sk,Q

)2
]

= N0 (77)

where

S2
k, I = S2

k,Q = 1. (78)

In order to find out the variance of the estimate ofN0 define:

ψk = ℜ
{

ṽ3(n3Ts1 + kT )e−j θ0
}

Sk, I for 0 ≤ k ≤ Lp − LISI

ψk+Lp−LISI+1 = ℑ
{

ṽ3(n3Ts1 + kT + T/2)e−j θ0
}

Sk,Q for 0 ≤ k ≤ Lp − LISI

L1 = 2(Lp − LISI + 1). (79)

Then

σ̂2 =
1

L1

L1−1
∑

k=0

ψ2
k. (80)
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Note thatψk andψi are uncorrelated, and being Gaussian, are also independent. Hence

E [ψkψi] =







N0 for k = i

0 for k 6= i.
(81)

The variance of the estimate ofN0 is given by:

E
[

(

σ̂2 −N0

)2
]

= E





(

1

L1

L1−1
∑

k=0

ψ2
k −N0

)2




=
1

L2
1

L1−1
∑

k=0

L1−1
∑

i=0

E
[(

ψ2
k −N0

) (

ψ2
i −N0

)]

=
1

L2
1

L1−1
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k=0

E
[

(

ψ2
k −N0

)2
]

+
1

L2
1

L1−1
∑

k=0

L1−1
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i=0

i6=k

E
[(

ψ2
k −N0

) (

ψ2
i −N0

)]

=
1

L2
1

L1−1
∑

k=0

E
[

(

ψ2
k −N0

)2
]

=
2N2

0

L1
. (82)

The normalized variance of the estimate ofN0 can be defined as:

1

N0
E
[

(

σ̂2 −N0

)2
]

=
2N0

L1
. (83)

The normalized rms error in the estimate ofN0 is the square root of the normalized variance computed in (83).

The theoretical and simulated rms error in the noise variance estimate is shown in Table VII.

TABLE VII

THE NORMALIZED RMS ERROR IN THE NOISE VARIANCE ESTIMATES AT ANSNRPER BIT OF1 DB.

TheoreticalLp

250

500

Simulated

0.039868

0.05663850.05659

0.039937

B. The BCJR Algorithm [29]

The turbo decoder is shown in Figure 14. Assuming a code-rateof 1/3 and a framesize ofL, the output of

the demultiplexer is:

rb1, m = Sb1,m + wb1,m

rc1,m = Sc1,m + wc1,m

rc2,m = Sc2,m + wc2,m

rb2, m = rb2, π(n) = rb1, n = rb1, π−1(m) for 0 ≤ m, n ≤ L− 1

(84)
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Demux
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π

r1

r2
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π−1
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(extrinsic info)
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F1, π(k)+, F1, π(k)−

F2, k+, F2, k−

F2, π(k)+, F2, π(k)−

Fig. 14. The turbo decoder.

wherewb1, m, wc1,m andwc2,m are samples of zero-mean AWGN with varianceσ2
w. Note that all quantities

in (84) are real-valued. Define

r1 =
[

rb1, 0 . . . rb1, L−1 rc1, 0 . . . rc1, L−1

]T

. (85)

In the above equation,rb1, k andrc1, k respectively denote the received samples corresponding tothe uncoded

symbol and the parity symbol emanating from the first encoder, at timek. Similarly

r2 =
[

rb2, 0 . . . rb2, L−1 rc2, 0 . . . rc2, L−1

]

. (86)

The BCJR algorithm for turbo decoding has the following components:

1) The forward recursion

2) The backward recursion

3) The computation of the extrinsic information and the finala posteriori probabilities.

Let S denote the number of states in the encoder trellis. LetDn denote the set of states that diverge from

staten. For example

D0 = {0, 3} (87)

implies that states 0 and 3 can be reached from state 0. Similarly, let Cn denote the set of states that converge

to staten. Let αi, n denote the forward SOP at timei (0 ≤ i ≤ L− 2) at staten (0 ≤ n ≤ S − 1).

Then the forward SOP for decoder 1 can be recursively computed as follows (forward recursion):

α′

i+1, n =
∑

m∈Cn

αi, mγ1, sys, i,m, nγ1, par, i, m, nP (Sb, i, m, n)

α0, n = 1 for 0 ≤ n ≤ S − 1

αi+1, n = α′

i+1, n

/

(

S−1
∑

n=0

α′

i+1, n

)

(88)

where

P (Sb, i,m, n) =







F2, i+ if Sb, i, m,n = +1

F2, i− if Sb, i, m,n = −1
(89)
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denotes thea priori probability of the systematic bit corresponding to the transition from statem to staten, at

decoder 1 at timei obtained from the2nd decoder at timel after deinterleaving (that is,i = π−1(l) for some

0 ≤ l ≤ L− 1, l 6= i) and

γ1, sys, i, m, n = exp

[

−
(rb1, i − Sb,m, n)

2

2σ2
w

]

γ1, par, i, m, n = exp

[

−
(rc1, i − Sc,m, n)

2

2σ2
w

]

. (90)

The termsSb,m, n ∈ ±1 andSc,m, n ∈ ±1 denote the uncoded symbol and the parity symbol respectively that

are associated with the transition from statem to staten. The normalization step in the last equation of (88)

is done to prevent numerical instabilities [35].

Similarly, let βi, n denote the backward SOP at timei (1 ≤ i ≤ L − 1) at staten (0 ≤ n ≤ S − 1). Then

the recursion for the backward SOP (backward recursion) at decoder 1 can be written as:

β′

i, n =
∑

m∈Dn

βi+1,mγ1, sys, i, n,mγ1, par, i, n,mP (Sb, i, n,m)

βL, n = 1 for 0 ≤ n ≤ S − 1

βi, n = β′

i, n

/

(

S−1
∑

n=0

β′

i, n

)

. (91)

Once again, the normalization step in the last equation of (91) is done to prevent numerical instabilities.

Let ρ+(n) denote the state that is reached from staten when the input symbol is+1. Similarly let ρ−(n)

denote the state that can be reached from staten when the input symbol is−1. Then

G1, norm, k+ =

S−1
∑

n=0

αk, nγ1, par, k, n, ρ+(n)βk+1, ρ+(n)

G1, norm, k− =

S−1
∑

n=0

αk, nγ1, par, k, n, ρ−(n)βk+1, ρ−(n). (92)

Now

F1, k+ = G1, norm, k+/(G1, norm, k+ +G1, norm, k−)

F1, k− = G1, norm, k−/(G1, norm, k+ +G1, norm, k−). (93)

Equations (88), (90), (91), (92) and (93) constitute the MAPrecursions for the first decoder. The MAP recursions

for the second decoder are similar.

After several iterations, the final decision regarding thekth information bit obtained at the output of the1st

decoder is computed as:

P (Sb1, k = +1|r1) =

S−1
∑

n=0

αk, nγ1, par, k, n, ρ+(n)γ1, sys, k, n, ρ+(n)F2, k+ βk+1, ρ+(n)

= F1, k+F2, k+ exp

(

−
(rb1, k − 1)2

2σ2
w

)

P (Sb1, k = −1|r1) =

S−1
∑

n=0

αk, nγ1, par, k, n, ρ−(n)γ1, sys, k, n, ρ−(n)F2, k− βk+1, ρ−(n)

= F1, k−F2, k− exp

(

−
(rb1, k + 1)2

2σ2
w

)

(94)
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where againF2, k+ andF2, k− denote thea priori probabilities obtained at the output of the2nd decoder (after

deinterleaving) in the previous iteration.

We have so far discussed the BCJR algorithm for a rate-1/3 encoder. In the case of a rate-1/2 encoder, the

following changes need to be incorporated in the BCJR algorithm (we assume thatc1, i is not transmitted for

i = 2k andc2, i is not transmitted fori = 2k + 1):

γ1, par, i, m, n =











exp

[

−
(rc1, i − Sc,m, n)

2

2σ2
w

]

for i = 2k + 1

1 for i = 2k

γ2, par, i, m, n =











exp

[

−
(rc2, i − Sc,m, n)

2

2σ2
w

]

for i = 2k

1 for i = 2k + 1.

(95)
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