
Secure FSM-based Arithmetic Codes

Hashem Moradmand Ziyabar1,Mahnaz Sinaie2, Ali Payandeh3, Vahid Tabataba Vakili4

1.Sazgan Ertebat Co. ,2.Tarbiat Modares University ,3.MalekAshtar University of Technology,
4. Iran University of Science and Technology

Corresponding author: Hashem Moradmand Ziyabar, h.moradmand@gmail.com

Abstract— recently, arithmetic coding has attracted
the attention of many scholars because of its high
compression capability. Accordingly, in this paper a method
which adds secrecy to this well-known source code is
proposed. Finite state arithmetic code (FSAC) is used as
source code to add security. Its finite state machine (FSM)
characteristic is exploited to insert some random jumps
during source coding process. In addition, a Huffman code
is designed for each state to make decoding possible even
in jumps. Being Prefix free, Huffman codes are useful in
tracking correct states for an authorized user when s/he
decodes with correct symmetric pseudo random key. The
robustness of our proposed scheme is further reinforced by
adding another extra uncertainty by swapping outputs of
Huffman codes in each state. Several test images are used
for inspecting the validity of the proposed Huffman Finite
State Arithmetic Coding (HFSAC). The results of several
experimental, key space analyses, statistical analysis, key
sensitivity and plaintext sensitivity tests show that HFSAC
with a little effect on compression efficiency for image
cryptosystem provides an efficient and secure way for real-
time image encryption and transmission.

 Keywords- arithmetic coding; image compression;
finite state machine; Huffman code; image encryption

1. Introduction

The efficiency and security requirements of
information transmission have led to conduct a
substantial amount of research on data compression
and encryption. In order to improve the performance
and the flexibility of multimedia applications, it is

worth performing compression and encryption in a
single process [1]-[6]. Recently, arithmetic coding has
attracted the attention of many scholars due to the
high compression efficiency in the applications [5]
such as JPEG2000 and H.264.

Grangetto et.al [1], [2] introduced a randomized
arithmetic coding scheme which achieves security by
random changing of the symbol intervals. Kim et.al
[4], [5] inserted encryption by splitting coding interval
according to a random key. Some secure arithmetic
codes were proposed by Bose et.al and Chen et. al.
[6], [7] who used chaos theory to make randomized
arithmetic encoder model. Howard et.al [8],[9]
introduced finite state arithmetic coding and showed
that this implementation didn’t affect compression
efficiency. While the previous research has used
integer arithmetic coding, the present study benefited
from finite state integer arithmetic codes (FSAC) with
a symmetric pseudo random key to add security to
this source code. We used a secure random key to
jump to some states. Moreover, we defined Huffman
codes for each state to prevent fault decoding. The
numerical results showed that the proposed method
satisfied the security terms.

This paper is organized as follows. In section 2, the
studies conducted on finite state integer arithmetic
codes are briefly reviewed. The secure arithmetic
coding proposed in this research is presented in
Section 3. Subsequently, sections 4 and 5 offers the
implications and performance analysis of the
proposed approach and section 6 offers conclusion
and some suggestions for interested readers for
exploring the related issues to this study.

mailto:h.moradmand@gmail.com�

2. Brief review of FSAC

2.1. FSAC algorithm

Arithmetic coding is the process of recursively
selecting subintervals according to the probability of
the next coming symbols [7]. Pure arithmetic codes
need infinite precision and have no output until the
end of the block is being encoded. To determine the
finite precision, integer arithmetic codes with
incremental outputs were introduced [8], [10]. FSAC is
a revised version of integer arithmetic codes having a
finite number of states [11] . The process of FSAC with
precision of N (an integer number to indicate the
length of the initial interval) and Fmax (maximum
value of follow count) is described in Table I.

Table I. Finite state Integer arithmetic encoding

Initialize current interval [low,high) = [0,N) and follow = 0
for each input symbol:

Divide current interval into subintervals proportional to
the probability of symbols.
Current Interval = subinterval of coming symbol.
Repeatedly do:

If new subinterval ∉ [0,N/2) or [N/4,3N/4), or
[N/2,N), exit and return.
Else if {(follow >= Fmax) AND (high∈[N/2,3N/2)
AND low ∈ is in [N/4,N/2)}

switch(next symbol)
case 0: low=N/2
case 1 :high=N/2-1

If current interval ∈ [0,N/2),
output 0 and any following 1's left
behind, double the size of the
subinterval by linearly expanding
[0,N/2) to [0,N).

If current interval ∈[N/2,N),
output 1 and any following 0's left
behind,double the size of the
subinterval by linearly expanding
[N/2,N) to [0,N).

If current interval∈[N/4,3N/4),
increment the follow by one; double
the size of the subinterval by linearly
expanding [N/4,3N/4) to [0,N).

Output enough bits to distinguish the final current

Table II. Number of states with different N

Encoder
Number #

i ii iii iv

N 3 5 7 7

Fmax 1 1 1 10
Reduced
States #

1 12 172 203

Reduced
Transitions #

4 57 732 2825

Interval
Division #

[2 6] [6 26] [26 102] [26 102]

2.2. State diagram of FSAC

Being described with finite number of states, FSAC
encoder can be shown as a state diagram. Such a
state diagram for N=3, Fmax=1 and the probability
P(0) =3/8 for a binary source is shown in Fig.1. The
numbers that are written on the edges are the
inputs/outputs of each transition. This state diagram
has 4 states and 10 transitions between the states.
Three of transitions have no outputs which are called
mute transitions. If the code is designed for a
relatively large value of N and/or Fmax, the number
of states increases rapidly; to make this point more
clear, some binary state machines with different
precisions N, are summarized in Table II.

The next step to more simplifying the arithmetic
encoder is to reduce the state diagram by removing
the mute transitions [11]. In brief, the process of
reduction is to combine mute transitions in other
transitions and finally to remove extra states. For
example transition 1/- in Fig.1.a from state 0 to state
2 can be combined in two transitions out of state 2,
making two self-returning transitions of state 0 in
Fig.1.b, i.e. 10/011 and 11/1. The final reduced state
diagram of the previous example is shown in Fig.1.b.

As expected, the inputs of encoder are prefix-free.
For example in state zero the inputs are {11,10,0}
where, none of them is prefix of the others. Clearly,
being prefix free is a necessity for decodable codes.
On the other hand, not only the outputs are not
prefix-free [10] but also they are related to each
other. This is because of block coding behavior of
arithmetic codes which boosts their compression
capability.

Figure1. Full state transition of encoder (a) and its reduced
diagram (b)

3. Proposed Method

The present paper aims to provide a secure
arithmetic coding system .Our method is based on
FSM of the encoder. We used the random output
sequence of a Pseudo Random Number Generator
(PRNG) as a symmetric key to select the next state
during the en/decoding process. In addition, a
Huffman tree was defined for each state according to
each state's arithmetic code output length. This way,
deciphering and tracking the states is only possible for
receivers having the correct key. The details will be
discussed more in this section. While all of the
methods described here can be applied for coding of
source alphabets with any size, the authors address
the case of binary systems here to simplify the
discussion and illustrations.

3.1. Inserting Pseudo Random Jumps

The method proposed in this study is based on
jumping among states by using a symmetric key which

is called jump key thereafter. In this method, at some
specific time instances, enforced by jump key, the
subsequent states would not be chosen according to
ordinary state flow of FSM. An example of these kinds
of jump for 8 steps of encoding for Encoder iii in Table
II is shown in Table III.

The jump key is composed of two keys; the first
key (K1) describes whether to jump or not, thus it is a
binary sequence in which ones indicate jumping and
zeros indicate no change in encoding process. The
second key (K2) determines the following state; it is a
pseudo-random sequence with elements from set of
all possible states. Finally the jump key can be
considered as product of these two keys.

To strengthen the encryption against attackers,
the first element of K1 is always defined as one; i.e.
we always have a jump in start of encoding which
breaks the common behavior of starting from state
zero. Therefore the attacker cannot track the
encoding process by starting from state zero.

In jump points, the next state is changed according
to jump key. Clearly, when no jumping occurs, next
states are determined with next coming symbols as
usual and shown by X's in the table.

Jumping by a random key introduces a problem.
The compression capability of arithmetic code arises
from coding blocks of symbols instead of individual
ones. So there are relations among the outputs of
different input symbols in an arithmetically coded
sequence and necessarily there is not an output for
each input symbol. In other words the FSM of
encoder has memory and breaking the output
sequence (jumping) would lead to losing the decoding
track. To solve this problem, we tried to make each
state independent of next one. Thus we defined a
Huffman code for each state on the basis of the
output length of the arithmetic code of that particular
state to attain another set of outputs. We assumed
the arithmetic code output length, for each symbol is
heuristically a measure of its probability.
Consequently, we take each state individually as a
simple source and the length of the output codes as a
measure of probability of the symbols as Eq.1, to
design a proper Huffman code.

pheuristic ≜ 2-code length (1)

10/01

1

1/1

0

3

4

2

1/-
1/-

1/-

0/011

0/0111

0/0

0/00 1/10

0/01

a)

10/011

11/1

0

0/00

110/011

111/10

0/0

1

b)

State zero of encoder iii in Table II has outputs {1,
011, and 0}. Hence an approximate set of probabilities
is {1/2, 1/8, 1/2} which is normalized to {0.44, 0.11,

0.44} and the Huffman code for this set of
probabilities would be {1, 01, 11}. Table IV shows
Huffman output for states one and two. Huffman

Table III. Jump based on jump key

Instant 1 2 3 4 5 6 7 8

K1 1 0 0 0 1 0 1 0

K2 45 14 2 85 251 200 5 155

Jump key
(K1×K2)

45 0 0 0 251 0 5 0

Ordinary State
Sequence

3 120 23 46 54 100 102 212

Encryption State
Sequence

45 X X X 251 X 5 X

Table IV. Designing Huffman code for each state

Transition No# Current State Next State Input Output
Huffman
Output

1

St
at

e
0 0 0 11 1 1

2 0 0 10 011 01
3 0 1 0 0 00

4

St
at

e
1

1 1 10 01 01

5 1 0 0 00 10

6 1 0 110 0111 11

7 1 0 111 10 00

Table V. Encoder table of N=4, p (0) = 0.2,Fmax=1

Current
State

Input Huffman
Output

Next
State

0

0 000 1

10 0011 0

110 01 2

1110 0010 0

1111 1 0

1

0 100 0

10 011 0

110 010 1

1110 1011 0

11110 11 2

111110 1010 0

111111 00 0

2

0 000 1

10 0011 0

110 01 2

1110 0010 0

1111 1 0

code is not a recursive code and each output is
directly related to its corresponding input, so jumping
among states does not cause any problem, however
some portion of compression efficiency is lost. We call
this new code as Huffman- output FSAC (HFAC).

As stated before because Huffman code is prefix
free it is possible to track decoding even in jump
points. Consider we are in state zero of encoder of
Table IV and the encoded string is as 01101101…;
clearly if we take first bit 0 of string, it will not be any
of Huffman outputs of this state therefore we take
the next bit, 1, so we have 01 which clearly implies
that corresponding input is 10. Now let's try this
stream with ordinary arithmetic output of the
encoder. We can take one bit, 0, and go to state one
or yet we can take three bits, 011, and stay in the
same state. This ambiguity arises from non prefix free
property of ordinary arithmetic code which explains
why we derive Huffman output for each state.

3.2. Improving Statistical Properties

To add more security to the encryption procedure,
another key was added to the system which is called
swap key (K3) thereafter. This second key will act on
Huffman outputs in each state. The effect of swap key
is to remove the iterative patterns in the output
which are used by chosen plaintext attacks. Swap key
selects a bit position in each Huffman output
sequence and reverses all the next bits. To generate
the swap key, we used another PRNG, which
generates numbers from zero to the maximum length
of Huffman output sequences for that state. Consider
an encoder which has these parameters: N=4, Fmax=1
and P (0) = 0.2. Outputs of three states for this
encoder by use of HFAC are shown in Table V. State
zero has the outputs with lengths: 3, 4, 2, 4 and 1. As
a result, the maximum output length is 4 and,
consequently, the swap key will be a random number
of the set {0, 1, 2, 3, and 4}.

Assume the swap key is 1 which implies a swap in
bit position 1, the Huffman table changes in the lower
part of the table as shown bold in Table VI. And the
related trees are shown in Fig.2 and Fig.3. Swapping
the tree will lead to have completely different code
words. For example if the code word is 0010, it will
turn to 0101 after swapping as displayed in Table VI.

Figure2. Huffman tree of state zero of Table V.

Figure.3. Swapped Huffman tree of Table V.

Table VI. The effect of swapping output

Bit0 Bit1 Bit2 Bit3
0 0 0
0 0 1 1
0 1
0 0 1 0
1
 

Swap bit position
0 1 1
0 1 0 0
0 0
0 1 0 1
1

Swap bit

1 0

1

1

1 0

0

0

1 0

0

0

0 1

1

1

A kind of chosen plaintext attack is to choose a
sequence which traps the encoder in some limited
number of states. Attacker may choose all zeros input
sequence. For example consider encoder of Table VII.
If the encoder starts from each of three possible
states, the state sequences will be {0,1,0,1,…},
{1,0,1,0,…}, and {2,1,0,1,0,…} respectively, i.e. after
few bits of input encoder state will alternate between
two fixed states, state zero and one. Consequently,
any other pattern rather than alternative zeros and
ones provided by the key would be a clue for attacker.
However, after adding the swap key, if the attacker
tries to trap the encryption system in a limited
number of states through chosen plaintext, the
output manner will not let him to track jump key and
to break the system. An observation of Table VII
shows these three scenarios in shaded bits. In other
words the swapped output sequence will definitely
generate a different sequence.

Table VII. Response of encoder in Table V to all zeros input
sequence

State 0 1 2

Input 0 ,0 ,0 ,… 0 ,0 ,0 ,… 0 ,0 ,0 ,…

State Sequence 0 ,1 ,0 ,… 1 ,0 ,1 ,… 2 ,1 ,0 ,…

Output 000,100,000,… 100,000,100,… 000,100,000,…

Swapped
Output

011,101,011,… 111,111,011,… 001,101,011,…

4. Simulation results

In this section, we initially discuss the compression
efficiency of proposed method; next we elaborate on
some simulations to examine the security of proposed
method. The pc set we used for simulations is a
personal computer with 2G of RAM and Intel Centrino
Core 2 Duo 2.2G CPU. Our proposed scheme has been
implemented with Matlab software.

4.1. Compression efficiency

 Indicated in section 3.1, losing some of
compression efficiency, is a drawback of HFAC
comparing with FASC. We examined HFAC for
different precisions and probabilities, the results
indicated that the HFAC decreases compression at
most (i.e. unequal probabilities) about 10% in
comparison to FSAC and integer arithmetic codes. For
instance, the outcomes of five sample encoders are
shown in Table VIII.

Table VIII. Percent of compression rates

Encoder
Number
of States

AC
%

FSAC
%

HFAC
%

P(0)=0.2, N=8, Fmax=1 465 28.1 19.4 18.5

P(0)=0.1, N=8, Fmax=3 330 54.3 53.4 43.2

P(0)=0.2, N=8, Fmax=3 548 27.8 25.8 19.3

P(0)=0.3, N=8, Fmax=3 1028 11.4 7.4 1.8

P(0)=0.5, N=8, Fmax=3 1 - 0.6 - 0.8 - 0.8

4.2. Security analysis

A good encryption procedure should be robust
enough against all kinds of cryptanalytic, statistical,
and brute-force attacks. This includes statistical
analysis, key space analysis, and sensitivity analysis
[13] which finally verifies high security of the
method/scheme against most attackers.

 4.2.1. Key space

There are two symmetric keys in the proposed
encryption system: jump key and swap key. As
mentioned earlier, jump key can be treated as pair-
wise product of two keys, K1 shows jump points and

K2 shows which states to jump. In simulations K1 is
set 50% of times equal to 1 so 50% of times jump
occurs. Therefore, if n is the length of plaintext then

the K1 space has � n
n/2�components. In which � n

n/2�is

combinations of
n

2
 out of n. If S is the number of

states in the encoder, there will be different possible

jump keys as: S�
n

n/2�=S

n!

��n
2�!�

2

 Stirling’s approximation-

 n!≈ nne-n√2πn when n is large enough- is used to
more simplifications thus we achieve size of jump key
set as Eq.3:

‖K1×K2‖=S

n!

��n
2�!�

2

≈S

nne-n√2πn

�(n/2)n/2e-n/2�2πn/2 �
2

=

S
2n√2

√πn≅S
0.8

2n

√n (3)

It is clear that key space grows unboundedly with
n, even for typical S values between 20 and 300. So
brute-force attack on jump key would be impossible
to great extent. If we consider that first state in K1 is

always enforced to be one, then K1 space has �n-1
n
2-1
�

elements and ‖K1×K2‖≅S
0.4

2n

√n, therefore
abovementioned claim of unbounded key space
applies again.

4.2.2. Randomness of encrypted stream

One condition for an encrypted sequence to be
secure is to have good statistical properties such as
entropy. The famous entropy formula for/of a
message source, that is, H(S), is displayed below in
Eq.4.

H(S)=∑ P(si)Si
log2

1

P(si)
 bits, (4)

where P (si) represents the probability of symbol si.
The entropy is expressed in bits. If the source emits
output from set of symbols {s1, s2}, with equal
probabilities i.e. 0.5, then the entropy is

H(S)= 0.5 log2 �
1

0.5
� + 0.5 log2 �

1

0.5
� = 1 which

corresponds to a thorough random sequence. Our
proposed system displays an average entropy value of
0.99358 which is high enough so that the system can

resist the attacks and can possess an appropriate
randomness.

Taking advantage of PRNGs to produce the keys, we
made use of NIST SP 800-22 test to examine the
randomness of the cipher [14]. Test Suit is a statistical
package which consists of 16 tests. It was developed
to test the randomness of binary sequences with
arbitrary lengths produced by hardware/software-
based cryptographic random or PRNGs.

Table IX. NIST test results

Results P-value Statistical test

Success 2 Monobit

Success 0.7410 Block
frequency(m=128)

Success 0.0758 Runs

Success 0.0407 Rank

Success 0.2617 Nonoverlapping templates
 (M=1032,B=110101010)

Success 1 Overlapping templates
 (m=9,M=933,B=110101010)

Success
Success

0.1234
0.2345

P-value1
P-value2

Serial

Success
Success

0.0345
0.0435

Forward
Reverse

Cumulative
sums

Success
Success
Success
Success
Success
Success
Success
Success

0.7147
0.2736
0.8530
0.6060
0.9371
0.4215
0.5970
0.8902

X = -4
 X = -3
X = -2
X = -1
X = 1
X = 2
X = 3
X = 4

Random
Excursion

(state x)

Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success

0.3456
0.2476
0.3601
0.4138
0.3261
0.2123
0.1876
0.3408
0.4795
0.5557
0.8918
0.9161
0.7552
0.7237
0.2008
0.8702
0.9031
0.8864

X = -9
X = -8
X = -7
X = -6
X = -5
X = -4
X = -3
X = -2
X = -1
X = 1
X = 2
X = 3
X = 4
X = 5
X = 6
X = 7
X = 8
X = 9

Random
Excursion
Variant
 (state x)

Success 0.0219 Entropy

Figure4. Original Lena’s image (256×256 pixel, 8-bit resolution) and its histogram before encryption

Figure5. Plain-image (256×256 pixel, 8-bit resolution) and the histogram after encryption

Figure6. Total times that each state have been met during encryption.

These tests focus on a variety of different types of
non-randomness that could exist in a sequence. For
instance, Table IX summarized the average of several
results of testing several 106-length cipher sequences.
We can conclude from Table IX that the cipher which
was encrypted from our proposed system is
stochastic and it is robustness against known cipher-
text attack.

4.3. Analysis of image encryption

A common way to study joint compression and
encryption approaches characteristics is to apply it on
images [15]. For image analysis, we have performed
statistical analysis by calculating the histograms, the
correlations of two adjacent pixels in the encrypted
images and the correlation coefficient for several
images and its corresponding encrypted images.

4.3.1. Histogram

An image-histogram shows the distribution of
different gray levels in an image. Fig.4 shows our plain
image, Lena and its histogram. Clearly, histogram of a
plain image contains large spikes which correspond to
gray level values with most appearance. The
histogram of the cipher image, shown in Fig.5 is more
uniform and completely different from that of the
original image. It is bears no statistical similarities to
the plain image. Therefore the encrypted image
histogram does not provide any clues to employ any
statistical attack on the proposed image encryption
procedure. In this experiment, we used a HFAC with
N=7, P(0)=44/128 and Fmax=10 which produced 303
states, moreover we set 90% jump during transitions.
Fig.6 clearly displays how many times each state has
passed during encoding. The figure shows that all 303
states approximately are crossed 900 times.
Consequently, it is not possible for a brute-force
attacker to ignore some states to reduce the FSM.
Since all 303 states are almost equally involved in
encoding procedure

4.3.2. Correlation coefficient between pixels

Calculating the correlation between adjacent
pixels in an image is another way to measure the
cipher image randomness. We calculated
correlation between two vertically adjacent pixels,
two horizontally adjacent pixels and two diagonally
adjacent pixels in plain image and cipher image,
respectively. First, we randomly selected 1000 pairs
of two adjacent pixels from an image [16]. Then, we
calculated their correlation coefficients using the
following two formulas Where x and y are the
values of two adjacent pixels in the image Eq.5 and
Eq.6 [17]:

COV(x,y)=E ��x-E(x)� �y-E(y)��, (5)

rxy=
COV(x,y)
�D(x)D(y)

, (6)

where x and y are the values of two adjacent
pixels in the image. Here the following discrete
formulas were used:

E(x) = 1
N ∑ xi

N
i=1 ,

D(x) = 1
N ∑ �xi−E(x)�

2N
i=1 ,

cov(x, y) = 1
N
���𝑥𝑥i -E(x)��𝑦𝑦i -E(y)��
N

i=1
,

Fig.7 and Fig8.show the correlation distribution of
two horizontally and vertically adjacent pixels in plain
image and cipher image for the proposed coder
respectively. The correlation coefficients between
plain image and cipher image in horizontal, diagonal
and vertical directions are shown in table X. It is clear
that the two adjacent pixels in the plain image are
highly correlated; however there is insignificant
correlation between the two adjacent pixels in the
cipher image.

Figure7. Horizontal correlation between every two adjacent pixels (x,y) and (x+1,y) in the original left image and
the right cipher image

Figure8. Vertical correlation between every two adjacent pixels (x,y) and (x,y+1) in the original left image and the
right cipher image

Table X. Correlation coefficients between Plain image and cipher image

Direction of
adjacent pixels

plaintext ciphertext

Horizontal 0.9856 0.0431

Vertical 0.9925 0.0315

Diagonal 0.9877 -0.0014

Table XI. Correlation coefficients between encoded images with a slight change in keys

Keys with one bit changed in them correlation coefficients

1st image 2nd image

K1 No bits 1.5259 e-05

K2 No bits 0.00002

K1 K2 -0.0003

K1 and K2 No bits 1.5259 e-05

4. 4. Sensitivity analysis

An ideal image encryption should be sensitive
with respect to both the secret key and plain
image. The change of a single bit in either the
secret key or plain image should produce a
completely different encrypted image. In the
upcoming section, the finding obtained from the
analysis of image encryption is reported.

4.4.1. Key sensitivity analysis

High key sensitivity in secure image
cryptosystems guarantees that the cipher image
cannot accurately be decrypted although there is
only a slight difference between encryption or
decryption keys. In addition it is an obstacle for
brute-force attacks to some extent. In this study,
the swap key was inserted to improve statistical
characteristics of output sequence. It has not an
overall effect on the encrypted sequence and it just
swaps the output of each state. Consequently, we
examine the sensitivity of encoder to changes in
jump key. We performed the following steps:

• Changing one bit of K1 which determine
jump or not

• Changing one bit of K2 which determines
the next state

• Changing only one bit of the above two
keys K1 and K2.

It is not easy to compare the encrypted outputs
by simply observing them. Thus, for the
comparison, we calculated the correlation [18]
between the corresponding bits of the four
encrypted data by Eq.7

Cr=
N∑ �xjyj�

N
j=1 -∑ xj

N
j=1 .∑ yj

N
j=1

��N∑ xj
2N

j=1 -�∑ xj
N
j=1 �

2�.�N∑ yj
2N

j=1 -�∑ yj
N
j=1 �

2
�

 (7)

where, xj and yj are the values of corresponding
pixels in the encrypted image and original image.

We went through the above mentioned
stages by examining several different keys. Then,
we calculated the correlation coefficient for the

encrypted image and original image by using Eq.7.
In all cases, very small correlation coefficients
between the corresponding outputs were
obtained. For instance, the correlation
coefficients between encoded images with K1and
K2 keys of jump key for the outputs from the
steps (a) to (c) are shown in Table XI.

4.4.2. Sensitivity to plaintext

One of the distinctive features of the
encryption system proposes in this study is that it is
highly sensitive to the slightest change (i.e., a single
change bit) in the plain image. To test the influence
of one-pixel change on the plain image which are
encrypted by the proposed coder, two common
measures may be used: Number of Pixels Change
Rate (NPCR) and Unified Average Changing
Intensity (UACI). Let two ciphered images, whose
corresponding plain image have only one pixel
difference, be denoted by C1 and C2. We labeled
the grayscale values of the pixels at pixel (i,j) in C1
and C2 by C1(i,j) and C2(i,j), respectively. A bipolar
array, D, with the same size as images C1 and C2 is
defined as follows:

D(i,j)= �1 ; C1(i,j) = C2(i,j)
0 ; C1(i,j) ≠ C2(i,j)

�

 The NPCR is defined as Eq.8:

NPCR=
∑ D(i,j)i,j

W.H
×100% (3)

where W and H are the width and height of C1 or
C2. The NPCR measures the percentage of different
pixel numbers between plain image and cipher
image. The UACI is defined as Eq.9

UACI=
1

W.H
�∑ C1(i,j)-C2(i,j)

255i,j � ×100% (9)

which measures the average intensity of
differences between the two images. NPCR is
%99.6490, showing thereby that the encryption
scheme is very sensitive with respect to small
changes in the plain image. UACI is %45.49 which
is indicating that one bit modification yields a
similar result to theory. It is desirable that

Changing one bit in the plaintext to make
theoretically a 50% difference [18] in the bits of
the cipher. For all these reasons, the proposed
scheme of this study proves to be sensitive to the
changes in the input, hence, an ideal coder.
Therefore, attacks by analyzing the static property
of cipher text are prevented in our scheme.
Moreover, based on analysis of image encryption
and sensitivity analysis, the proposed joint
encoder is robust against chosen plaintext attacks.

A pseudorandom sequence is vulnerable to the
known plaintext attacks; since there is a given
known input sequence, the attacker can compare
the joint source-channel coder and the proposed
coded sequences and attempt to find the added
subintervals and their locations. To increase the
security, an efficient key distribution protocol could
be also explored in our algorithm to provide a
sufficient encryption.

5. Conclusion

In this article we proposed a new method to add
encryption to FSAC. This method was based on
jump to states dictated by a key which was only
known to the transmitter and receiver. In order to
cut the relations between the successive outputs,
we changed the outputs of the transitions to
Huffman. Due to the large number of states being
chosen in this method, applying the brute force
method was almost impossible in order to find the
key. We have carried out statistical analysis, key
sensitivity analysis and key space analysis to
demonstrate the security of the new image
encryption procedure. The proposed joint
compression-encryption is so faster and less
complicated in comparison to disjoint coders
therefore we conclude with the remark that the
proposed method is expected to be useful for real
time image encryption and transmission
applications. In future research the emphasis can
be more on adding some extra redundancy to the
code and subsequently using this redundancy in the
decoder to correct errors. In addition more
research on theoretical proof of security is
necessary.

References

[1] M. Grangetto, A. Grosso, and E. Magli, “Selective encryption of
JPEG2000 images by means of randomized arithmetic coding,”
in Proc. IEEE 6th Workshop on Multimedia Signal Processing.
Sie na, Italy, Sep. 2004, pp. 347–350.

[2] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selective
encryption by means of randomized arithmetic coding,” IEEE
Trans . Multimedia, vol. 8, no. 5, pp. 905–917, Oct. 2006.

[3] P.Teekaput,S. Chokchaitam, "Secure Embedded Error
Detection Arithmetic Coding" in Proceedings of the Third
International Conf. on Information Technology and
Applications (ICITA’05), pp. 568-571, 2005:

[4] J. Wen, H. Kim, and J. D. Villasenor, “Binary arithmetic coding
with key-based interval splitting,” IEEE Signal Process. Lett., vol.
13, no. 2,pp. 69–72, Feb. 2006.

[5] H. Kim, J. Wen, J. Villasenor, "Secure Arithmetic Coding", IEEE
TRANS. on Signal Processing, vol. 55, no. 5, pp. 2263-2272.May
2007.

[6] R. Bose, S. Pathak, "A Novel Compression and Encryption
Scheme Using Variable Model Arithmetic Coding and Coupled
Chaotic System", IEEE Transactions on Circuits and Systems
I, vol. 53, no. 4, Apr. 2006. pp. 848-857.

[7] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding
revisited,” ACM Transactions on Information Systems, vol.
16,no. 3, pp. 256–294, 1998.

[8] P. G. Howard and J. S. Vitter, “Practical implementations of
arithmetic coding,” Kluwer Academic Publishers, Image and
Text Compression, vol. 13(7), pp. 85–112, 1992.

[9] P. G. Howard and J. S. Vitter. “Design and analysis of fast text
compression based on quasi-arithmetic coding,” Inform. Proc.
and Management, Vol. 30, No.6, pp. 777-790, Jun. 1994.

[10] H. Moradmand, A. Payandeh, M.R. Aref, "Joint Source-Channel
Coding using Finite State Integer Arithmetic Codes,"
Proc. of 2009 IEEE International Conference on
Electro/Information Technology(eit'09),pp 19-22, Windsor, ON,
Canada, June 2009.

[11] S. Ben-Jamaa, C. Weidmann, and M. Kieffer, “Asymptotic error-
correcting performance of joint source-channel schemesbased
on arithmetic coding,” in Proceedings of IEEE 8th Workshop on
Multimedia Signal Processing (MMSP ’06), pp. 262–266,
Victoria, BC, Canada, October 2006.

[12] Moradmand H., Payandeh A, "Secure finite state integer
arithmetic codes ," Proc. of the 2011 International Conference
on of Advanced Technologies for Communications (ATC), pp.
10-13, Da Nang, Vietnam, August 2011.

[13] M. Sinaie, V.T. vakili,”secure arithmetic coding with error
detection capability”,Eurasip journal on information
security,Vol.2010,Article ID. 621521 ,9 pages,2010

[14] A. Rukhin, J. Soto, J. Nechvatal et al., “A statistical test suite for
random and pseudorandom number generators for
cryptographic applications,” NIST Special Publication 800-22,
May 2001.

[15] Jianyong Chen, Junwei Zhou, Kwok-Wo Wong,” a modified
chaos-based joint compression and encryption”, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS
BRIEFS, VOL. 58, NO. 2, FEBRUARY 2011, pp.110-114.

[16] Hengjian Li, Jiashu Zhang,, A secure and efficient entropy
coding based on arithmetic coding”,CommunNonlinear Sci
Numer Simulat 14 (2009) 4304– 4318

[17] N.K. Pareek, Vinod Patidar, K.K. Sud,” Image encryption using
chaotic logistic map”, Image and Vision Computing 24 (2006)
926–934

[18] X. Tong,M. Cui, and Z.Wang, “A new feedback image
encryption scheme based on perturbation with dynamical
compound chaotic sequence cipher generator,” Optics
Communications, vol. 282, no. 14, pp. 2722–2728, 2009.

