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Abstract— recently, arithmetic coding has attracted 
the attention of many scholars because of its high 
compression capability. Accordingly, in this paper a method 
which adds secrecy to this well-known source code is 
proposed. Finite state arithmetic code (FSAC) is used as 
source code to add security. Its finite state machine (FSM) 
characteristic is exploited to insert some random jumps 
during source coding process. In addition, a Huffman code 
is designed for each state to make decoding possible even 
in jumps. Being Prefix free, Huffman codes are useful in 
tracking correct states for an authorized user when s/he 
decodes with correct symmetric pseudo random key. The 
robustness of our proposed scheme is further reinforced by 
adding another extra   uncertainty by swapping outputs of 
Huffman codes in each state. Several test images are used 
for inspecting the validity of the proposed Huffman Finite 
State Arithmetic Coding (HFSAC). The results of several 
experimental, key space analyses, statistical analysis, key 
sensitivity and plaintext sensitivity tests show that HFSAC 
with a little effect on compression efficiency for image 
cryptosystem provides an efficient and secure way for real-
time image encryption and transmission. 

 Keywords- arithmetic coding; image compression; 
finite state machine; Huffman code; image encryption 

1. Introduction  

The efficiency and security requirements of 
information transmission have led to conduct a 
substantial amount of research on data compression 
and encryption. In order to improve the performance 
and the flexibility of multimedia applications, it is 

worth performing compression and encryption in a 
single process [1]-[6]. Recently, arithmetic coding has 
attracted the attention of many scholars due to the 
high compression efficiency in the applications  [5] 
such as JPEG2000 and H.264. 

Grangetto et.al [1], [2] introduced a randomized 
arithmetic coding scheme which achieves security by 
random changing of the symbol intervals. Kim et.al 
[4], [5] inserted encryption by splitting coding interval 
according to a random key. Some secure arithmetic 
codes were proposed by Bose et.al and Chen et. al. 
[6], [7] who used chaos theory to make randomized 
arithmetic encoder model. Howard et.al [8],[9] 
introduced finite state arithmetic coding and showed 
that this implementation didn’t affect compression 
efficiency. While the previous research has used 
integer arithmetic coding, the present study benefited 
from finite state integer arithmetic codes (FSAC) with 
a symmetric pseudo random key to add security to 
this source code. We used a secure random key to 
jump to some states. Moreover, we defined Huffman 
codes for each state to prevent fault decoding. The 
numerical results showed that the proposed method 
satisfied the security terms. 

This paper is organized as follows. In section 2, the 
studies conducted on finite state integer arithmetic 
codes are briefly reviewed. The secure arithmetic 
coding proposed in this research is presented in 
Section 3. Subsequently, sections 4 and 5 offers the 
implications and performance analysis of the 
proposed approach and section 6 offers conclusion 
and some suggestions for interested readers for 
exploring the related issues to this study.  

mailto:h.moradmand@gmail.com�


 

2. Brief review of FSAC 

2.1. FSAC algorithm 

Arithmetic coding is the process of recursively 
selecting subintervals according to the probability of 
the next coming symbols [7]. Pure arithmetic codes 
need infinite precision and have no output until the 
end of the block is being encoded. To determine the 
finite precision, integer arithmetic codes with 
incremental outputs were introduced [8], [10]. FSAC is 
a revised version of integer arithmetic codes having a 
finite number of states  [11] . The process of FSAC with 
precision of N (an integer number to indicate the 
length of the initial interval) and Fmax (maximum 
value of follow count) is described in Table I. 

Table I. Finite state Integer arithmetic encoding 

Initialize current interval [low,high) = [0,N) and follow = 0 
for each input symbol: 

Divide current interval into subintervals proportional to 
the probability of symbols. 
Current Interval = subinterval of coming symbol. 
Repeatedly do:  

If new subinterval ∉ [0,N/2) or [N/4,3N/4), or 
[N/2,N), exit and return.  
Else if  {(follow >= Fmax) AND (high∈[N/2,3N/2)   
AND  low ∈ is in [N/4,N/2)} 

switch(next symbol) 
case 0: low=N/2 
case 1 :high=N/2-1 

If current interval  ∈  [0,N/2),  
output 0 and any following 1's left 
behind, double the size of the 
subinterval by linearly expanding 
[0,N/2) to [0,N). 

If current interval ∈[N/2,N),  
output 1 and any following 0's left 
behind,double the size of the 
subinterval by linearly expanding 
[N/2,N) to [0,N). 

If current interval∈[N/4,3N/4),  
increment the follow by one; double 
the size of the subinterval by linearly 
expanding [N/4,3N/4) to [0,N). 

Output enough bits to distinguish the final current 

Table II. Number of states with different N  

Encoder 
Number # 

i ii iii iv 

N 3 5 7 7 

Fmax 1 1 1 10 
Reduced 
States # 

1 12 172 203 

Reduced       
Transitions # 

4 57 732 2825 

Interval 
Division # 

[2 6] [6 26] [26 102] [26 102] 

2.2. State diagram of FSAC 

Being described with finite number of states, FSAC 
encoder can be shown as a state diagram. Such a 
state diagram for N=3, Fmax=1 and the probability 
P(0) =3/8 for a binary source is shown in Fig.1. The 
numbers that are written on the edges are the 
inputs/outputs of each transition. This state diagram 
has 4 states and 10 transitions between the states. 
Three of transitions have no outputs which are called 
mute transitions. If the code is designed for a 
relatively large value of N and/or Fmax, the number 
of states increases rapidly; to make this point more 
clear, some binary state machines with different 
precisions N, are summarized in Table II. 

The next step to more simplifying the arithmetic 
encoder is to reduce the state diagram by removing 
the mute transitions [11]. In brief, the process of 
reduction is to combine mute transitions in other 
transitions and finally to remove extra states. For 
example transition 1/- in Fig.1.a from state 0 to state 
2 can be combined in two transitions out of state 2, 
making two self-returning transitions of state 0 in 
Fig.1.b, i.e. 10/011 and 11/1. The final reduced state 
diagram of the previous example is shown in Fig.1.b.  

As expected, the inputs of encoder are prefix-free. 
For example in state zero the inputs are {11,10,0} 
where, none of them is prefix of the others. Clearly, 
being prefix free is a necessity for decodable codes. 
On the other hand, not only the outputs are not 
prefix-free [10] but also they are related to each 
other. This is because of block coding behavior of 
arithmetic codes which boosts their compression 
capability. 



 

Figure1. Full state transition of encoder (a) and its reduced 
diagram (b) 

3. Proposed Method 

The present paper aims to provide a secure 
arithmetic coding system .Our method is based on 
FSM of the encoder. We used the random output 
sequence of a Pseudo Random Number Generator 
(PRNG) as a symmetric key to select the next state 
during the en/decoding process. In addition, a 
Huffman tree was defined for each state according to 
each state's arithmetic code output length. This way, 
deciphering and tracking the states is only possible for 
receivers having the correct key. The details will be 
discussed more in this section. While all of the 
methods described here can be applied for coding of 
source alphabets with any size, the authors address 
the case of binary systems here to simplify the 
discussion and illustrations. 

3.1. Inserting Pseudo Random Jumps 

The method proposed in this study is based on 
jumping among states by using a symmetric key which 

is called jump key thereafter. In this method, at some 
specific time instances, enforced by jump key, the 
subsequent states would not be chosen according to 
ordinary state flow of FSM. An example of these kinds 
of jump for 8 steps of encoding for Encoder iii in Table 
II is shown in Table III.  

The jump key is composed of two keys; the first 
key (K1) describes whether to jump or not, thus it is a 
binary sequence in which ones indicate jumping and 
zeros indicate no change in encoding process. The 
second key (K2) determines the following state; it is a 
pseudo-random  sequence with elements from  set of 
all possible states.  Finally the jump key can be 
considered as product of these two keys.  

To strengthen the encryption against attackers, 
the first element of K1 is always defined as one; i.e. 
we always have a jump in start of encoding which 
breaks the common behavior of starting from state 
zero. Therefore the attacker cannot track the 
encoding process by starting from state zero.  

In jump points, the next state is changed according 
to jump key. Clearly,  when no jumping occurs, next 
states are determined with next coming symbols as 
usual and shown by X's in the table. 

Jumping by a random key introduces a problem. 
The compression capability of arithmetic code arises 
from coding blocks of symbols instead of individual 
ones. So there are relations among the outputs of 
different input symbols in an arithmetically coded 
sequence and necessarily there is not an output for 
each input symbol. In other words the FSM of 
encoder has memory and breaking the output 
sequence (jumping) would lead to losing the decoding 
track. To solve this problem, we tried to make each 
state independent of next one. Thus we defined a 
Huffman code for each state on the basis of the 
output length of the arithmetic code of that particular 
state to attain another set of outputs. We assumed 
the arithmetic code output length, for each symbol is 
heuristically a measure of its probability. 
Consequently, we take each state individually as a 
simple source and the length of the output codes as a 
measure of probability of the symbols as Eq.1, to 
design a proper Huffman code.  

pheuristic ≜ 2-code length             (1) 
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State zero of encoder iii in Table II has outputs {1, 
011, and 0}. Hence an approximate set of probabilities 
is {1/2, 1/8, 1/2} which is normalized to {0.44, 0.11, 

0.44} and the Huffman code for this set of 
probabilities would be {1, 01, 11}. Table IV shows 
Huffman output for states one and two. Huffman 

Table III. Jump based on jump key 

Instant 1 2 3 4 5 6 7 8 

K1 1 0 0 0 1 0 1 0 

K2 45 14 2 85 251 200 5 155 

Jump key 
(K1×K2) 

45 0 0 0 251 0 5 0 

Ordinary State 
Sequence 

3 120 23 46 54 100 102 212 

Encryption State 
Sequence 

45 X X X 251 X 5 X 

Table IV. Designing Huffman code for each state 

Transition No# Current State Next State Input Output 
Huffman 
Output 

1 

St
at

e 
0 0 0 11 1 1 

2 0 0 10 011 01 
3 0 1 0 0 00 

4 

St
at

e 
1 

1 1 10 01 01 

5 1 0 0 00 10 

6 1 0 110 0111 11 

7 1 0 111 10 00 

Table V. Encoder table of N=4, p (0) = 0.2,Fmax=1 

Current 
State 

Input Huffman 
Output 

Next 
State 

0 

0 000 1 

10 0011 0 

110 01 2 

1110 0010 0 

1111 1 0 

1 

0 100 0 

10 011 0 

110 010 1 

1110 1011 0 

11110 11 2 

111110 1010 0 

111111 00 0 

2 

0 000 1 

10 0011 0 

110 01 2 

1110 0010 0 

1111 1 0 



code is not a recursive code and each output is 
directly related to its corresponding input, so jumping 
among states does not cause any problem, however 
some portion of compression efficiency is lost. We call 
this new code as Huffman- output FSAC (HFAC). 

As stated before because Huffman code is prefix 
free it is possible to track decoding even in jump 
points. Consider we are in state zero of encoder of 
Table IV and the encoded string is as 01101101…; 
clearly if we take first bit 0 of string, it will not be any 
of Huffman outputs of this state therefore we take 
the next bit, 1, so we have 01 which clearly implies 
that corresponding input is 10. Now let's try this 
stream with ordinary arithmetic output of the 
encoder. We can take one bit, 0, and go to state one 
or yet we can take three bits, 011, and stay in the 
same state. This ambiguity arises from non prefix free 
property of ordinary arithmetic code which explains 
why we derive Huffman output for each state. 

3.2. Improving Statistical Properties 

To add more security to the encryption procedure, 
another key was added to the system which is called 
swap key (K3) thereafter. This second key will act on 
Huffman outputs in each state. The effect of swap key 
is to remove the iterative patterns in the output 
which are used by chosen plaintext attacks. Swap key 
selects a bit position in each Huffman output 
sequence and reverses all the next bits. To generate 
the swap key, we used another PRNG, which 
generates numbers from zero to the maximum length 
of Huffman output sequences for that state. Consider 
an encoder which has these parameters: N=4, Fmax=1 
and P (0) = 0.2. Outputs of three states for this 
encoder by use of HFAC are shown in Table V. State 
zero has the outputs with lengths: 3, 4, 2, 4 and 1. As 
a result, the maximum output length is 4 and, 
consequently, the swap key will be a random number 
of the set {0, 1, 2, 3, and 4}. 

Assume the swap key is 1 which implies a swap in 
bit position 1, the Huffman table changes in the lower 
part of the table as shown bold in Table VI. And the 
related trees are shown in Fig.2 and Fig.3. Swapping 
the tree will lead to have completely different code 
words. For example if the code word is 0010, it will 
turn to 0101 after swapping as displayed in Table VI. 

 

 

Figure2. Huffman tree of state zero of Table V. 

 

Figure.3. Swapped Huffman tree of Table V. 

Table VI. The effect of swapping output 

Bit0 Bit1 Bit2 Bit3 
0 0 0  
0 0 1 1 
0 1   
0 0 1 0 
1    
  

  

Swap bit position 
0 1 1  
0 1 0 0 
0 0   
0 1 0 1 
1    

 

Swap bit 

 

1 0 

1 

1 

1 0 

0 

0 

1 0 

0 

0 

0 1 

1 

1 



A kind of chosen plaintext attack is to choose a 
sequence which traps the encoder in some limited 
number of states. Attacker may choose all zeros input 
sequence. For example consider encoder of Table VII. 
If the encoder starts from each of three possible 
states, the state sequences will be {0,1,0,1,…}, 
{1,0,1,0,…}, and {2,1,0,1,0,…} respectively, i.e. after 
few bits of input encoder state will alternate between 
two fixed states, state zero and one. Consequently, 
any other pattern rather than alternative zeros and 
ones provided by the key would be a clue for attacker. 
However, after adding the swap key, if the attacker 
tries to trap the encryption system in a limited 
number of states through chosen plaintext, the 
output manner will not let him to track jump key and 
to break the system. An observation of Table VII 
shows these three scenarios in shaded bits. In other 
words the swapped output sequence will definitely 
generate a different sequence. 

Table VII. Response of encoder in Table V to all zeros input 
sequence 

State 0 1 2 

Input 0    ,0    ,0    ,… 0    ,0    ,0    ,… 0    ,0    ,0    ,… 

State Sequence 0    ,1    ,0    ,… 1    ,0    ,1    ,… 2    ,1    ,0    ,… 

Output 000,100,000,… 100,000,100,… 000,100,000,… 

Swapped 
Output 

011,101,011,… 111,111,011,… 001,101,011,… 

4. Simulation results 

In this section, we initially discuss the compression 
efficiency of proposed method; next we elaborate on 
some simulations to examine the security of proposed 
method. The pc set we used for simulations is a 
personal computer with 2G of RAM and Intel Centrino 
Core 2 Duo 2.2G CPU. Our proposed scheme has been 
implemented with Matlab software. 

4.1. Compression efficiency 

      Indicated in section 3.1, losing some of 
compression efficiency, is a drawback of HFAC 
comparing with FASC. We examined HFAC for 
different precisions and probabilities, the results 
indicated that the HFAC decreases compression at 
most (i.e. unequal probabilities) about 10% in 
comparison to FSAC and integer arithmetic codes. For 
instance, the outcomes of five sample encoders are 
shown in Table VIII.   

Table VIII.  Percent of compression rates 

Encoder 
Number 
of States 

AC 
% 

FSAC 
% 

HFAC
% 

P(0)=0.2, N=8, Fmax=1 465 28.1 19.4 18.5 

P(0)=0.1, N=8, Fmax=3 330 54.3 53.4 43.2 

P(0)=0.2, N=8, Fmax=3 548 27.8 25.8 19.3 

P(0)=0.3, N=8, Fmax=3 1028 11.4 7.4 1.8 

P(0)=0.5, N=8, Fmax=3 1 - 0.6 - 0.8 - 0.8 

4.2. Security analysis 

A good encryption procedure should be robust 
enough against all kinds of cryptanalytic, statistical, 
and brute-force attacks. This includes statistical 
analysis, key space analysis, and sensitivity analysis 
[13] which finally verifies high security of the 
method/scheme against most attackers.  

    4.2.1. Key space 

There are two symmetric keys in the proposed 
encryption system: jump key and swap key.  As 
mentioned earlier, jump key can be treated as pair-
wise product of two keys, K1 shows jump points and 



K2 shows which states to jump. In simulations K1 is 
set 50% of times equal to 1 so 50% of times jump 
occurs. Therefore, if n is the length of plaintext then 

the K1 space has � n
n/2�components. In which � n

n/2�is 

combinations of 
n

2
  out of n. If S is the number of 

states in the encoder, there will be different possible 

jump keys as: S�
n

n/2�=S

n!

��n
2�!�

2

 Stirling’s approximation-

     n!≈ nne-n√2πn  when n is large enough- is used to 
more simplifications thus we achieve size of jump key 
set as Eq.3: 

‖K1×K2‖=S

n!

��n
2�!�

2

≈S

nne-n√2πn 

�(n/2)n/2e-n/2�2πn/2 �
2

= 

S
2n√2

√πn≅S
0.8 

2n

√n     (3) 

It is clear that key space grows unboundedly with 
n, even for typical S values between 20 and 300. So 
brute-force attack on jump key would be impossible 
to great extent. If we consider that first state in K1 is 

always enforced to be one, then K1 space has �n-1
n
2-1
� 

elements and ‖K1×K2‖≅S
0.4 

2n

√n, therefore 
abovementioned claim of unbounded key space 
applies again.  

4.2.2. Randomness of encrypted stream 

One condition for an encrypted sequence to be 
secure is to have good statistical properties such as 
entropy. The famous entropy formula for/of a 
message source, that is, H(S), is displayed below in 
Eq.4. 

H(S)=∑ P(si)Si
log2

1

P(si)
 bits,   (4) 

where P (si) represents the probability of symbol si. 
The entropy is expressed in bits. If the source emits 
output from set of symbols {s1, s2}, with equal 
probabilities i.e. 0.5, then the entropy is 

H(S)= 0.5 log2 �
1

0.5
� + 0.5 log2 �

1

0.5
� = 1 which 

corresponds to a thorough random sequence. Our 
proposed system displays an average entropy value of 
0.99358 which is high enough so that the system can 

resist the attacks and can possess an appropriate 
randomness.  

Taking advantage of PRNGs to produce the keys, we 
made use of NIST SP 800-22 test to examine the 
randomness of the cipher [14]. Test Suit is a statistical 
package which consists of 16 tests. It was developed 
to test the randomness of binary sequences with 
arbitrary lengths produced by hardware/software-
based cryptographic random or PRNGs. 

  

Table IX. NIST test results 

Results P-value Statistical test 

Success 2 Monobit 

Success 0.7410 Block 
frequency(m=128) 

Success 0.0758 Runs 

Success 0.0407 Rank 

Success 0.2617 Nonoverlapping templates 
      (M=1032,B=110101010) 

Success 1 Overlapping templates       
 (m=9,M=933,B=110101010) 

Success 
Success 

0.1234 
0.2345 

P-value1 
P-value2 

Serial 

Success 
Success 

0.0345 
0.0435 

Forward 
Reverse  

Cumulative 
sums 

Success 
Success 
Success 
Success 
Success 
Success 
Success  
Success 

0.7147 
0.2736 
0.8530 
0.6060 
0.9371 
0.4215 
0.5970 
0.8902 

X = -4 
 X = -3 
X = -2 
X = -1 
X = 1 
X = 2 
X = 3 
X = 4  

Random  
Excursion 

(state x) 

Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 
Success 

0.3456 
0.2476 
0.3601 
0.4138 
0.3261 
0.2123 
0.1876 
0.3408 
0.4795 
0.5557 
0.8918 
0.9161 
0.7552 
0.7237 
0.2008 
0.8702 
0.9031 
0.8864 

X = -9 
X = -8 
X = -7 
X = -6 
X = -5 
X = -4 
X = -3 
X = -2 
X = -1 
X = 1 
X = 2 
X = 3 
X = 4 
X = 5 
X = 6 
X = 7 
X = 8 
X = 9 

Random 
Excursion 
Variant 
 (state x) 

 

Success 0.0219 Entropy 

 



 

Figure4. Original Lena’s image (256×256 pixel, 8-bit resolution) and its histogram before encryption 

 

Figure5. Plain-image (256×256 pixel, 8-bit resolution) and the histogram after encryption  

 

Figure6. Total times that each state have been met during encryption. 



These tests focus on a variety of different types of 
non-randomness that could exist in a sequence. For 
instance, Table IX summarized the average of several 
results of testing several 106-length cipher sequences. 
We can conclude from Table IX that the cipher which 
was encrypted from our proposed system is 
stochastic and it is robustness against known cipher-
text attack. 

4.3. Analysis of image encryption 

A common way to study joint compression and 
encryption approaches characteristics is to apply it on 
images [15]. For image analysis, we have performed 
statistical analysis by calculating the histograms, the 
correlations of two adjacent pixels in the encrypted 
images and the correlation coefficient for several 
images and its corresponding encrypted images. 

4.3.1. Histogram 

An image-histogram shows the distribution of 
different gray levels in an image. Fig.4 shows our plain 
image, Lena and its histogram. Clearly, histogram of a 
plain image contains large spikes which correspond to 
gray level values with most appearance. The 
histogram of the cipher image, shown in Fig.5 is more 
uniform and completely different from that of the 
original image. It is bears no  statistical similarities to 
the plain  image. Therefore the encrypted image 
histogram does not provide any clues to employ any 
statistical attack on the proposed image encryption 
procedure. In this experiment, we used a HFAC with 
N=7, P(0)=44/128 and Fmax=10 which produced 303 
states, moreover we set 90% jump during transitions. 
Fig.6 clearly displays how many times each state has 
passed during encoding. The figure shows that all 303 
states approximately are crossed 900 times. 
Consequently, it is not possible for a brute-force 
attacker to ignore some states to reduce the FSM. 
Since all 303 states are almost equally  involved in 
encoding procedure 

4.3.2. Correlation coefficient between pixels 

Calculating the correlation between adjacent 
pixels in an image is another way to measure the 
cipher  image randomness. We calculated 
correlation between two vertically adjacent pixels, 
two horizontally adjacent pixels and two diagonally 
adjacent pixels in plain  image and cipher  image, 
respectively. First, we randomly selected 1000 pairs 
of two adjacent pixels from an image [16]. Then, we 
calculated their correlation coefficients using the 
following two formulas Where x and y are the 
values of two adjacent pixels in the image Eq.5 and 
Eq.6  [17]: 

COV(x,y)=E ��x-E(x)� �y-E(y)��,     (5) 

rxy=
COV(x,y)
�D(x)D(y)

,  (6) 

where x and y are the values of two adjacent 
pixels in the image. Here the following discrete 
formulas were used:  

E(x) = 1
N ∑ xi  

N
i=1 , 

D(x) = 1
N ∑ �xi−E(x)�

2N
i=1 , 

cov(x, y) = 1
N
���𝑥𝑥i -E(x)��𝑦𝑦i -E(y)��
N

i=1
, 

Fig.7 and Fig8.show the correlation distribution of 
two horizontally and vertically adjacent pixels in plain 
image and cipher  image for the proposed coder 
respectively. The correlation coefficients between 
plain  image and cipher  image in horizontal, diagonal 
and vertical directions are shown in table X. It is clear 
that the two adjacent pixels in the plain  image are 
highly correlated; however there is insignificant 
correlation between the two adjacent pixels in the 
cipher image.  



 

 

Figure7. Horizontal correlation between every two adjacent pixels (x,y) and (x+1,y) in the  original left image and  
the right cipher image 

 

Figure8. Vertical correlation between every two adjacent pixels (x,y) and (x,y+1) in the original left image and the 
right cipher image 

Table X. Correlation coefficients between Plain image and cipher image 

Direction of 
adjacent pixels 

plaintext ciphertext 

Horizontal 0.9856 0.0431 

Vertical 0.9925 0.0315 

Diagonal 0.9877 -0.0014 

Table XI. Correlation coefficients between encoded images with a slight change in keys 

Keys with one bit changed in them   correlation coefficients 

1st image 2nd image 
 

K1 No bits 1.5259 e-05 

K2 No bits 0.00002 

K1 K2 -0.0003 

K1 and K2 No bits 1.5259 e-05 

 



 

4. 4. Sensitivity analysis 

An ideal image encryption should be sensitive 
with respect to both the secret key and plain  
image. The change of a single bit in either the 
secret key or plain  image should produce a 
completely different encrypted image. In the 
upcoming section, the finding obtained from the 
analysis of image encryption is reported. 

4.4.1. Key sensitivity analysis 

High key sensitivity in secure image 
cryptosystems guarantees that the cipher  image 
cannot accurately be decrypted although there is 
only a slight difference between encryption or 
decryption keys. In addition it is an obstacle for 
brute-force attacks to some extent. In this study, 
the swap key was inserted to improve statistical 
characteristics of output sequence. It has not an 
overall effect on the encrypted sequence and it just 
swaps the output of each state. Consequently, we 
examine the sensitivity of encoder to changes in 
jump key. We performed the following steps: 

• Changing one bit of K1 which determine 
jump or not  

• Changing one bit of K2 which determines 
the next state 

• Changing only one bit of the above two 
keys K1 and K2. 

It is not easy to compare the encrypted outputs 
by simply observing them. Thus, for the 
comparison, we calculated the correlation  [18] 
between the corresponding bits of the four 
encrypted data by Eq.7  

Cr=
N∑ �xjyj�

N
j=1 -∑ xj

N
j=1 .∑ yj

N
j=1

��N∑ xj
2N

j=1 -�∑ xj
N
j=1 �

2�.�N∑ yj
2N

j=1 -�∑ yj
N
j=1 �

2
�

      (7) 

where, xj and yj  are the values of corresponding 
pixels in the encrypted image and original image. 

We went through the above mentioned 
stages by examining several different keys. Then, 
we calculated the correlation coefficient for the 

encrypted image and original image by using Eq.7. 
In all cases, very small correlation coefficients 
between the corresponding outputs were 
obtained. For instance, the correlation 
coefficients between encoded images with K1and 
K2 keys of jump key for the outputs from the 
steps (a) to (c) are shown in Table XI. 

4.4.2. Sensitivity to plaintext 

One of the distinctive features of the 
encryption system proposes in this study is that it is 
highly sensitive to the slightest change (i.e., a single 
change bit) in the plain image. To test the influence 
of one-pixel change on the plain  image which are 
encrypted by the proposed coder, two common 
measures may be used: Number of Pixels Change 
Rate (NPCR) and Unified Average Changing 
Intensity (UACI). Let two ciphered images, whose 
corresponding plain  image have only one pixel 
difference, be denoted by C1 and C2. We labeled 
the grayscale values of the pixels at pixel (i,j) in C1 
and C2 by C1(i,j) and C2(i,j), respectively. A bipolar 
array, D, with the same size as images C1 and C2 is 
defined as follows: 

D(i,j)= �1 ; C1(i,j) = C2(i,j)
0 ; C1(i,j) ≠ C2(i,j)

� 

 The NPCR is defined as Eq.8: 

NPCR=
∑ D(i,j)i,j

W.H
×100%  (3) 

where W and H are the width and height of C1 or 
C2. The NPCR measures the percentage of different 
pixel numbers between plain  image and cipher  
image. The UACI is defined as Eq.9 

UACI=
1

W.H
�∑ C1(i,j)-C2(i,j)

255i,j � ×100%  (9) 

which measures the average intensity of 
differences between the two images. NPCR is 
%99.6490, showing thereby that the encryption 
scheme is very sensitive with respect to small 
changes in the plain image. UACI is %45.49 which 
is indicating that one bit modification yields a 
similar result to theory. It is desirable that  



 

Changing one bit in the plaintext to make 
theoretically a 50% difference  [18] in the bits of 
the cipher. For all these reasons, the proposed 
scheme of this study proves to be sensitive to the 
changes in the input, hence, an ideal coder. 
Therefore, attacks by analyzing the static property 
of cipher text are prevented in our scheme.  
Moreover, based on analysis of image encryption 
and sensitivity analysis, the proposed joint 
encoder is robust against chosen plaintext attacks. 

A pseudorandom sequence is vulnerable to the 
known plaintext attacks; since there is a given 
known input sequence, the attacker can compare 
the joint source-channel coder and the proposed 
coded sequences and attempt to find the added 
subintervals and their locations. To increase the 
security, an efficient key distribution protocol could 
be also explored in our algorithm to provide a 
sufficient encryption. 

5. Conclusion  

In this article we proposed a new method to add 
encryption to FSAC. This method was based on 
jump to states dictated by a key which was only 
known to the transmitter and receiver. In order to 
cut the relations between the successive outputs, 
we changed the outputs of the transitions to 
Huffman. Due to the large number of states being 
chosen in this method, applying the brute force 
method was almost impossible in order to find the 
key. We have carried out statistical analysis, key 
sensitivity analysis and key space analysis to 
demonstrate the security of the new image 
encryption procedure. The proposed joint 
compression-encryption is so faster and less 
complicated in comparison to disjoint coders 
therefore we conclude with the remark that the 
proposed method is expected to be useful for real 
time image encryption and transmission 
applications. In future research the emphasis can 
be more on adding some extra redundancy to the 
code and subsequently using this redundancy in the 
decoder to correct errors. In addition more 
research on theoretical proof of security is 
necessary. 
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