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Abstract The research context of this article is the
recognition and description of dynamic textures. In im-

age processing, the wavelet transform has been success-
fully used for characterizing static textures. To our best
knowledge, only two works are using spatio-temporal

multiscale decomposition based on tensor product for

dynamic texture recognition.

One contribution of this article is to analyse and
compare the ability of the 2D+T curvelet transform, a

geometric multiscale decomposition, for characterizing
dynamic textures in image sequences. Two approaches
using the 2D+T curvelet transform are presented and

compared using three new large databases.

A second contribution is the construction of these

three publicly available benchmarks of increasing com-

plexity. Existing benchmarks are either too small, not

available or not always constructed using a reference

database.

Feature vectors used for recognition are described
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Université de Lyon, F-42023, CNRS, UMR5516, Laboratoire
Hubert Curien, F-42000, Université de Saint-Étienne, Jean
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as well as their relevance, and performances of the dif-
ferent methods are discussed. Finally, future prospects

are exposed.

Keywords Dynamic Textures · 2D+T Curvelet

Transform · Spatio-temporal Multiscale Decomposi-

tions · Motion Recognition · Video indexing

1 Introduction

1.1 Context

Our visual world is composed of many complex struc-

tures and motions. Our human biological visual system

has the potentiality to acquire, integrate, and interpret

all of this complex information and to provide the abil-

ity to navigate easily through it. When looking at a

scene, our brain instantly recognizes and characterizes
regions of different appearances and motions.

The computer vision community is involved in study-

ing and mimicking the human visual system and its

ability to see and interpret our world. When a com-

puter vision system acquires a natural scene, it should

also be able to segment, characterize and interpret the

different regions contained in the image, such as forest,
lake, river, mountains, sky, etc.

In many situations, huge portion of our visual world

is perceived as texture. Thus texture has become, in
recent years, a fundamental characteristics for describ-
ing the image content (for example MPEG-7 descrip-
tors [33]). The extension of these visual features to the

temporal dimension leads to some new challenges. The
notion of texture in image sequences raises many ques-
tions: what are textures in videos? To what extent

2D+T textures are different from static ones, or are

they simple extension to 3D of 2D structures? What
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are the phenomena leading to 2D+T textures?

Some answers are given in a pioneer work by Nel-
son and Polana [20,27]. The authors categorize events

occurring in an image sequence into three classes: (1)

spatially periodic pattern with temporal periodic mo-

tion, (2) spatially bounded shape with temporal peri-

odic motion and (3) spatially bounded shape without

temporal periodic motion. The first class is called Dy-
namic Textures, or more rarely Temporal Textures.

Defining formally what is a spatial texture is a dif-

ficult and hazardous task. Adding the temporal di-

mension further complicates its definition. According

to Yves Meyer in the Workshop “An interdisciplinary

approach to Textures and Natural Images Processing”

[19], textures are “a subtle balance between repetition

and innovation”. Given a proper definition of dynamic

textures is a notoriously difficult problem. They can

not only be considered as a simple extension of static

textures to the time domain, but as a more complex

phenomenon resulting from several dynamics. It is pos-

sible to define briefly a dynamic texture as a time vary-

ing phenomenon with a certain repetitiveness in both

space and time. In [13,25], we define a dynamic texture

more precisely as follows:

A natural, artificial or synthetic image sequence may

contain a static texture component and/or a dynamic

texture component. This latest one is composed of at

least one dynamic texture. A dynamic texture is a tex-
tured pattern that can be rigid or deformable. This pat-
tern has a motion induced by a force which can be inter-
nal, external or created by camera motions. This mo-

tion can be deterministic or stochastic. Dynamic tex-

tures are composed of modes, which may overlap, char-

acterized by repetitive spatial and temporal phenomena.

A flag flapping in the wind, fire, smoke, ripples at
the surface of water, waving trees, traffic, an escalator,

etc., are all examples of dynamic textures. Two exam-

ples are shown in Figure 1 (a flapping flag and grass).

Each image sequence is viewed as a 3D data cube where

cuts make it possible to observe dynamic texture mo-

tions.

For more details about this definition or dynamic
textures notion, one can refer to [13,25].

After the pioneer work of Nelson and Polana [20,

27], the number of major publications on the topic of

dynamic textures has risen sharply. This growing in-

terest can be explained by a large field of applications:

videos synthesis [10,6] (realistic dynamic texture syn-

thesis for animations, video games, video inpainting),

spatio-temporal segmentation [17] (to detect a pertur-

bation in a given dynamic texture, to build video sum-

maries), video surveillance [26] (to detect an accident

in traffic, to detect forest fires, to characterize and su-

Fig. 1 2D+T sections of two dynamic textures: (a) a flag
flapping in the wind, (b) grass. Here, a dynamic texture is
seen as a 3D data cube cut at voxel O(x, y, t), giving three

planes (−→x O−→y ), (−→x O
−→
t ) and (−→y O

−→
t ).

pervise the motion of a crowd), video indexing [29,12]

(to perform elaborate semantic queries), dynamic back-

ground subtraction [7,1], tracking [22] (to follow and to

analyze the evolution of given phenomena), etc.

Our research context is the recognition and descrip-

tion of dynamic textures [24,37]. Our main goal is to

obtain representative features of dynamic textures, i.e.

the most compact and discriminative as possible. For

a brief survey on this topic, one could refer to [8].

1.2 Outline of the article

In our context of dynamic texture characterization, pre-

vious works can be classified according to the follow-
ing taxonomy: methods based on optical flow [20,28,
15], methods based on spatio-temporal filtering [31],
methods computing geometric properties in the spatio-

temporal volume [21,38], methods based on Linear Dy-

namical Systems [10,6] and methods using spatio-tem-

poral transforms [29,12].

A natural tool for multiscale analysis is the wavelet

transform. In the field of image processing, the wavelet

transform has been successfully used for characterizing

static textures. For instance, Gabor wavelets have been

used for computing the texture descriptor of the MPEG-
7 standard [33]. A natural idea is to extend these mul-
tiscale decompositions to the time domain in order to

characterize dynamic textures.

To our knowledge, only two works have been using

the spatio-temporal multiscale decompositions for char-

acterizing dynamic textures. In 2002, J.R. Smith et al.

[29] are proposing one spatio-temporal wavelet decom-
position and analyze the impact of one feature descrip-
tor on a small unavailable database. In 2009 [12], we

have proposed three other spatio-temporal multiscale

transforms for analyzing dynamic textures. This three

methods are compared with the one of J.R. Smith et

al. on a more complex unavailable database using one

feature vector.
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These two works are using spatio-temporal wavelet

transforms based on tensor product of 1D transforms.
However, as it will be mentioned in the next section,
these multiscale transforms fail to represent and detect

more geometric signals (lines, curves, ...). This draw-

back has been overcome by the emergence of several

multiscale geometric transforms.

The major contribution of this article is to use the
2D+T curvelet transform (presented in Section 2) for

extracting descriptors to the purpose of dynamic tex-

ture recognition. After briefly presenting the theory of

this geometrical multiscale decomposition (Section 2.1),

we describe the use this transform directly or within a

formal model (Section 2.2). The formal model permits

to decompose a dynamic texture into different compo-

nents [13]. To our knowledge, it is the first time that

dynamic texture recognition is performed from the com-

ponents of the decomposition model.

Another contribution of this article is the construc-
tion of three new large datasets (presented in Section

3.2) available on the DynTex database website [25] for

relevant testing and comparison with other approaches.

In previous papers [29,12], the authors were using non

available small database. This a limitation when it

comes to study relevance of features and to compare

different recognition multiscale approaches.
In Section 3.3, a comparison between the different

multiscale approaches (approaches based on curvelet

transform versus wavelet decompositions using filter pro-

duct) is performed. Finally, obtained results are dis-

cussed and prospects are exposed in Section 3.4.

2 The 2D+T Curvelet Transform for dynamic

texture analysis

It is undeniable that the wavelet transform has had a

major impact in many applications of signal and image

processing. However, for 2D signal, it fails in repre-

senting and detecting objects composed of anisotropic
elements, such as lines or curves. For this reason, re-
cent years have seen the emergence of several multiscale

geometric transforms: the bandelet transform [18], the

ridgelet transform [3], the curvelet transform [9], etc..

The curvelet transform has been designed for im-
proving the limitations of the wavelet transform: while

wavelets catch 1D singularities, curvelets can detect
structures of higher dimensional structures (of co-di-
mension 1, i.e. curves in images).

The curvelet transform has been recently extended

to the third dimension [36,5] where it is sparse for rep-
resenting smooth surfaces.

In Section 2.1, the curvelet transform theory is pre-

sented. We detail why this decomposition is optimally

sparse for the representation of dynamic texture wave-

fronts. After, in Section 2.2 a formal model is recalled
and its relevance for characterizing dynamic textures is
discussed.

2.1 2D+T Curvelet transform

Similarly to the wavelet decomposition construction,
the 3D curvelet transform is the projection of a function

f ∈ L2(R3) on a basis of functions L2(R3). A collection

of coefficients c(j, ℓ,k) is obtained as the scalar prod-

uct of L2(R3) between the function f and the curvelet

analysis functions ϕj,ℓ,k, also called atoms:

c(j, ℓ,k) := 〈f, ϕj,ℓ,k〉 =

∫

R3

f(x)ϕj,ℓ,k(x)dx (1)

where x = (x, y, z)T represents the coordinates of a

voxel in the 3D cube, ϕj,ℓ,k is the curvelet atom at scale

j ∈ Z, in direction ℓ ∈ Z and position k = (k1, k2, k3).

Atoms ϕj,ℓ,k are built by the composition of a transla-

tion x
(j,ℓ)
k

and of a rotation Rℓ of the atom ϕj :

ϕj,ℓ,k = ϕj

(
Rℓ

(
x − x

(j,ℓ)
k

))
(2)

The mother curvelet atom ϕj is expressed in the

frequency domain by the mean of the Fourier transform,

ϕ̂j(ωωω) = Uj(ωωω), that can be written in polar coordinates

as:

Uj(r, θ) = 2−3j/4Wj

(
2−jr

)
Vj

(
2⌊j/2⌋θ

2π

)
(3)

The support of Uj ∈ C is a polar wedge (see Fig.

2.(c)) defined by the support of Wj ∈ C and Vj ∈

C, representing respectively a radial window (see Fig.
2.(a)) and an angular window (see Fig. 2.(b)).

(a) (b) (c)

Fig. 2 Discrete frequency tiling. The light and the mean
gray colors represent respectively the window Vj,ℓ(ωωω) and
Wj(ωωω). The composition of two windows Uj,ℓ(ωωω) is colored
in black.

For more information on the 3D discrete curvelet

transform, one can refer to [36,5].

Transition from 3D to 2D+T is not trivial. Indeed,
in the 3D case, distances between a pixel center and its
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6-connex neighbors are the same (∆x = ∆y = ∆z). In

the 2D+T case, the spatial distance between two pix-
els is different from the distance along the time axis

(∆x = ∆y 6= ∆t). There is a relationship that can be

written as ∆z = α.∆t with α a constant that enables

to keep the homogeneity between spatial and temporal
variables. The constant α is homogeneous to speed and

can be adapted to the considered video.
It has been shown in [11,4,13] that the 2D+T Cur-

velet Decomposition is relevant for extracting non-local

phenomena propagating temporally. As detailed in the

next section, a dynamic texture is indeed composed of

different modes, constituted by wavefronts and local

phenomena. The Figure 4.(a) shows that the spatio-
temporal edges, created by the wavefront component,
are well defined. The 2D+T Curvelet Decomposition
thus seems particularly interesting to model these long

range waves. Using energies of the 2D+T Curvelet De-

composition, we have shown that it is possible to spatio-

temporally segment dynamic textures occurring in a

video. In fact, the more a wavefront with a given fre-
quency, orientation ℓ and scale j is important in a video,

the higher the energy of the corresponding curvelet will
be. In the frequency domain, a dynamic texture wave-

front generates a high response to the ϕj,ℓ,k atom. This

observation led us to construct a new spatio-temporal
segmentation algorithm based on an octree structure

using as homogeneity criterion the energies of the co-
efficients of the 2D+T curvelet transform. A result
obtained with this algorithm is presented in Figure 3.

For other results and for more informations on the seg-

mentation process, one can refer to [11]. This spatio-

temporal segmentation algorithm shows that the coef-

ficients of the 2D+T curvelet transform contain a dis-

criminative information. This one can be later used for
recognizing different dynamic textures.
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Fig. 3 (a) Original video. Main spatio-temporal directions
are symbolized by arrows. (b) Segmentation results of video
using the energies of the coefficients of the 2D+T curvelet
decomposition. Each color (red, green and blue, identified
respectively by 1, 2 and 3) represents a distinct area. A non
colored area (or non labeled area) corresponds to an ambigu-
ity region.

2.2 Dynamic texture decomposition based on a formal
model

As mentioned previously, a dynamic texture is often de-

scribed as a time varying phenomenon with a certain

repetitivity in both space and time. Many dynamic

textures are composed of visually relevant modes. For

instance on Figure 4.a showing an image sequence of sea

waves, two modes can be observed: the high-frequency

motion of small waves (cf. Figure 4.a.2), carried by the

overall motion of the internal wave (cf. Figure 4.a.1).

The process gets more complex when the two phenom-

ena overlap with each other (cf. Figure 4.a.3). These

two modes can also be observed on the image sequence

of waving trees on Figure 4.b.

Fig. 4 2D+T slices of two dynamic textures. One can ob-
serve several wavefronts (1), local oscillating phenomena (2)
and a mixture of both of them (3).

Following the above observations, as well as differ-
ent works on video synthesis [16] and the study of the

DynTex database [25], we have introduced in [13] a for-

mal model for several kinds of dynamic textures. For

a self-contained paper and better understanding, this

model is summarized here. A dynamic texture Υi can
be modeled as the superposition of large scale wave-

fronts and local oscillating phenomena. It can thus be
defined as:

∀i, ΥΩi

i (x) = Pi(x) + Li(x) (4)

where Ωi represents the spatio-temporal support of dy-

namic texture Υi, Pi and Li are two functions describ-

ing respectively the wavefront and local phenomena

composing a dynamic texture Υi. The carrying wave

Pi is the most complex phenomenon, and depends on
the considered image sequence. It is characterized by

its propagating speed, its direction and its degree of sta-

tionarity. Functions Pi propagate texture information

given by local oscillating phenomena. Local phenomena

Li differ from the carrying wave by being purely local.

For more information and description of this model, one
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can refer to [13].

Model (4) is well adapted for the following dynamic
textures:

– deformable textured patterns with stochastic or de-

terministic motion, such as fluid flows (lake, sea,

water stream, etc), oscillations generated by wind
(grass, trees, flag, etc), smoke propagation, etc.

– rigid textured patterns with deterministic motion

such as an escalator, a windmill, etc.

– discrete textures with stochastic motion such as fish

shoal, insect swarm, etc.

Analyzing dynamic textures represented by this mo-

del, results in decomposing them into local oscillating

phenomena and non local wavefronts. Recent works for

decomposing images and videos [2,30] seem relevant for

extracting these components. The Morphological Com-

ponent Analysis has been chosen because of the richness

and the flexibility of the available dictionary, which is

crucial considering the complexity of dynamic textures.
For a complete description of the Morphological Com-
ponent Analysis framework, one can refer to [30].

A crucial point in the Morphological Component

Analysis approach is the definition of the dictionary.
An unsuitable choice of transformations will lead to
non sparse and irrelevant decompositions of the differ-

ent dynamical phenomena present in the sequence. It
is therefore necessary to associate each component of
our model with the most representative bases.

We have shown that the 2D+T Curvelet Transform

is relevant for extracting non-local phenomena propa-
gating temporally. It thus seems particularly interest-
ing to model long range waves present in a dynamic

texture. The second part of the model is composed of
locally oscillating phenomena that can be extracted us-
ing the 2D+T Local Cosine Transform. The Morpho-

logical Component Analysis dictionary is hence com-

posed of these two bases, and enables to obtain results

presented on figure 5.
The original version of the Morphological Compo-

nent Analysis algorithm applied on an image sequence

is very consuming in matter of computation time. In-

deed, for one typical dynamic texture from the DynTex

database (125 video frames of spatial resolution 720 ×

576 pixels), the decomposition takes approximately 10

hours using a fairly powerful computer1. With the new

adaptive thresholding strategy that we introduced in

[11], this computation time is reduced to less than 2

hours.

The obtained components using the Morphological

Component Analysis algorithm can be used for extract-

ing characteristic features: some related to the geom-

1 64-bit processor, 3.2GHz with 26Go Ram

Real video

Curvelet component LDCT component

CUT

Fig. 5 Decomposition results of a dynamic texture using the
Morphological Component Analysis. The carrying wave is
retrieved using the 2D+T Curvelet Transform while the local
phenomena is obtained by the 2D+T Local Cosine Trans-
form.

etry of the dynamic texture (main motion direction,

uniformity of the overall movement, etc.) and some

characterizing more local phenomena (speed, local vor-

tex, etc.). To our knowledge, it is the first time that

components of different dynamic content are used for

video recognition. Feature vectors based on this decom-

position are computed and tested in the next section.

3 Indexation of Dynamic Textures

One major contribution of this article concerns recogni-

tion of dynamic textures with multiscale methods. Dif-

ferent approaches are compared: two methods based

on the 2D+T curvelet decomposition (see previous sec-

tion) and four spatio-temporal multiscale decomposi-

tions based on tensor product [29,12]. These six ap-
proaches are tested with three new available databases.
The main objective is to evaluate these approaches and
identify the most relevant descriptors.

3.1 Experimental protocol

Each of the experiments have been set as follows: (1)

analysis of image sequences using a spatio-temporal de-

composition, (2) computation of descriptors and con-
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struction of a feature vector, and (3) leave-one-out cross-

validation for studying each feature relevance.

(1) Spatio-temporal analysis

Our descriptor vectors are constructed from differ-
ent multiscale transforms:

– Spatial Wavelet Decomposition [12]: this approach

uses the wavelet decomposition image per image. In

this case, there is no consideration on the temporal

correlation between two successive frames. For each

image and for each scale of multiresolution analy-
sis, the approximation sub-band and three details
subbands are computed.

– Temporal Wavelet Decomposition [12]: the first me-
thod considers a video frame per frame, and is thus
a purely spatial method. The second natural ap-
proach is to perform the multiresolution analysis in

the time direction. For each pixel of a dynamic tex-

ture video, the temporal profile is extracted and its

one dimensional wavelet transform is performed.

– 2D+T Wavelet Decomposition [12]: whereas the

first method is a purely spatial decomposition and

the second one is a temporal decomposition, the

third method performs decomposition spatially and

temporally. This extension to the temporal domain

of the 2D discrete wavelet transform is done using

separable filter banks. As in the 2D case, a separable

3 dimensional convolution can be factored into one-

dimensional convolution along rows, columns and

image indexes of the video. For a given video, seven

detail subbands and one approximation subband are
computed for each scale.

– J.R. Smith et al. Wavelet Decomposition [29]: this

transform is similar to the 2D+T Wavelet Decom-

position, except that the temporal filter is applied

two times at each resolution step so that the video

is decimated twice spatially and twice temporally.

The authors obtain, for one video, fifteen detail sub-
bands and one approximation subband.

– 2D+T Curvelet Decomposition (cf. Section 2.1).

– Components from the Morphological Component

Analysis decomposition using the 2D+T Curvelet

Transform and the 2D+T Local Cosine Transform

(cf. Section 2.2).

Each method is identified by an index: m = {fpf, t, xyt,

xy2t, curv, mca} (indexes are following the order of the

list above).

(2) Construction of feature vectors

The usual way to characterize 2D texture using

wavelet decomposition is to build feature vectors from

detail subbands [33]. The following descriptors are com-

puted:

– average of detail subbands µ
(j,ℓ)
m ,

– standard deviation of detail subbands σ
(j,ℓ)
m ,

– mean energy of detail subbands E
(j,ℓ)
m ,

– entropy of detail subbands H
(j,ℓ)
m .

In the case of the 2D+T Local Cosine Transform used

in the Morphological Component Analysis framework,

detail subbands do not exist. As illustrated in Figure 6,

the coefficients of this transform are divided into sev-

eral subbands. Each subband corresponds to a set of
oriented frequencies of similar scales. Descriptors are
computed in the same way than for multiscale decom-

positions.

Fig. 6 Coefficients splitting of the 2D+T Local Cosine
Transform for obtaining detail subbands similarly to wavelet
decomposition.

In our aim of indexing dynamic textures, five dif-

ferent features are built (four are constructed directly

from one descriptor and one is constructed from the

concatenation of these four descriptors):

– Feature vector based on the average of detail sub-

bands:

Sµ
m =

(
µ(1,1)

m , · · · , µ
(1,N1

ℓ )
m , · · · , µ(Nj ,1)

m , · · · , µ
(Nj ,Nj

ℓ
)

m

)

(5)

with N
j
ℓ being the number of orientations at scale j

and Nj the number of scales.

– Feature vector based on the standard deviation of

detail subbands:

Sσ
m =

(
σ(1,1)

m , · · · , σ
(1,N1

ℓ )
m , · · · , σ(Nj ,1)

m , · · · , σ
(Nj ,Nj

ℓ
)

m

)

(6)

– Feature vector based on the energy of detail sub-

bands:

SE
m =

(
E(1,1)

m , · · · , E
(1,N1

ℓ )
m , · · · , E(Nj ,1)

m , · · · , E
(Nj ,Nj

ℓ
)

m

)

(7)
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– Feature vector based on the entropy of detail sub-

bands:

SH
m =

(
H(1,1)

m , · · · , H
(1,N1

ℓ )
m , · · · , H(Nj ,1)

m , · · · , H
(Nj ,Nj

ℓ
)

m

)

(8)

– Feature vector based on the previous characteristics

of detail subbands:

SA
m =

(
Sµ

m,Sσ
m,SE

m,SH
m

)
(9)

For a given video database, a set of features Sd
m,c,i is ob-

tained, with m representing the spatio-temporal anal-

ysis method, d = {µ, σ, E, H, A} is the descriptor used

and i the i-th sample of class c of the base.

The feature vector is normalized as follows:

∀n,∀r, ∀j, Sd
m,r,j(n) =

Sd
m,r,j(n) − min

c,i
Sd

m,c,i(n)

max
c,i

Sd
m,c,i(n) − min

c,i
Sd

m,c,i(n)

(10)

with n representing the parameter index in the feature

vector.
Experiments were also conducted with other param-

eters (variation of the number of scales, different nor-

malization of feature vectors, etc.). The best results are

presented in the next section.

(3) Leave-one-out cross-validation

For each approach m and each feature vector Sd,
its relevance is studied by computing a recognition rate

from a confusion matrix using the leave-one-out cross-
validation. This method is used to estimate how ac-
curately a model will perform in practice [32]. In our

case, it is possible to use it to study the relevance of

our feature vectors and therefore our wavelet-based ap-

proaches. This cross validation method works well for

small datasets. Indeed for a small number of samples,

the within cluster variance can evolve quickly. The pro-
cedure is as follows:

– For each class c, its center is computed.
– For each element p of each class c:

– Compute the center of class c without element
p.

– Find the nearest class r of element p.

– If r is different from the original class of element

p, a misclassification is recorded.

The leave-one-out cross-validation leads to a confusion
matrix representative of the feature vector relevance.
The diagonal elements of this matrix are the well clas-

sified samples and allows the computation of a recogni-

tion rate.

The Euclidian metric is currently used in the leave-

one-out cross validation for computing the distance be-

tween two samples. It is also possible to use another

metric, for instance the Mahalanobis distance [35]. It

differs from Euclidean distance in that it takes into

account the correlations of the data set and is scale-

invariant.

3.2 Databases used

Each multiscale decomposition is tested for all descrip-

tors (described in the previous section) on three new

databases of increasing complexity. Image sequences of

DynTex [25] are used for building the three databases

used in our experiments. The list of used image se-

quences for these databases are visible on the DynTex
website2. A sample for each class of each database is

show in Figure 7.

Fig. 7 Sample for each class of each database.

These databases differ in their complexity, their num-

ber of classes and their number of elements:

– Alpha Database: 60 image sequences of dynamic

textures grouped in 3 relatively simple classes: sea,

grass and trees.

2 http://projects.cwi.nl/dyntex/
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c1 c2 c3
c1 - Sea [20] 20

c2 - Grass [20] 4 15 1
c3 - Trees [20] 2 18

Table 2 Confusion matrix for the Alpha database when us-
ing as feature vector the coefficient of Spatial Wavelet De-
composition frame by frame.

– Beta Database: 162 image sequences of dynamic

textures grouped in 10 classes: sea, grass, trees,
flags, calm water, fountains, smoke, escalator, traf-

fic, rotation. More complex phenomena are present
here than in the Alpha Database.

– Gamma Database: 275 image sequences of dy-

namic textures grouped in 11 classes: flowers, sea,
trees without foliage, dense foliage, escalator, calm
water, flags, grass, traffic, fountains, fire. In this

database, some classes are composed of many sam-
ples covering many cases (change in scale, orienta-
tion, etc.). This dataset is complex and challenging.

These three benchmarks are another contribution of
this article. Indeed, previous experiments were con-

ducted on unavailable or/and small databases.

3.3 Results

In this section, results of dynamic texture recognition
are presented. All multiscale approaches are computed
using five resolution levels. Only the method of J.R.
Smith et al. Wavelet Decomposition [29] is performed

on three levels, as its construction does not allow more
decomposition levels.

Table 1 shows the obtained recognition rates with

the feature vector previously exposed. Tables 2, 3 and 4
show the confusion matrices obtained with feature vec-
tor SA

m respectively for Spatial Wavelet Decomposition

on Alpha database, Morphological Component Analy-

sis on Beta database and 2D+T Wavelet Decomposition

on Gamma database. These confusion matrices repre-

sent the best recognition rates for each database.

These results lead to the following observations for
the feature vectors:

– whatever the analysis methods of image sequences

and databases used, the feature vectors Sµ
m is the

least discriminating. Its association with other de-

scriptors for creating SA
m is questionable. Experi-

ments where the vector SA
m is built without Sµ

m were
carried out and the obtained results do not have a

better recognition rate, and in some cases it is even
degraded.

– observations of only four feature vectors (Sµ
m, Sσ

m,

SE
m and SH

m) show that feature vectors built with

standard deviation of detail subbands have the best
discriminative power.

– the association of different feature vectors for build-
ing SA

m are beneficial. In most cases, the recognition

rates using these features are better.

The observation of recognition rates for each database

induces the following remarks:

– Alpha database: the most discriminant method

is the Spatial Wavelet Decomposition applied frame
per frame. The observation of the Alpha Database

samples shows that the distinction between classes

can be performed only with spatial properties. In

this case, the temporal information does not add

relevant information.

The other analysis methods (except for Temporal

Wavelet Decomposition) remain effective as they get

a similar recognition rate (5% of difference).

– Beta database: for this database, the most dis-

criminant method is based on Morphological Com-

ponent Analysis. This one has the best recognition

rate for four proposed feature vectors (Sσ
m, SE

m, SH
m

and SA
m).

– Gamma database: the 2D+T Wavelet Decompo-

sition is the approach that obtained the best recog-
nition rate for this database. For the other databases,
recognition rates are similar than the other approaches.

The different multiscale approaches, except the tempo-

ral wavelet decomposition, give acceptable recognition
rates for all databases. The obtained results are always
nearby, while they are inferior if only temporal infor-
mation is used.

The different multiscale approaches have been com-

puted with different parameters (different decomposi-
tion levels, different thresholding strategies for Morpho-

logical Component Analysis, ...). Results shown in this
section use the best parameter set.

3.4 Discussion and prospects

The obtained recognition rates are satisfactory: they

are close to 70% for databases of substantial size (Beta

and Gamma databases) using frequential information

only and without any color information. These perfor-

mances can be improved.

Table 5 gives the size of feature descriptors depend-

ing on the decomposition method. For some methods

this size is greater than the number of samples. Diffi-

culties met are the following:
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Analysis Method Database S
µ
m Sσ

m SE
m SH

m SA
m

Spatial Wavelet
Decomposition frame per
frame

Alpha 68 82 78 88 †⋆ 88 †⋆

Beta 41 † 50 51 57 66
Gamma 38 60 60 55 65

Temporal Wavelet
Decomposition

Alpha 37 75 67 67 73
Beta 15 43 37 28 46

Gamma 15 34 31 26 40

2D+T Wavelet
Decomposition

Alpha 72 † 85 † 85 † 87 85
Beta 33 62 61 65 65

Gamma 36 65 † 64 † 61 † 68 †⋆

J.R. Smith et al. Wavelet
Decomposition [29]

Alpha 65 83 80 82 83
Beta 35 65 59 65 67

Gamma 43 † 63 56 59 65

2D+T Curvelet
Decomposition

Alpha 47 85 † 83 85 85
Beta 19 65 61 62 67

Gamma 18 62 60 56 63

Morphological Component
Analysis

Alpha 37 83 83 83 85
Beta 23 68 † 64 † 66 † 70 †⋆

Gamma 19 61 62 59 63

Table 1 Dynamic texture recognition rates (in %) for three databases according to the different computed feature vectors.
† represents the best recognition rates for one feature vector in one database. ⋆ represents the best recognition rate of one
database.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 - Sea [20] 19 1

c2 - Vegetation [20] 1 15 1 3
c3 - Trees [20] 4 15 1
c4 - Flags [20] 1 13 3 3

c5 - Calm water [20] 3 14 3
c6 - Fountains [20] 6 1 1 12

c7 - Smoke [16] 16

c8 - Escalator [7] 1 2 4

c9 - Traffic [9] 1 2 1 5

c10 - Rotation [10] 3 4 1 2 0

Table 3 Confusion matrix for the Beta database when using as feature vector the coefficient of Morphological Component
Analysis.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
c1 - Flowers [29] 23 1 4 1

c2 - Sea [38] 35 1 2
c3 - Trees without foliage [25] 5 15 4 1

c4 - Dense foliage [35] 6 8 18 1 1 1
c5 - Escalator [7] 4 2 1

c6 - Calm water [30] 4 19 1 1 5
c7 - Flag [31] 1 1 20 2 1 6

c8 - Grass [23] 3 2 2 2 12 1 1
c9 - Traffic [9] 1 7 1

c10 - Fountains [37] 3 3 5 25 1
c11 - Fire [11] 1 10

Table 4 Confusion matrix for the Gamma database when using as feature vector the coefficient of the 2D+T Wavelet
Decomposition.
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– the information to classify samples is too redundant

and can degrade the classification.
– comparing between multiscale methods can be dis-

cussed as it is not performed in the same experi-

mental conditions. Indeed, the classification of 10

classes in a 3 dimensional space is not as difficult

than in a 5508 dimensional space. Moreover, the

used classification methods may not be adapted for
high dimensional spaces.

For reducing the size of feature vectors, some approaches

are proposed:

– reduce the feature dimension using Principal Com-

ponent Analysis (PCA). An experiment has been

carried out using PCA, where the dimension has

been reduced to 50 for each possible feature vec-
tor (the size of feature vector are much larger than
50). The obtained recognition rates greatly decrease

(−35% on average). The same observation can be

done if we retain just 15 principal components in-

stead of 50.
– to build a feature selection method, for example, the

Stepwise Discriminant Analysis method [14]. Geo-
metrically, it means finding the representation sub-
space that allows maximal distance between gravity

centers of scattering. In the literature, many ap-

proaches enable to perform feature selection, for in-

stance the recent work described in [34] that uses a

sparse representation.

– to change the feature construction for obtaining a
smaller and more representative spatio-temporal in-
formation. Rather than computing the energy of

each detail subband for each multiscale approach, it

is possible to compute only an energy at each scale

and used other descriptors for characterizing direc-

tional information (as the directional homogeneity

criterion [23]).

For example, instead of having a vector of 3460 el-

ements for the 2D+T Curvelet Decomposition, we

get 5 elements representative of different scales plus

directional information.

– for the Morphological Component Analysis, the fea-

ture vectors are built similarly for the two com-

ponents. It could be relevant to build descriptors

adapted to the extracted components.

4 Conclusion

This paper presents two approaches based on the 2D+T

Curvelet Decomposition for characterizing dynamic tex-

tures. The first one use the geometrical multiscale de-

composition and one the second is based on a decompo-

sition of dynamic texture into two components (wave-

front and local phenomena). Our goal is to study the

influence of spatio-temporal decomposition on the dy-
namic texture characterization.

After presenting the different multiscale approaches

for characterizing dynamic textures, we propose sev-
eral features using detail subbands. These features are
tested on three new large databases publicly available.
Finally, results of dynamic textures recognition are pre-

sented and discussed.

Using multiscale approaches for analysing dynamic

textures is very promising as it is closely linked to the

physical properties of dynamic textures.

The descriptors used can be improved; for instance
the different components obtained using the Morpho-

logical Component Analysis algorithm can be used for

extracting characteristic features; some related to the

geometry of the dynamic texture (main motion direc-

tion, uniformity of the global movement, etc.) and some

characterizing more local phenomena (speed, local vor-

tex, etc.). Our future works will be focused on the

invariance to rotation and scale of descriptors.

With efficient dynamic texture descriptors, many
other applications can be considered: tracking of dy-

namic texture (evolution of a fire), synthesis (realistic

rendering of dynamic textures in video games and ani-

mation film), indexing, etc..

References

1. Ali, I., Mille, J., Tougne, L.: Space–time spectral model
for object detection in dynamic textured background.
Pattern Recognition Letters 33(13), 1710–1716 (2012)

2. Aujol, J., Chambolle, A.: Dual Norms and Image Decom-
position Models. Computer Vision 63, 85–104 (2005)

3. Candès, E.: Ridgelets : Theory and Applications. Ph.D.
thesis, University of Standford (1998)

4. Candès, E., Demanet, L.: The curvelet Representation of
Wave Propagators is Optimally Sparse. Communications
on Pure and Applied Mathematics 58, 1472–1528 (2005)

5. Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast
Discrete Curvelet Transforms. Tech. rep., California In-
stitute of Technology (2005)

6. Chan, A., Vasconcelos, N.: Modeling, Clustering, and
Segmenting Video with Mixtures of Dynamic Textures.
IEEE Transactions on Pattern Analysis and Machine In-
telligence 30, 909–926 (2008)

7. Chan, A.B., Mahadevan, V., Vasconcelos, N.: Gener-
alized Stauffer-Grimson background subtraction for dy-
namic scenes. Machine Vision and Application 22(5),
751–766 (2011)

8. Chetverikov, D., Peteri, R.: A Brief Survey of Dynamic
Texture Description And Recognition. In: International
Conference Computer Recognition Systems, pp. 17–26.
Springer (2005)

9. Donoho, D., Duncan, M.: Digital Curvelet Transform:
Strategy, Implementation and Experiments. In: Wavelet
Applications VII, pp. 12–29. SPIE (1999)

10. Doretto, G., Chiuso, A., Wu, Y., Soatto, S.: Dynamic
Textures. International Journal of Computer Vision 51,
91–109 (2003)



Characterization and Recognition of Dynamic Textures based on 2D+T Curvelet Transform 11

Analysis method
Number of
scales

Number of
subdivisions

Size of feature vectors

Sd
m d = {µ, σ, E, H} SA

m

Spatial Wavelet Decomposition frame
per frame

3 × 9 36
4 × 12 48
5 × 15 60

Temporal Wavelet Decomposition
3 × 3 12
4 × 4 16
5 × 5 20

2D+T Wavelet Decomposition
3 × 21 84
4 × 28 112
5 × 35 140

J.R. Smith Wavelet Decomposition 3 × 45 180

2D+T Curvelet Decomposition

3 2 25 100
3 4 97 388
4 2 121 484
4 4 481 1924
5 2 217 868
5 4 865 3460

Morphological Component Analysis × × 1377 5508

Table 5 Size of feature vectors depending on the analysis methods.
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