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ABSTRACT 

In this paper we propose a precise and robust watermarking scheme based on the technique called amplitude modulation. A 

watermark is embedded in a color image by modifying the pixel values in the blue channel. At the receiver, the watermark 

bits are retrieved using a prediction system, by a linear combination of nearby pixel values around the embedded pixels, 

and without having the original image. Because amplitude modulation is a spatial-domain watermarking method, it may 

not be robust enough, i.e. incapable of exact watermark retrieval. In order to enhance the bit retrieval, we apply a Gaussian 

mask to equalize the luminance intensity; we employ the pixel value replacing technique to enhance the prediction 

performance; and we use two additional bits as a geometrical reference. In addition, we demonstrate that choosing an 

improper location (like singularities) for watermarking will lead the prediction system to malfunction. In order to increase 

the robustness, we propose using the Curvelet transform to detect singularities such as lines and curves and prevent the 

system from using these locations in an image for embedding the watermark bits. The experimental results indicate that our 

proposed method has a better performance in comparison with two other similar approaches and in addition it is robust 

against various geometrical and non-geometrical attacks as well as having a good imperceptibility. 
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1. INTRODUCTION 

In general, digital watermarking refers to embedding 

information in an image for different purposes like 

broadcast monitoring, authentication, tracking and owner 

identification [1]. A digital watermark should have two 

main properties, i.e. robustness and imperceptibility. 

Robustness means that the watermark can withstand 

different image processing attacks and imperceptibility 

means that the watermark should not introduce any 

perceptible artefacts [2]. In general, watermarking 

approaches are divided into two main categories: the 

spatial and the transform domain techniques. Transform 

domain techniques perform the watermarking by changing 

the coefficients in the transformed domain of a host image. 

For example, the methods of watermarking obtained by 

modifying the discrete wavelet transform (DWT) 

coefficients and the discrete cosine transform (DCT) 

coefficients were proposed in [3]-[4]. However many 

researchers demonstrated that watermarking in the 

transform domain is not robust to geometrical attacks, e.g. 

cropping and rotation.  

     Being robust against geometrical distortion is an 

important property for digital image watermarking. This is 

because minor geometrical manipulation can disable the 

watermarking system’s ability to extract the correct 

watermark. Among the image watermarking approaches, 

feature point-based schemes can resist geometrical 

distortion like rotation, scaling and translation. A 

geometric invariant image watermarking approach was 

proposed in [5] by using the Harris-Laplace detector to 

extract the feature points. Later, the state of the art feature-

based method by feature selection (affine covariant feature 

regions extraction), the image normalization and the 

orientation alignment, proposed by the same authors [6]. 

Their scheme is robust against the geometric attacks 

including cropping, non-isotropic scaling, random bending 

and affine transformations, as well as common image 

processing operations. Recently, the robust Curvelet-

domain image watermarking (by matching the feature 

point [7]) was proposed which it is robust against these 

various distortions. 

     However, watermarking in the spatial domain may 

naturally be robust to geometrical attacks and there are 

different approaches for watermarking in the spatial 

domain- among them watermarking based on amplitude 

modulation for copyright protection was proposed in [8]. 

In this method, a watermark is embedded in a color image 

by modifying the pixel values in the blue channel. It was 

shown that watermarking based on amplitude modulation 

is robust to some attacks like blurring, JPEG compression, 

and rotation. Later Puertpan et.al enhanced the robustness 

of this method by using the Gaussian mask to localize the 

luminance values [9]. In [10], in addition to using the 

Guassian mask, all watermark bits are XORed with a 

psedu-random bit stream and a pixel value that most 

differs from the watermarked pixel is excluded in the 

prediction process, in order to improve the watermarking 

performance. More details on this are given in Section 2. 



Finding suitable locations to embed the desired data or the 

watermark is the main problem for some watermarking 

methods. In general, all these aforementioned 

watermarking methods based on amplitude modulation 

perform watermarking without finding the suitable 

location or selecting the suitable pixels belonging to the 

host image. 

     In this paper, we show that embedding a watermark in 

locations where there is singularity such as a line or a 

curve affects the performance of the prediction system. It 

means that an error may occur during the bit retrieval 

process. So, we use the Curvelet transform to localize the 

singularities and find the suitable locations in a color host 

image for embedding the watermark. 

     This paper is organized as follows: watermarking based 

on amplitude modulation is explained in Section 2. The 

Curvelet transform is briefly reviewed in Section 3. In 

Section 4, we discuss suitable locations for embedding the 

watermark bits. We look at the prediction system 

performance and then we present our proposed method. 

Simulation results and discussions are given in Section 5 

and finally concluding remarks are presented in Section 6. 

 

2. WATERMARKING BASED ON  

AMPLITUDE MODULATION 

The RGB model is an additive color model which contains 

three channels (i.e. red, green and blue). Let w  denotes a 

single bit that is to be embedded in a color image by 

modifying the pixel value in the blue channel. The blue 

channel is preferred because of the human visual system’s 

reduced sensitivity and it also guarantees virtual 

imperceptibility. The modifications are either additive or 

subtractive (depending on the watermark bit }1,0{w ) 

and are proportional to the luminance component ),( jiL  

at a position ),( ji  in an image. The watermarked pixel is, 

s jiLw+ji= BjiB ),()12(),(),(ˆ     (1) 

where ),( ji B  is the original pixel value of the blue 

channel and the luminance value of the pixel is obtained 

from B.G+.R+.=jiL 114058702990),( . Here ‘s’ is the 

scaling parameter. The parameter ‘s’ must be chosen 

carefully because it controls the trade-off between 

imperceptibility and robustness [8], [10]. A prediction of 

the original pixel value is needed for retrieving the 

watermark signal. The prediction pixel value, ),( jip , is 

determined from the nearby (over a range of c ) pixel 

values around ),( ji  as 
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Fig. 1 shows a sample of nearby pixels around ),( ji which 

are used to predict the original pixel value according to 

(2). The watermark bit (w) can be retrieved from the blue 

channel by subtracting the predicted pixel value, ),( jip , 

from the watermarked pixel value, ),(ˆ jiB , as follows: 

).,(),(ˆ jipjiBǻ      (3) 

We notice that the sign of ǻ determines the embedded 

watermark bit if the following conditions are satisfied: 

(ɿ) The scaling parameter ‘s’ is sufficiently large. As it 

controls the difference between the watermarked pixel 



value, ),(ˆ jiB , and the original pixel value, ),( jiB , we 

notice that the bit retrieval will be more accurate 

when the absolute value of ǻ is large.  

(ɿɿ) The luminance of the image is smooth. Under this 

circumstance, the adding or subtracting an amount of 

each pixel in the embedding process (the second part 

of (1)) is approximately equal and therefore the bit 

retrieval process based on the sign of ǻ should be 

more precise. 

(ɿɿɿ) The prediction system according to (2) accurately 

determines the original pixel value, i.e. 

),(),( jiBjip  .  

If the blue channel is smooth, ideally all pixels around 

),( ji  will have the same value and the prediction system 

can exactly predict the original value, ),( jiB , independent 

of the watermarked centre pixel, ),(ˆ jiB . In [8], two extra 

bits (in addition to the watermark bits) were used to embed 

in the original image. These two bits were used to obtain a 

threshold value that may improve the retrieval process and 

define a geometrical reference. This reference can 

compensate geometrical attacks like rotation. Later, this 

method was developed in [9] to improve the bit retrieval 

rate. The authors used a Gaussian weighting mask (with 

parameter,  ) for averaging the luminance of an image 

and therefore equalizing the luminance intensity at every 

pixel around position ),( ji . The Gaussian mask is: 
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The performance of this method is not appropriate 

whenever the host image is not smooth (it means that the 

image has many singularities). As smoothing the 

luminance has no effect on smoothing the blue channel, 

the condition (ɿɿ) is approximately satisfied, but condition 

(ɿɿɿ) is not. Furthermore, when the image contains a large 

amount of the same pixel value (e.g., the logo of a 

company) the performance of the prediction system is 

considerably suppressed. Clearly embedding a bit in a 

pixel belonging to the host image increases or decreases 

the pixel value according to (1). Hence if the number of 1s 

and 0s around position ),( ji  are not equal, the prediction 

system (according to (2)) does not work properly. Assume 

that 0ǻy  is the amount of increase in pixel values 

around ),( ji  due to embedding ones and 0x  is the 

amount of decrease in pixels values around ),( ji  due to 

embedding zeros. Then we can predict approximately the 

original pixel value with (2) if the bias is zero, i.e.  

0 ǻyǻx .     (5) 

That is, for the prediction system described by (2): 
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To overcome this drawback, a new method was proposed 

in [10]. It works by balancing the watermark bits around 

the embedding pixels in the watermark preparation 

process. For this purpose, all watermark bits, w , are 



XORed with another pseudo-random bit-stream. This 

approach is based on an assumption that an equal number 

of 1s and 0s are generated and XORed with w  around 

),( ji  and the number of 1s and 0s around ),( ji  are 

approximately equal. Also, at the receiver, the retrieved 

bits must be XORed with the same pseudo-random bit-

stream to obtain the correct watermark bit, w . Moreover, 

they suggested that one neighbouring pixel around ),( ji  

that most differs from ),(ˆ jiB , is excluded from the 

prediction system. In other words, instead of computing 

),( jip  from the eight pixel values around ),( ji , they used 

only seven. This technique is called pixel value replacing. 

But the two main drawbacks of this method are requiring 

the pseudo-random bit-stream at the receiver in order to 

retrieve the watermark and affecting the balance of w  

around ),( ji  because of pixel value replacing. The authors 

also used a pre-processing Gaussian weighting mask for 

averaging the luminance of a host image as was previously 

explained. To satisfy the condition (ɿɿɿ) (see earlier list) the 

same mask for averaging the blue channel of the host 

image showed is not used because it will impact strongly 

on image perceptibility. But in Section 4, we will show 

how the proper locations (i.e. non singularities) for 

embedding watermark bits are determined based on use of 

the Curvelet transform. 

     In general, all these methods embed the watermark bits 

in pixels belonging to the host image irrespective of their 

positions [8]-[10]-i.e. whether the pixel is located on a 

singularity or not. Recently, Bei et al. [11] explained a 

new watermarking method based on amplitude 

modulation. The locations of where to embed the 

watermark bits are chosen based on the human visual 

system and issues of perceptibility. In this work, we follow 

a similar strategy in order to decide the best locations for 

embedding the watermark bits and achieving bit precision 

when extracting the watermark. We divide an original 

image into non-overlapping blocks of size 5×5. Pixels at 

the centre of each block may be chosen for embedding a 

watermark bit (in order to satisfy (5); 0 ǻxǻy ) if the 

pixel is far from line or curve singularities. We use the 

Curvelet transform to detect such singularities in an image. 

The Curvelet transform was developed in order to 

represent edges along curves much more efficiently than 

any traditional transform and it is explained briefly in the 

section 3. 

 

3. THE CURVELET TRANSFORM 

The Curvelet transform was first introduced by Candes 

and Donoho [12]. The procedure at first was decomposing 

an image into a set of wavelet bands, and then analysing 

each band by a local Ridgelet transform. Later, the second-

generation Curvelet transform based on a frequency 

partition technique was proposed by the same authors 

[13]-[15]. The continuous Curvelet transform (CCT) of 

)(xf  is,  

 )(,)()( xa,b,șȖxfa,b,șf    (7) 

where ba,  and   denote respectively the scale, location 

and direction. The analysing element, )(,, xba   is named 

“Curvelet” and it obeys the paramount parabolic scaling 



principle, i.e. width=(length)2. The Curvelets are smooth 

and of rapid decay away from an aa  rectangle with 

minor axis pointing in direction ș . This anisotropic 

behaviour allows tracking the behaviour of singularities 

along curves. By applying examples which included 

point/line/polygonal and curve singularities, they showed 

that for a constant pair )(
00

,șb , the Curvelet transform 

)(
00

,șa,bfī  decays rapidly as 0a , if f is smooth near 

0
b , or if the singularity of f at 

0
b  is oriented in a different 

direction than 0ș  [13]. The discrete tight frame by 

sampling the CCT at dyadic intervals, with scale 22
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, was derived in [13]. Assume 

that r  and   are polar coordinates in the frequency 

domain. The window functions )(rW  and )(tV  were 

introduced where )(rW  is called the radial window 

supported on )2,2/1(r  and )(tV  is called the angular 

window supported on )1,1(t . They obey the 

admissibility conditions 
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The mother Curvelet )(xj  is defined in the frequency 

domain (i.e. Fourier transform) as )(j ̂ )(jU  [15]. 

The support of jU  is a polar “wedge” defined by the 

support of W and V , see Fig. 2: 
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The Curvelet coefficient is obtained as: 
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With the Cartesian array input of the form ],[ 21 nnf  a 

collection of Curvelet coefficients ),,( kljCD  is obtained 

by: 
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Defining the Cartesian windows, )2()(
~  jWjW   and 
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 is the Cartesian 

equivalent of the polar window of (10), and it isolates 

frequencies near the trapezoid wedge. Fig. 3 shows the 

digital frequency tilling of the Curvelet. 

     The above discrete Curvelet transform can be 

implemented through either wrapping or USFFT 

algorithms which have been described in detail in [14]. In 

this work, we use the wrapping algorithm because it is 

easier and faster. 

 

 



4. PROPOSED METHOD 

Before explaining our proposed method, we show that 

embedding a watermark in locations where there is 

singularity such as line or curve suppresses the 

performance of the prediction system and thus during the 

bit retrieval process an error may occur. Suppose, the 

content shown in Fig. 4 is a part of the watermarked 

image. The centre pixel at a block is decreased to 45 (the 

original value was 50) due to embedding a bit equal to 0. 

Simply, using (2)-(3), then the output of prediction system 

is 5.32),( jip  and 05.12   and so obviously an 

error has occurred. Thus, in this paper, we localize the 

singularities by using the Curvelet transform and we do 

not embed the watermark bits at these specific positions. 

     In one dimension the only type of discontinuity is a 

point, which can be represented by wavelets. However, 

images in two dimensions also have discontinuities along 

lines and curves. As wavelets ignore the geometric 

properties of objects with edges and do not exploit the 

regularity of the edge curves [16]-[17], they exhibit large 

wavelet coefficients in all scales for edges in the image. 

So, the edges of an image are seen repeatedly at different 

scales [18]. Although it is possible to indicate line and 

curve singularities by using the wavelet transform [19], the 

procedure includes finding the corresponding wavelet 

coefficients in all scales. This is not efficient and it may be 

complicated and time consuming. The Curvelet transform 

can represent edges and singularities along curves much 

more efficiently than the traditional wavelet transform. 

     In this work, we detect the image edges similar to [20] 

for the blue channel. The rule for partitioning the scale 

level is: 3)(
2

logscale  n  where the parameter n for any 

square size image refers to the number of rows. Fig. 5 

shows the five scale levels corresponding to an image with 

size 256×256. As shown in Fig. 5(b) the coefficients of the 

coarse level include general information about the original 

image. Detail levels mostly embody the edge information 

of the original image, see Fig. 5(c-f). It was shown in [20]-

[22] that the Curvelet coefficients belonging to the finest 

decomposition level contain information about 

singularities in general (point, line and curve, see Fig. 

5(f)). So, in this work, the host image is decomposed and 

all Curvelet coefficients are set to zero except those 

belonging to the 5th decomposition level and then the 

inverse Curvelet transform is performed. If the pixel value 

of the reconstructed image is greater than the predefined 

threshold value ‘T’, this pixel is considered as a 

singularity. After determining the positions of the 

singularities, the host image is partitioned into non-

overlapping blocks each with size 5×5. The centre pixel of 

each block is chosen to embed a watermark bit if it is not 

lying on singularity.  

     Maximum embedding capacity (MEC) means the 

maximum number of bits that can be hidden in the host 

image. MEC is achieved whenever all the center pixels at 

each block are not lying on singularities: 

sB

NM
MEC


      (14) 



where NM   is the host image size and sB  is the block 

size. In this paper, the size of test images and blocks are 

256×256  and 55  respectively, so MEC is equal to 

2621 pixels. In general, embedding capacity (EC) depends 

on the number of the center pixels those are not located on 

singularities. Therefore, EC depends on the considered 

threshold value chosen. As all pixels of the reconstructed 

image are equal to or greater than zero, theoretically ‘T’ 

can get any value greater than or equal to zero. In order to 

find the smoothest regions in the host image, the 

convenient value is T=0. In the special case, when the 

computed EC is less than the size of the watermark image, 

either the watermark size has to be reduced or the 

threshold value has to be increased. 

     At the receiver, we obtain the blue channel and extract 

the watermark bits according to (3). We now summarize 

our proposed algorithm for both embedding and extracting 

a watermark.  

 

Embedding Procedure 

1. Use the Gaussian weighting mask (see (4)) for 

averaging the luminance of an image. 

2. Compute the Curvelet transform via wrapping for the 

blue channel of the host image and obtain the Curvelet 

coefficients. 

3. Obtain the 5-th level reconstructed image by keeping 

only the finest level Curvelet coefficients 

( ),,5( kljCD  ) and setting all other Curvelet 

coefficients to zero. 

4. Partition the blue channel into non-overlapping blocks 

of size 5×5. 

5. Select those centre pixels of each block where the 

corresponding values of the 5-th level reconstructed 

image are less than the predefined threshold value ‘T’, 

and embed the watermark bits along with two extra 

bits for saving a geometrical reference. We note that 

the locations of these additional bits are to be known. 

 

Extracting Procedure 

1. Extract the two additional reference bits based on (3) 

and compensate for geometrical attacks like rotation, if 

appropriate. 

2. Extract the watermak bits based on (3).  

Notice, in this method like [8], the embedding bit locations 

are known at the receiver. 

 

5. EXPERIMENTAL RESULT 

In this paper, we use eleven different color images as the 

test images. As shown in Figs. 6 (a-k), they are ‘Lena’, 

‘Tower’, ‘Bird’, ‘Fish’, ‘Peppers’, ‘House’, ‘Girl’, 

‘Baboon’, ‘Airplane’, ‘Barbara’, and ‘Boat’ - all with 

dimensions 256256 . In addition, the black and white 

binary logo ‘CPE 2011’ with size 3232  is synthesized 

as a watermark, shown in Fig. 6 (m). In order to evaluate 

our proposed method, two criteria are used. They are 

“peak-signal-to-noise-ratio (PSNR)” and “normalized 

correlation (NC)”. The PSNR is computed to measure the 

quality of the watermarked image whereas the NC is used 



to measure the quality of the extracted watermark. These 

two parameters are defined as follows:  
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where L  is the dynamic range of the pixel intensity; 

MN  is the image size; ijx  and ijy  are the pixel values 

of the original and the watermarked images; and ),( jiw  

and ),(ˆ jiw  are respectively the original and the retrieved 

watermark. In the following, we compare the performance 

of our proposed algorithm based on using the Curvelet 

transform for detecting the positions of singularities with 

publications [8] and [10]. The procedures of these two 

methods and our proposed algorithm are explained briefly 

in Table 1. 

     At first, to compare performance with [8] and [10] 

under the same circumstances, we use the well-known 

color test image ‘Lena’ with size 256256 . The best 

values for ‘s’ is in the range [0.1  0.5] according to the 

tradeoff between robustness and imperceptibility [8]-[11]. 

So in this work, we also use the same interval values to 

obtain ‘s’. The determined EC for all test images based on 

using the different threshold values is shown in Fig. 7. In 

this paper, we consider the threshold value T=0, then the 

EC obtained for all test images is about 1400 pixels. So, a 

watermark image with size 10243232   can be 

embedded. In addition, two bits are used to save as a 

geometrical reference. 

     The number of errors for different values for the 

scaling parameter ‘s’ for our proposed method and [8], are 

given in Table 2. The extracted watermarks are also shown 

in Fig. 8. The PSNR and NC of these three methods are 

shown in Fig. 9 and Fig. 10. Although the PSNR of our 

proposed method is comparable with [8], the achieved NC 

is better than [8] and [10]. Now, we also compare the 

performances of these three methods when the Gaussian 

weighting mask (see (4)) for averaging the luminance of 

an image is used and ‘Lena’ is considered as the host 

image. The achieved PSNR and NC based on using a 

different variance parameter (2 ) for the Gaussian mask 

are shown in Fig. 11 and Fig. 12. As all the pixels in the 

watermarked image are to be changed in [10], and in 

addition (5) is not completely satisfied in this method, they 

achieved lower values for both PSNR and NC in 

comparison with our proposed method. 

     The watermarked images for Lena, Tower, Bird and 

Fish are shown in Fig. 13 where the scaling parameter is 

s=0.4 and the variance of Gaussian mask is 5.02  . We 

also compute the NC measure for all eleven images and 

compare with [8], and show the results in Fig. 14 where 

the scaling factor is s=0.4. As regards, the robustness of 

our proposed method to geometrical and non-geometrical 

attacks, we consider ‘Lena’ and show the watermarked 

image and the extracted watermark under different 

situations in Fig. 15.  

 



6. CONCLUSION 

An improved retrieval method for watermarking based on 

amplitude modulation has been proposed in this paper. 

Using the Curvelet transform to detect singularities 

prevents embedding the watermark bits at singular points, 

lines, and polygons. The experimental results show that by 

using our proposed method, the performance of the 

watermark retrieval process has been improved in terms of 

PSNR and normalized correlation when compared with 

two other similar methods. 
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Fig. 1: The neighboring pixels around ),( ji  which are used to predict the original pixel, for c=2 in (2). 

 
 

 
Fig. 2: Continuous Curvelet tiling of frequency. 

 
 

            
(a)                                            (b) 

Fig. 3: The basic digital Curvelet tiling by using, (a) W segmentation and (b) V direction segmentation. 
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Fig. 4: An example of error in bit retrieval when the watermark bit is embedded in the line singularity. 
 

 



 
(a) The original Image 

             
                 (b) level 1                    (c) level 2                     (d) level 3                    (e) level 4                       (f) level 5 

Fig. 5: The reconstructed image by using the inverse Curvelet transform for each scale level. 
 
 
 
 
 
 
 
 
 

                         
             (a)                                   (b)                                   (c)                                   (d)                                  (e) 

                          
             (f)                                   (g)                                   (h)                                   (i)                                    (j) 

                                                                                    
                                                                                            (k)                         (m) 
Fig. 6: Eleven original images, (a) Lena, (b) Tower, (c) Bird, (d) Fish, (e) Peppers, (f) House, (g) Girl, (h) Baboon, (i) 
Airplane, (j) Barbara, (k) Boat and (m) the binary watermark with size 32×32. 
 
 

 



 
Fig. 7: the computed EC for eleven test images based on different threshold values.  

 
 
 
 
 

                           
                                                          (1)               (2)               (3)               (4)               (5) 

                         
                                                          (6)               (7)               (8)                (9)              (10) 
Fig. 8: Extracted watermark via different scaling parameters s=[0.1  0.5] from left to right, where ‘Lena’ is used as the host 
image. The first row belongs to [8] and the second row belongs to our proposed method without using the Gaussian mask. 
 
 
 

 
Fig. 9: PSNRs for different values of the scaling parameter (s) where ‘Lena’ is used as the host image. 

 



 
Fig. 10: NCs for different values of the scaling parameter (s) where ‘Lena’ is used as the host image. 

 
 
 

 
Fig. 11: PSNRs for different variances of the Gaussian mask. The scaling parameter is s=0.2. 

 
 
 

 
Fig. 12: NCs for different variances of the Gaussian mask. The scaling parameter is s=0.2. 

 
 
 



                
                                  (a)                                     (b)                                   (c)                                     (d) 

                
                                  (e)                                      (f)                                    (g)                                   (h)  
Fig. 13: Vision comparison between the original images (a, c, e, and g) and the watermarked images (b, d, f, and h) where 

s=0.4 and 2 =0.5. The computed PSNRs are in order [32.40, 33.75, 29.77, 30.23].  
 
 
 
 

 
Fig. 14: Computed NC for s=0.4 and where the variance of Gaussian mask is 5.02  . 

 
 
 
 



 
 

Fig. 15: (a) The original image, ‘Lena’, (b)-(m) the watermarked image and the extracted watermark under different attacks 
and different situations.  
 



 

Table 1: The procedure of the three watermarking methods. 

Method 
Watermark Embedding 

Position 
Watermark Embedding Procedure Watermark Retrieval 

[8] random position using two additional bits cross shape with  8 pixels 

[10] all pixels 
1. balancing the watermark bits 
2. Gaussian pixel weighing mask 
3. pixel value replacing  

surrounding 8 neighbors 

Our Proposed 
Algorithm 

no singularities 

1. using Curvelet transform 
2. Gaussian pixel weighing mask 
3. pixel value replacing  
4. using two additional bits 

cross shape with 8 pixels 
(Fig. 1) 

 
 
 
 
 

Table 2: Number of errors for different values of ‘s’. 

Scaling 
Parameter 

[8] 
Our 

Proposed 
Algorithm 

s= 0.1 101 40 

s=0.2 39 17 

s=0.3 20 10 

s=0.4 7 1 

s=0.5 5 0 

 
 


