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Abstract In this paper, we present an omnidirectional
vision-based method for object detection. We first adopt
the conventional camera approach that uses sliding win-
dows and histogram of oriented gradients (HOG) features.
Then, we describe how the feature extraction step of the
conventional approach should be modified for a theoreti-
cally correct and effective use in omnidirectional cameras.
Main steps are modification of gradient magnitudes using
Riemannian metric and conversion of gradient orientations
to form an omnidirectional sliding window. In this way,
we perform object detection directly on the omnidirectional
images without converting them to panoramic or perspective
images. Our experiments, with synthetic and real images,
compare the proposed approach with regular (unmodified)
HOG computation on both omnidirectional and panoramic
images. Results show that the proposed approach should be
preferred.

Keywords Catadioptric omnidirectional cameras · Object
detection · Human detection · Car detection · Vehicle
detection
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1 Introduction

Detecting certain objects with cameras is an important task
for many research and application areas such as visual
surveillance, ambient intelligence and traffic analysis. Last
decade haswitnessed significant advances in object detection
both in terms of effectiveness and processing time. Quite a
variety of approaches have been proposed for object detec-
tion. A major group in these studies uses the sliding window
approach in which the detection task is performed via a
moving and gradually growing search window. A significant
performance improvement was obtained with this approach
by employing histogram of oriented gradients (HOG) fea-
tures. Inspired by scale invariant feature transform (SIFT)
[17], Dalal and Triggs [7] proposed to use HOG for the fea-
ture extraction step and they used support vector machines
(SVM) for the classification step. Later on, this technique
was enhanced with part-based models [10] and with pyra-
mid HOG features and intersection kernel SVM [18]. More
recently, it was shown that using combinations of features
outperforms the approaches that use a single type of feature
[24]. For a detailed summary and comparison of methods,
specific to pedestrian detection, we refer readers to [9].

Omnidirectional cameras provide 360◦ horizontal field
of view in a single image (vertical field of view varies). If
a convex mirror is placed in front of a conventional cam-
era for this purpose, then the imaging system is called a
catadioptric omnidirectional camera. An example image can
be seen in Fig. 3. Despite its enlarged view advantage, so
far omnidirectional cameras have not been widely used for
object detection. This is partly due to the resolution dis-
advantage. However, recent omnidirectional cameras have
adequate resolution to detect objects that cover a small part
of the image. Another reason is that the conventional camera
methods should be mathematically modified to be used with
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omnidirectional cameras. As described in Sect. 2, previous
studies in this direction were focused on SIFT.

In a study on object recognitionwith omnidirectional cam-
eras [25], amobile robot is given the images of several objects
in the environment and it is asked to recognize these objects.
Actually, the omnidirectional image iswarped into a cylindri-
cal panoramic image before matching with the images of the
objects using SIFT. In [2], objects in an indoor office environ-
ment are classifiedwith a generativemodel, where the system
is first trained with annotated images from the same envi-
ronment. In [13], authors use Haar features to perform face
detection with catadioptric omnidirectional cameras. Instead
of modifying the feature extraction step, they convert the
omnidirectional images into panoramic images and directly
use the conventional (perspective) camera technique. In a
similarmanner, panoramic images are used in [14] for human
detection.

A human-tracking method for omnidirectional cameras is
proposed in [23]. As a part of the proposed algorithm, HOG
features are computed. However, a rectangular rotating and
sliding window is used with no mathematical modification
for the omnidirectional camera.

In this paper, we propose a modification for the con-
ventional approach to tackle object detection directly on
catadioptric omnidirectional images. That is, our method
does not require the conversion of the omnidirectional images
to panoramic or perspective images. Apart from the advan-
tage of eliminating the image conversion step, the detection
performance of the proposed method is superior as given in
experiments section.

To our knowledge, the proposed method is the first that
mathematically modifies an object detection approach to
be effectively used for omnidirectional cameras. A second
contribution is that we construct an omnidirectional image
dataset with annotated humans, cars and vans and it can be
downloaded from our website 1. We believe this dataset will
be useful to the community for omnidirectional vision-based
object detection research.

The organization of the paper is as follows. In Sect. 2,
we explain why our approach is theoretically correct. We
adopt HOG+SVM [7] approach for object detection and as
explained in Sect. 3, we modify the HOG feature extraction
step for catadioptric omnidirectional cameras. Our experi-
ments, given in Sect. 4, were held for human, car and van
detection. Their results indicate that the adaptation of HOG
features improves the performance when compared to the
unmodifiedHOGcomputation, i.e., rotating rectangular win-
dows. We also compare our method with object detection on
panoramic images converted from omnidirectional ones and
conclude that the proposed method is superior especially for
objects with a width/height ratio <2.5.

1 http://cvrg.iyte.edu.tr/.

This paper is an extended version of our previouswork [6],
which included experiments with a limited image dataset and
considered only human detection.

2 Processing of omnidirectional images

Due to their nonlinear imaging geometry, working with
omnidirectional cameras requires geometric transforma-
tions. At first sight, converting an omnidirectional image to
a panoramic or several perspective images may seem to be a
practical solution. However, it has two major drawbacks: the
conversion, which is a nonlinear warping, can be computa-
tionally expensive for large video frames especially when an
omnidirectional image is converted to numerous perspective
images to properly fit sliding windows. More importantly,
the interpolation required by the image warping introduces
artifacts that affect the detection performance.

Among a small number of omnidirectional object detec-
tion studies (cf. Sect. 1), none of them developed a method
peculiar to omnidirectional cameras. On the other hand, last
decade witnessed some effort on computing SIFT features in
omnidirectional images. Starting from [8], researchers tried
to avoid warping omnidirectional images, and instead, they
assumed a unitary sphere S2 as the underlying domain of the
image function.When these studies (which consider the con-
volution step of SIFT) are examined, several approaches can
be observed. Below, we describe these approaches briefly.

1. The simplest approach would be backprojecting the
image onto a sphere surface S2 and convolving it with a
spherical Gaussian function GS [5]. Since this approach
requires resampling of the whole image, authors in
[8] project the kernel GS into image plane instead of
backprojecting the image onto S2, and the convolu-
tion is carried directly on the image plane. This avoids
image resampling but since the mapped Gaussian kernel
changes at every image location, it leads to an adaptive
filtering. This computational complexity makes the solu-
tion unsuitable.

2. Another approach processes omnidirectional images on
the sphere after an inverse stereographic projection [12].
Scale space is computed with Gaussian kernels on the
sphere, while the convolution is performed using the
spherical Fourier transform. It was stated in [3] and [16]
that this operation leads to aliasing issues due to band-
width limitations.

3. The processing on the sphere is achieved through a suit-
able differential operator that adapts to the non-uniform
resolution, while using the original image pixel values. In
[4], scale space representation is computed using the heat
diffusion equation and differential operators (Laplace–
Beltrami operators) on the non-Euclidean (Riemannian)
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manifolds. Moreover, authors in [3] tested this approach
by evaluating the matching performance of SIFT. Lastly,
authors in [20] compared the original SIFT with the
version modified by Laplace–Beltrami operators on the
Riemannian manifolds and observed that the modified
version has a better performance. Later, this approach
was extended to radially distorted images as well [16]
and also generalized to any camera to produce camera
invariant features [22].

Exploiting the experience gained by the summarized work,
we compute the gradients onRiemannianmanifolds (as in [3]
and [4]) and adapt the gradient magnitude computation step
(Sect. 3.1) of our algorithm accordingly. Since our study aims
object detection, we also modify the gradient orientations to
form an omnidirectional sliding window (Sect. 3.2).

3 The proposed HOG computation

In the sliding window-based object detection approach, a
window is moved horizontally and vertically on different
scales of an image. No rotation is applied since there is an
assumed orientation of the object, for instance pedestrians
should be upright. In a similar manner, to detect objects in
omnidirectional images, we rotate the slidingwindow around
the image center. In addition, to achieve a mathematically
correct detection method, we modify the image gradients.
The operations that we perform can be divided into two steps:

1. Modification of gradient magnitudes using Riemannian
metric.

2. Conversion of gradient orientations to form an omnidi-
rectional (non-rectangular) sliding window.

3.1 Modification of gradient magnitudes using the
Riemannian metric

3.1.1 Sphere camera model

We use the sphere camera model [11] which was introduced
to model central catadioptric cameras. The model comprises
a unit sphere and a perspective camera. The projection of 3D
points can be performed in two steps (Fig. 1). The first one is
the projection of point Q in 3D space onto a unitary sphere,
resulting in point r, and the second one is a perspective pro-
jection from the sphere surface to the image plane, resulting
in point q. This model covers all central catadioptric cameras
with varying ξ .

A point on the sphere r = (X,Y, Z) can also be repre-
sented by two angles (θ, ϕ), the former is the vertical angle
and the latter is the azimuth (Fig. 2a). In para-catadioptric
camera (the ones using a paraboloidal mirror) ξ = 1. If we
place the image plane at the south pole (which only differs

Fig. 1 Projection of a 3D point onto the image plane in the sphere
camera model

Fig. 2 a A 3D point on the sphere is represented by two angles (θ, ϕ).
bConsider the unitary sphere (r = 1). Image plane is placed at the south
pole ( f = 2). A 3D point is first projected onto the sphere surface and
then projected onto the image plane, where in this case ξ = 1

the scale), f = 2r = 2 and the perspective projection within
the sphere model corresponds to the stereographic projection
(Fig. 2b).

There are several methods to perform sphere camera
model calibration [19,21]. We used [19] since a MATLAB
toolbox is provided with it. In our experiments, we used a
para-catadioptric camera (ξ = 1). Focal length f is the dis-
tance to the image plane. For a para-catadioptric camera, this
is also equal to the distance between image center and any
point that is at the same horizontal level with the camera cen-
ter. Along with ξ and f , image center coordinates (cx , cy)
are used to modify the gradient magnitudes as explained in
Sect. 3.1.2.

3.1.2 Differential operators on Riemannian manifolds

Let us briefly describe how the differential operators on the
Riemannian manifolds are defined. Suppose M denotes a
parametric surface on �3 and gi j denotes the Riemannian
metric that encodes the geometrical properties of the mani-
fold. In a local systemof coordinates xi onM, the components
of the gradient are given by

∇ i = gi j
∂

∂x j
(1)

where gi j is the inverse of gi j .
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A similar reasoning is used in [3] and [20] to obtain
the Laplace–Beltrami operator, which is the second-order
differential operator defined on and used for scale space rep-
resentation for SIFT. In this paper, we are working on the first
derivatives. Let us briefly go over the para-catadioptric case
and derive themetric that allows us to compute the derivatives
on the sphere directly using the image coordinates.

Consider the unitary sphere S2 with radius=1 (Fig. 2a). A
point on S2 is represented in Cartesian and polar coordinates
as

(X,Y, Z) = (sin θ sin ϕ, sin θ cosϕ, cos θ) (2)

The Euclidean line element in Cartesian coordinates, dl, can
be expressed in polar coordinates as

dl2 = dX2 + dY 2 + dZ2 = dθ2 + sin2 θdϕ2 (3)

The stereographic projection of the sphere model sends a
point on the sphere (θ, ϕ) to a point in polar coordinates
(R, ϕ) in the image plane (plane �2), for which ϕ remains
the same and θ = 2 tan−1(R/2) in a para-catadioptric system
(Fig. 2b).

Using the identities, R = √
x2 + y2, ϕ = tan−1(y/x) the

line element reads

dl2 = 16

(4 + x2 + y2)2
(dx2 + dy2) (4)

giving the Riemannian inverse metric

gi j = (4 + x2 + y2)2

16
(5)

With this metric, we can compute the differential operators
on the sphere using the pixels in the omnidirectional images.
In particular, norm of the gradient reads

|∇S2 I |2 = (4 + x2 + y2)2

16
|∇�2 I |2 (6)

We see that the para-catadioptric gradients are just the scaled
versions of the gradients in Euclidean domain. Therefore, we
multiply our gradients with metric gi j .

At the center of the omnidirectional image, (x, y) =
(0, 0), Riemannian and Euclidean gradients are the same. At
an image location where

√
x2 + y2 = 2, which corresponds

to a 3D point at the same horizontal level with the sphere
center (mirror focal point), the Riemannian metric is equal
to 4. Therefore, the gradients are magnified as we move from
the center to the periphery of the omnidirectional image.

The Riemannian metric for other catadioptric systems
(with varying ξ ) are derived in [20].

3.2 Conversion of gradient orientations for
omnidirectional sliding window

After the image gradients are obtained with Riemannian
metric, we convert the gradient orientations to form an omni-
directional (non-rectangular) sliding window. The shape of
the omnidirectional sliding window varies according to the
size and location of the object in the omnidirectional image.
As depicted in Fig. 3, a car close to the camera is severely
bent. However, a window covering the car at a distance is
close to a rectangle. The difference cannot be represented
with a scale ratio; therefore, we are not able to train one
object model for detection in omnidirectional images. Since
it did not seem plausible to train many omnidirectional HOG
models, we chose to train our object models with perspective
image datasets. Gradients in the sliding window should be
computed as if a perspective camera is looking from the same
viewpoint.

Figure 4a shows a half of a synthetic para-catadioptric
omnidirectional image (400 × 400 pixels) where the walls
of a room are covered with rectangular black and white tiles.
Conventional HOG result of the marked region (128 × 196
pixels) in this image is given in Fig. 4b where the gradient
orientations are in accordancewith the image.However, since
these are vertical and horizontal edges in real world, we need
to obtain vertical and horizontal gradients. Figure 4d shows
converted gradients for the region marked in Fig. 4c, which
is an example of the proposed HOG computation.

To obtain the gradients in Fig. 4d from the image in Fig. 4c,
we performed a transformation from polar to Cartesian coor-
dinates without using any camera calibration information.

Fig. 3 Two cars in the omnidirectional image are indicated with black
frames. The one close to the camera covers a larger area, and it should
be searched with a more bent sliding window, and the other one is far
away and it should be searched with a more straight sliding window
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Fig. 4 Description of how the gradients are modified for an omnidi-
rectional sliding window. Result in (b) is the regular HOG computed
for the region marked with dashed lines in (a). Modified HOG compu-
tation gives the result in (d) for the region marked in (c). Vertical and
horizontal edges in real world produce vertical and horizontal gradients
in the modified version

Both gradient orientations and gradient magnitudes in the
proposed HOG window are computed from the omnidi-
rectional image using bilinear interpolation with backward
mapping. While transforming coordinates, the height and
width of rectangular area in Fig. 4d are kept equal to the
thickness and center arc length of the doughnut slice marked
in Fig. 4c, respectively.

4 Experiments

Our experiments consider the detection of standing humans,
cars and vans. For human detection, we trained a 128 × 64
model using INRIAperson dataset as described in [7]. For car
detection, we trained a 40 × 100 model using UIUC [1] and
Darmstadt [15] sets together totalling 602 car side views. The
model trained for van detection is 40× 100 as well. For this
object type,we constructed a database of 107 images contain-
ing vans viewed from either side. While training all object
models, the number of the negative samples in the dataset
were increased by collecting so-called hard-negatives. These
are the false-positive detections of the initial model that was
trained with the original positive and negative samples.

4.1 Evaluation of the proposed HOG computation using
synthetic omnidirectional images

Let us first compare the results of the proposed and the regular
(unmodified) HOG computation. Since the computed HOG
features are given to an SVM trained with an image dataset
of corresponding object type, we aim to obtain higher SVM
scoreswith the proposed omnidirectional HOGcomputation.

We artificially created 210 omnidirectional images con-
taining humans, following an approach similar to [12].
Images in INRIA person dataset are projected to omnidi-

Fig. 5 Depiction of the regular HOG window (green rectangle) and
the proposed window (red doughnut slice) on an omnidirectional image
artificially createdbyprojecting aperspective image from INRIAperson
dataset

Table 1 Comparison of the regular and proposed HOG window by
their SVM scores for human detection

Min.
score

Lower
quart.

Mean
score

Upper
quart.

Max.
score

Regular HOG −1.01 1.16 1.69 2.20 3.21

Proposed HOG −0.42 1.51 1.93 2.45 3.64

Table 2 Comparison of the regular and proposed HOG window by
their SVM scores for car detection

Min.
score

Lower
quart.

Mean
score

Upper
quart.

Max.
score

Regular HOG −1.81 −0.38 −0.09 0.24 1.17

Proposed HOG −1.55 −0.17 0.19 0.55 1.79

rectional images using certain projection angle and distance
parameters. Figure 5 shows an example omnidirectional
image,where the regularHOGwindow (rectangular, 128×64
pixels) and the proposedomnidirectionalHOGwindow (non-
rectangular) are shown.TheHOGfeatures computedwith the
two window types are compared with their resultant SVM
scores. Since the locations of projections in these images are
known, no search is needed for this experiment. However,
vertical position of the window affects the result. For both
approaches,we chose the position that gives the highestmean
SVMscore. Table 1 summarizes the result of the comparison,
where we see that the mean score (also minimum, maximum
and quartiles) for the proposed approach is higher than that
of regular HOG window.

For synthetic car images, 602 perspective car images from
UIUC [1] and Darmstadt [15] datasets are projected to omni-
directional images. 40×100 pixel regular HOG computation
and the proposed non-rectangular HOG window are com-
pared in Table 2. The result is in accordance with the human
detection experiment: mean SVM score, together with mini-
mum, maximum and lower/upper quartiles, for the proposed
approach is higher than the regular method.
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4.2 Experiments of human detection in real images

In this subsection, we present the results for a set of images
takenwith our catadioptric omnidirectional camera.We com-
pared the proposed HOG computation not only with the
regular HOG window, but also with the approach that first
converts the omnidirectional image to a panoramic image
and then performs regular HOG computation. Although it
was explained in Sect. 2 that working on panoramic images
is not a theoretically correct approach, if the performance of
detection on panoramic image is high, it can still be consid-
ered as an option for practical applications.

Figure 6 shows the results for one of the images in the
dataset. Positive detections, after non-maximum suppres-
sion, are superimposedon the imageswith the proposedHOG
window, the regular HOGwindow on omnidirectional image
and HOG after panoramic conversion. The corresponding
SVM score of each window is given at the upper left corner.
Since a fixed size object (128 × 64) is searched in gradu-
ally resized versions of the original image, different sizes of
detection windows seen in the figure correspond to detected
objects in different scales. Since the feet of the body is very
close to the blind spot of the camera and 128 × 64 human
object model has a 16-pixel margin around the body, the best
scoringwindows usually exceed to the blind spot. Themotion
of the omnidirectional slidingwindow is based on polar coor-
dinates. Each time, it turns by a fixed angle around the center
and when the circle is completed, radius is changed. For the
proposed HOGwindow, 64 is the length of the center arc and

Fig. 6 Human detection results on an omnidirectional image with
SVM scores (at upper left corners) greater than 1. a Proposed sliding
windows. b Regular sliding and rotating windows. c Regular sliding
windows on panoramic image

Fig. 7 Precision–recall curves to compare the proposed HOG com-
putation, the regular HOG and HOG after panoramic conversion
approaches for human detection. The data points in the curve corre-
spond to the varying threshold values for the SVM score, which change
from 0 to 5. As the threshold increases, all approaches reach preci-
sion=1

128 is the thickness of the doughnut slice. For a fair com-
parison, the number of windows checked is equalized for all
three approaches.

For the humans in Fig. 6, the average SVM scores for the
proposed HOG, the regular HOG and HOG on panoramic
image approaches are 2.94, 2.11 and 2.41, respectively. To
evaluate the overall performance of these three approaches,
we plot precision–recall curves for the whole dataset which
consists of 30 real omnidirectional images taken in different
scenes including indoor and outdoor environments (Fig. 7).
A total of 66 humans were annotated in these images. The
larger the area under the curve, the better the performance of
the algorithm. One can observe that the performance of the
proposedHOGcomputation is better than the others.Only for
a limited range, regular HOG performs better. When recall
>0.5, the proposed approach is distinctively superior.

A detection window is considered to be a true-positive if
it overlaps an annotation by 50% (following the advice in
[9]), where the overlap is computed as

O = area (detection window ∩ annotation)

area (detection window ∪ annotation)
(7)

For a fair comparison, the annotations are separately pre-
pared for the mentioned three methods. Annotations of the
proposed HOG approach are doughnut slices (e.g., Fig. 6a),
annotations of the regularHOGapproach are rectangles rotat-
ing around the omnidirectional image center and annotations
ofHOGonpanoramic image approach are upright rectangles.
While annotating, a margin is left around the object to be in
accordance with the training set images.

4.3 Experiments of car detection in real images

We repeated the comparisons between the evaluatedmethods
for car detection. Figure 8 shows the results for a single image
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Fig. 8 Results of car detection on an omnidirectional imagewith SVM
scores (at upper left corners) greater than−0.5. a Proposed sliding win-
dows. b Regular sliding/rotating windows. c Regular sliding windows
on panoramic image

Fig. 9 Precision-recall curves to compare the proposedHOGcomputa-
tion, the regular HOG andHOG after panoramic conversion approaches
for car detection. The data points in the curve correspond to the varying
threshold values for the SVM score, which change from −1.0 to 1.5

as an example. For the overall performance comparison of the
proposed HOG computation, the regular HOG computation
and HOG after panoramic conversion approaches, we plot
precision-recall curves (Fig. 9) for our dataset that includes
50 real images containing a total of 65 annotated cars.

When we compare the results in Fig. 9 with the ones
in Fig. 7, one observation would be that now the proposed
method is better than the regular HOG everywhere. This is
due to the fact that car is a wider object than human. The reg-
ular HOG computation is affected more as the width/height
ratio of the object model increases because it tries to fit a
rectangle to the object in the omnidirectional image, which
is bent more.

A second observationwould be the increased performance
of detection on panoramic image. It is now comparable to the

Fig. 10 Results of van detection on an omnidirectional image with
SVM scores (at upper left corners) greater than −0.5. a Proposed slid-
ing windows. b Regular sliding/rotating windows. c Regular sliding
windows on panoramic image

proposed method. This can also be explained by the fact that
car has a ‘wide’ model with a width/height ratio of 2.5. It
is harder for taller object models, like standing humans, to
maintain the originalwidth/height ratio in panoramic images.
Since the panoramic image is created on a cylindrical surface
rotating around the viewpoint, as we move down on the sur-
face, same amount of viewing angle starts to cover a larger
height in the image. This can be observed in the lower parts
of Fig. 6c.

4.4 Experiments of van detection in real images

As a third object type, we performed experiments on van
detection. Figure 10 shows the results for a single image.
For this image, we observe that all three methods have a
true-positive detection; however, score obtainedwith the pro-
posed method (Fig. 10a) is higher than the score obtained
on panoramic image (Fig. 10c) which is relatively higher
than the score with regular HOG on omnidirectional image
(Fig. 10b). Precision-recall curves in Fig. 11 show overall
performance comparison for our dataset that includes 50 real
images containing a van each. We used 57 other van images
as a positive training set.

This time, the proposed approach is consistently better
than HOG on panoramic approach. Regular HOG approach
again has the worst performance since the vans we work
on are wide objects similar to cars. One can also observe
that recall=1 can be reached for low thresholds for all three
approaches. This is explained by the fact that test and train-
ing images are chosen from the same dataset that we built.
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Fig. 11 Precision-recall curves to compare the proposed HOG com-
putation, the regular HOG and HOG after panoramic conversion
approaches for van detection

However, for car detection experiment, the training images
were from a publicly available dataset.

5 Conclusions

We aimed to perform object detection directly on the omni-
directional images. As a base, we took the HOG+SVM
approach which is one of the popular object detection meth-
ods. After describing how the feature extraction step of
the conventional method should be modified, we performed
experiments to compare the proposed method with the reg-
ular HOG computation on omnidirectional and panoramic
images. Results of the experiments indicate that the perfor-
mance of the proposed approach is superior to the regular
approach. The performance of regular HOG on panoramic
image is partially comparable to the proposed approach for
objects that have high width/height ratio (such as cars). Hav-
ing a high width/height ratio is an advantage for detection
on panoramic image but a disadvantage for applying regular
HOG on omnidirectional images. One should also note that
the detection on panoramic images has the disadvantage of
requiring image conversion beforehand.

In this work, we concentrated on HOG features for object
detection. However, other features, especially the ones based
on image derivatives can be modified in a similar fashion for
a theoretically correct and effective use in omnidirectional
cameras.
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