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Abstract

This work presents a new recursive robust filtering approach
for feature-based 3D registration. Unlike the common state-of-
the-art alignment algorithms, the proposed method has four
advantages that have not yet occurred altogether in any
previous solution. For instance, it is able to deal with inherent
noise contaminating sensory data; it is robust to uncertainties
caused by noisy feature localisation; it also combines the
advantages of bothܮ�ஶ andܮ�ଶ norms for a higher performance
and a more prospective prevention of local minima. The result
is an accurate and stable rigid body transformation. The latter
enables a thorough control over the convergence regarding the
alignment as well as a correct assessment of the quality of
registration. The mathematical rationale behind the proposed
approach is explained and the results are validated on physical
and synthetic data.

Keywords: time-varying 3D Registration; Recursive Least
Squares; Kalman Filter; Robust ஶࡴ Filter.

Introduction

The widespread abundance of affordable 3D sensing devices
has encouraged many enthusiasts to contribute new solutions
for 3D reconstruction [1]. The latter require data alignment
tools that enable the recovery of the 6DOF regarding
viewpoints where the different scans had been captured.
Theoretically, each viewpoint has a different coordinate system.
Knowledge of the transformation that maps a given 3D point
from one frame to another, therefore, becomes necessary.

In practice, the alignment requires some keypoints from a
Source and a Target point cloud. Hence, alignment problem
amounts to the determination of the mapping between the
source and the target frames. To this end, we assume the
keypoints being available and we focus on 3D registration.
Generally, the determination of the best transformation is based
on ଶܮ norm minimisation. However, ଶܮ optimisers assume a
prior availability of the entire datasets before processing takes
place. From a practical point of view, such an assumption is too
optimistic due to sizeable noisy data streamed at relatively high
frame rates that one encounters in practice. For this reason, our
novel 3D registration solution delivers the 6DOF pose between
viewpoints recursively and is capable of handling 3D points’
noise and uncertainty for a more efficient estimation.

The remainder of this paper is organised as follows: In the
first section, the related works about 3D registration are

discussed and different alignment solutions that had been
proposed so far are analysed. In the following section, 3D
registration problem is formulated in a Least Squares (LS)
form. In the next section the link between 3D registration and
RLS is settled and fitted into Kalman filter’s (KF) equations [2].
The parametric uncertainty of the 3D feature points is
afterwards determined to be later used in the Robust ஶܪ (RF)
modelling for sparse alignment. Our contribution is validated
on both synthetic and real datasets. Lastly, the paper is
concluded and potential future works are recommended.

Related works

Since its invention by Besl et al. [3], the Iterative Closest
Point algorithm (ICP) has been considered as a reference in
point cloud alignment literature. However, a good initial guess
or some feature correspondences are necessary to avoid local
minima. Newer variants of that algorithm have been proposed
to deal with its limitations such as EM-ICP [4] and Softassign
[5]. Unlike the original implementation that assigns to every
point in the source its closest correspondent in the target,
subsequent variants allow each point to be checked against the
entire target dataset. To this end, weighting coefficients are
associated with the elements to discard the describe their quality
[5]. Other variants inspired by the original algorithm (ICP) were
further proposed such as non-linear ICP [6], generalised ICP [7]
as well as non-rigid ICP [8]. Larusso et al. [9] showed that all
closed-form solutions are computationally similar. However,
performance can significantly differ from one solution to
another. Thus, no single algorithm is exclusively optimal for all
scenarios. Umeyama [10] states in his work that Horn and
Arun’s algorithms fail when the datasets become highly
corrupted with noise. He further proposed an alternative
solution that utilises Lagrange Multipliers [11].

A solution for the recursive estimation of rigid body
transformations with the Extended Kalman Filter (EKF) was
first proposed by Pennec et al. [12]. Ma et al. [13] followed the
same strategy in order to align datasets contaminated with
isotropic Gaussian noise using the Unscented Particle Filter
(UPF) [14]. This algorithm can accurately estimate the
parameters for very small datasets (less than one hundred
elements). An Unscented Kalman Filter (UKF) algorithm was
also adapted by Julier et al. [15] to align two datasets following
a sequential estimation. All these recursive algorithms
minimise ࡸ norm but consider the parameters being accurately
determined beforehand. Nevertheless, it is impossible to assert
the certainty of parameters in real scenarios. In our solution,
however, we consider them (parameters) being uncertain, and
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we confine estimation error to a small range by optimising
ஶࡸ norm instead ofࡸ� .

Micusik et al. [16] used a Second Order Cone Programming

(SOCP) to minimise the ஶࡸ norm for non-overlapping
cameras. They have shown a good performance with a fairly
small error magnitude. Lee et al. [17] further claimed that by

using ஶࡸ a number of computer vision problems such as
homography estimation can be formulated and solved using
Bisection method.

In the light of this background, our work takes advantage of
the mature recursive estimation framework in order to compute
a robust and optimal solution for 3D registration problem by
means of ஶࡸ� norm minimisation.

Problem statement

Given two sets of source and target 3D point cloudsࡽ� =
,} … ࡼ�,{, = ,} … {, respectively. Each of the
elements ,� within the sets of points has three components

= ൫ࢠ,࢟,࢞൯and�= ൫ࢠ,࢟,࢞൯ . The k-th point �in

the source point cloud has been matched a priori with the k-th
point in the target point cloud . The purpose of 3D
registration is to find a rigid body transformation :ࡾ) rotation,
:࢚ translation) that maps the source ࡽ onto the target .ࡼ The
determination of such a mapping can be modelled as an
optimisation problem [18]. Nevertheless, due to noisy outputs
streamed by the sensor, an exact solution is very unlikely to
determine. Thus, a realistic model must take into account

alignment error asࢋ follows:

= +ݍܴ +ݐ ݁ (1)

The rigid body transformation [࢚,ࡾ] is optimal when the sum

of the squares of errors (ࢋ) becomes minimal:

݁ଶ = ݎܽ݃ ݉ ݅݊
ோ,௧

 −‖ +ݍܴ) ଶ‖(ݐ


ୀଵ

(2)

Where:

ܴ = 

ଵଵݎ ଵଶݎ ଵଷݎ
ଶଵݎ ଶଶݎ ଶଷݎ
ଷଵݎ ଷଶݎ ଷଷݎ

൩ ; =ݐ 

௫ݐ
௬ݐ
௭ݐ

൩ (3)

It is possible to simplify the problem of equation (2) by
decoupling the translation vector ࢚ and eliminating scale
difference as follows:

=ݐ̂ −̅ ܴݍത; =ݏ̂ ∑ ቀ
̅ோത
‖ത‖

మቁ

ୀଵ

(4)

=ݐ̃ −̅ ;തݍ =ݏ̃ ∑ ቀ
̅ത
‖ത‖

మቁ

ୀଵ (5)

As claimed by Horn [19], ഥ andഥ are the centroids

respective to the source and the target point clouds; ොare࢙,ො࢚ the
optimal translation and scale between the two dataset. Whereas,
࢙,࢚ are their respective initial guesses when the initial rotation
is assumed to be ࡾ = .ࡵ As a result of this simplification, the

problem of pose estimation in equation (2) is now reduced to:

݁ଶ = ݎܽ݃ ݉ ݅݊
ோ

 −̅‖ ‖തݍܴ
ଶ



ୀଵ

(6)

Once the optimal rotationࡾ� computed, ො࢚ and࢙�ො can be
deduced using equation (4). On the other hand, the optimal

rotation ࡾ can be obtained by minimising ∑ −ҧ‖ ‖തݍܴ
ଶ

ୀଵ

using a LS optimiser. The resulting estimation is sufficient for
most applications as long as robustness is not a determining
factor. However, if the inputs become significantly
contaminated with noise, the result becomes unstable (i.e. very
sensitive to perturbations in the data) and more likely to drift
away from the optimal solution.

3D Registration with RLS

Despite the performance of time-varying filters, 3D
registration has profited very poorly from their assets even after
closed-form methods were proven weak in various practical
situations. Moreover, the authors of a number of recent image
registration surveys did not even allude to the possibility of
solving 3D alignment with recursive filtering tools [20]. The
power of the recursive solutions can be appreciated due to what
has been claimed earlier and to the possibility of cooperation
between different registration instances working together. The
latter can share their most updated estimates instantaneously.
As a result, they can benefit from each other’s contributions,
which in turn reduces the probability of falling into a local
minimum.

Recursive Modelling of 3D Registration

In order to express the cost function of equation (6) in a
recursive fashion, the original problem should be rewritten as
shown in equations (7) to (10). Such a transformation allows us
to fit 3D registration problem in a recursive least squares
framework.

= +ݍܴ ݁ (7)

ቐ

௫ = ௫ݍଵଵݎ + ௬ݍଵଶݎ + ௭ݍଵଷݎ + ௫݁

௬ = ௫ݍଶଵݎ + ௬ݍଶଶݎ + ௭ݍଶଷݎ + ௬݁

௭ = ௫ݍଷଵݎ + ௬ݍଷଶݎ + ௭ݍଷଷݎ + ௭݁

(8)

By analogy, the state variable ࢞ now represents the rotation
matrix ࡾ of equation (7). The optimiser uses pairs of
corresponding points in order to refine the entries of the state
vector now containing the entries of rotation matrix ℛଽ. For
instance, at every time-step we have:

=ݒ ௫ݍ] ௬ݍ [௭ݍ (9)
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൩

= ோℛଽܪ + ݁ (10)

࢞ = ࢀ[࢘�࢘�࢘�࢘�࢘�࢘�࢘�࢘�࢘] ∈ ব ૢ �; =
ૢࡵ ��; = ૢ as no control variable is
required.࢝�~घ (,ࡽ) is a random variable representing

process noise for whichࡽ� ࣌�=
ૢࡵ ࣌; >  should be small

because the process is accurately determined. ࢠ ∈ ব
 is the

actual noisy measurement vector whose elements are the

coordinates of the target feature point. ࢟ ∈ ব
 is the predicted

observation vector that contains the 3D position of the target

feature point. ࢜ is a random variable for which ࡾ =

,ࡵ[ࢠ࣌�࢟࣌�࢞࣌] it represents noise process contaminating target

feature point localisation. The complete scheme of KF-based
registration is explained in Algorithm 1. The latter works as
follows: 1) Initialise the state vector (rotation matrix) with the
entries of ૢࡵ . If available, an initial guess would be preferable.

2) Iterate over feature points; acquire a new target featureࢠ�
and buildࡴ� . 3) KF prediction. 4) KF correction where the
estimate ࢞� and the covariance of error in estimationࡼ� are
corrected withࡷ�.

Algorithm 1 KF-based registration

Source and target point clouds
:ࡽ,ࡼ 3D feature points;
[,] = ∅: Correspondences list;
[,] = FindCorrespondences(P,Q);
ෝ࢞ = [1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0]்

ࡽ� = ଽܫߪ
ࡼ = ܳ
ࡾ = ଷܫ[௭ߪ�௬ߪ�௫ߪ]

for each pair of correspondences ) = ,)
ݖ = )�] )��ݔ.݇( )��ݕ.݇( [ݖ.݇(

ܪ���� = ))ோܪ )݇)
Prediction

ݔ = ොିଵݔ (11)
ݕ = ݔܪ (12)

ܲ = ܲ
ିଵ + ܳ (13)

correction
ܭ = ܲܪ

ܪ)் ܲܪ
் + ܴ)ିଵ (14)

ොݔ = ݔ + ݖ)ܭ − (ݕ (15)
ܲ
 = −ܫ) (ܪܭ ܲ (16)

end
The computational complexity of KF registration is

proportional to ×)ࡻ ૢ) in the worst case, where  is the

number of keypoints used to compute the optimal registration
and 9 is the size of the state vector. On the other hand, the best
complexity regarding alternative registration algorithms such as

ICP, EMICP and WICP is proportional to)ࡻ� × .ૠ). KF
3D registration can be easily expanded to include the three
components of translation vector in ࡴ .

Robustࡴ�ஶ Registration

3D points uncertainty

In order to handle instability in parameters estimation, the
uncertainties should be confined into a small range. To this end,
the behaviour of the noisy inputs must be thoroughly studied.
Uncertainties are modelled empirically by looking at how 3D
points are distributed, and how do 3D sensors sense the real
world.

z-Resolution of RGBD Cameras

The authors have already shown in a previous research [21]
that the points within a 3D image lie on parallel clusters that
were named “Z-Levels”. Such a structure allows us to quantify
correctly the amount of uncertainty in every feature point.

Depth Noise Statistics

RGBD sensors’ measurement-noise has a Gaussian
distribution with varying standard deviations. These standard
deviations rely on the range between the sensor and the scene.
The standard deviation ࢠ࣌� of a given Z-level ࢠ� is defined by
the length of the interval whereࢠ� is expected to vary as shown
below:

௭ߪ = ( ܼା− ܼି) / 2 (17)

Here,ࢠ࣌ represents the average distance separating the two

Z-levels andାࢆ� ିࢆ� and the central one .ࢠ Empirically,
the best estimation of the standard deviation regarding noise

affecting the 3D points lying on ࢠ� is obtained when�= .
That is, the true depth ොࢠ taken by a given Z-level is expected
to be equal toࢆ�))±ࢠ�ା (ିࢆ��− /�) . The standard

deviations concerning the remaining two coordinates ࢟,࢞


are deduced from the intrinsic parameters of the camera

࢞ࢌ) ࢞ࢉ,࢟ࢌ, (࢟ࢉ, andࢠ࣌� as follows:

൜
=ݑ ( ௫݂/ݖ)ݔ+ ௫ܿ

=ݒ ( ௬݂/ݖ)ݕ+ ௬ܿ
(18)

൜
=ݔ /ݖ) ௫݂)(ݑ− ௫ܿ)
=ݕ /ݖ) ௬݂)(ݒ− ௬ܿ)

(19)

ቐ

௭ߪ = 0.5 ( ܼା− ܼି)

௫ߪ = /௭ߪ) ௫݂)(ݑ − ௫ܿ)

௬ߪ
= /௭ߪ) ௬݂)(ݒ − ௬ܿ)

(20)

Every point is, therefore, affected by certain amount of noise

characterised by the standard deviations ࢠ࣌,࢟࣌,࢞࣌ towards
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the directions of the axes ࢟,࢞ and ,ࢠ respectively. Hence, the
covariance matrix attributed to each point (ࢠ,࢟,࢞) is
described as:

(ݖ,ݕ,ݔ)ܥ =

⎣
⎢
⎢
⎢
⎡

൦

௫ߪ
ଶ ௬ߪ௫ߪ ௭ߪ௫ߪ

௫ߪ௬ߪ ௬ߪ
ଶ ௭ߪ௬ߪ

௫ߪ௭ߪ ௬ߪ௭ߪ ௭ߪ
ଶ

൪

⎦
⎥
⎥
⎥
⎤

(21)

 represents the spread of uncertainty around the point
.(ࢠ,࢟,࢞) As can be seen in Figure 1 (a), the projection of
covariance ellipsoids of a given 3D point on the planes
࢞࢟,࢟ࢠ,࢞ࢠ yields three ellipses. The more accurately a feature
point is captured, the smaller the norm of its covariance matrix
(blue point in Figure 1 (a)). On the other hand, the less accurate
the capture of a given feature is, the larger the norm of its
covariance matrix (red point in Figure 1 (a)).

Kanazawa et al. [22] claimed that the incorporation of feature
uncertainty does not contribute any further improvements to the
estimation. On the other hand, Brooks et al. [23] as well as us
in a previous work [24], both noticed a reduced error in
estimation after considering uncertainty. Based on the
conducted experiments with registration algorithms and the fact
that Weighted-ICP (WICP takes into account data uncertainty)
outperforms ICP, as will be shown in the results, it is obvious
that the incorporation of feature-location uncertainty improves
pose estimation remarquably.

Robustࡴ�ஶ �(RF) Filter for 3D
Registration

In this section, we propose a time-varying registration
algorithm that incorporates modelling and measurement
uncertainties as follows:

ݔ = ܣ) + ොିଵݔ(ܣ߂ + ݑܤ + ݓ (22)

ݕ = ܪ) + ݔ(ܪ∆ + ݒ (23)

ࡴࢤ represents the uncertainty in observation model,
whereasࢤ� is the uncertainty in process model. In our case,
the two matrices take the values:

ܣ߂ = ଽܫߪ

ߪ = యయ൧ߪయమߪయభߪమయߪమమߪమభߪభయߪభమߪభభߪൣ

ܸ = ௫ݍ] + ௫ߪ ௬ݍ + ௬ߪ ௭ݍ + [௭ߪ

(24)

ܪ߂ = 
ܸ

ܸ

ܸ

൩ (25)

If these matrices cannot be determined, RF would still be able
to control the instability disturbing its parameters [25] by
assuming it being of the form:

ቈ[
ܣ∆
ܪ∆

]= ቈ[
ଵܯ

ܯ ଶ
]߁ܰ (26)

ࡹ  ࡹ,  andࡺ� are known matrices, ࢣ� is unknown but
it should satisfy the bound:

߁
߁் ≤ ܫ

(27)

Our purpose is to design a state estimator of the form:

ାଵݔ = ݔሚܣ + ݐ෩ܭ (28)

The latter should be stable (the eigenvalues of ෩ must be less
than one in magnitude). The determination of the parameters of
the filter can be done through the procedure described in our
previous work [24].

The adaptation of RF is proven to be flexible and capable of
delivering accurate state estimations, however uncertain
system’s parameters are. Estimation error compared to the
ground truth measurements will show the effectiveness of RF
3D registration against alternative non-robust methods such as
KF and the more established algorithms available in the
literature. In real scenarios, the exact model is very unlikely to
determine [26]. Yet the non-robust tools do not consider
uncertainties in their parameters. Hence, if by chance the
parameters are accurate, these tools perform as well as RF. On
the other hand, when the system is not precisely characterised,
they become significantly unstable. For instance, RF
registration combines the robustness of ࡴ ஶ (it is less affected
by the accuracy of system’s parameters) and the optimality of
KF on linear systems to produce an accurate and stable
estimate. Such a quality guaranties a high precision of
estimation and more stability towards inputs’ perturbations.

Results & Discussions

In this section, the results regarding KF and RF registration
are validated with tests on real and synthetic 3D data. Our test
benchmark includes: WICP [27]; Expectation Maximisation
ICP algorithm (EMICP)[28] and Horn’s closed form solution
based on quaternions (HORN)[29].

Here, accuracy is measured by the distance separating the
target and the source point clouds after the registration. In order
to fairly assess every algorithm, processing time elapsed to find
the best pose is also recorded. Throughout experiments, it is
noticeable that the plotted metrics (processing time and

RMSE= ට



∑ ฮࡾࡽ+ −ො࢚ ฮࡼ


ୀ ) are not homogeneous. For this

reason, a logarithmic scale was used to cope with the difference
of scale within the same plot.

The number of keypoints extracted from every point cloud is
about 400 points. In practice, an average-sized point cloud in a
single frame contains up to 400 useful key points. Computation
time has been calculated for the five algorithms running on an
i7-2670QM working at 2.2GHz, with 12.0GB of memory. A
sample is a set of 400 pairs of corresponding <source, target>
keypoints. 30 samples were tested in each of the following five
scenario (two with real and three with synthetic data).
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Real data

In this experiment, image data is delivered by two versions
of Kinect1 sensor (Kinect 1 is based on structured light
principle; whereas, Kinect 2 is a time-of-flight camera). In
addition, SIFT3D extractor and CSHOT [21] descriptor were
used to obtain feature points from the real data.

In order to collect real 3D point clouds, the camera was
carried and moved around in an infinity-shaped (∞) trajectory
within the arena of our autonomous navigation lab.
Simultaneously, a high-quality tracking system (OptiTrack2)
was used as a ground truth reference, Figure 1 (b). 120 different
pairs of overlapping point clouds were captured by each of the
two Kinects. RGBD image data acquisition runs simultaneously
as the robot moves around. At each time-step, we acquire a
single pair of colour and depth images (both constitute a single
point cloud) for the indoor scene. Hence, a total of 120 pairs of
point clouds are aligned in a pairwise manner between
(۱ ,ܑ۱ ାܑ). The last sample ۱ is registered against both ۱ૢ
and ۱ to test the loop closure.

Scenario 1: New Kinect
RMSE: The average RMSE for the five algorithms (see Figure
1 (c)) was as follows: 0.27m for EMICP (pink), 0.13m for
WICP (green), 0.28m for Horn (red), 0.15mm for RF (black)
and 0.7mm for KF (blue).

Scenario 2: Old Kinect
RMSE was 0.28m for EMICP, 0.22m for WICP, 0.3m for
Horn, 0.95mm for RF and 1.13mm for KF (see Figure 1 (d)).
Average processing time for both scenarios was 114.3ms for
EMICP, 26.7ms for WICP, 1.05ms for Horn, 23.1ms for RF and
11.64ms for KF (see Figure 1 (e), (f)).

Synthetic Data

In this experiment, we consider only artificial 3D keypoints,
where,ࡽ� (source keypoints) as well as a random 3D
transformation [࢚,ࡾ] had been generated randomly. The target
3D keypoints are built using the equation, =ࡼ +ࡽ�ࡾ� .࢚ To
realistically simulate physical data, a normally distributed
anisotropic white noise was added to the clean datasets. The
latter had different magnitudes࣌�: large ( 20�݉ ݉ ≤ ≥ߪ
80�݉ ݉ ), average ( 10�݉ ݉ ≤ ≥ߪ 20�݉ ݉ ) and small
( 0.1�݉ ݉ ≤ ≥ߪ 10�݉ ݉ ). For each, is generated 1000 point
clouds, results were as follows:

Scenario 1: Small Noise Magnitude
RMSE was 0.42m for EMICP, 0.18m for WICP, 0.46m for
Horn, 0.18mm for RF and 0.44mm for KF (see Figure 2 (a)).

Scenario 2: Average Noise Magnitude
RMSE was 0.54m for EMICP, 0.48m for WICP, 0.56m for
Horn, 0.22mm for RF and finally, 0.43mm for KF (see Figure
2 (b)).

Scenario 3: Large Noise Magnitude
RMSE was 0.49m for EMICP, 0.35m for WICP, 0.51m for

1 http://www.microsoft.com/en-us/kinectforwindows/. 2015

Horn, 0.63mm for RF and 0.89mm for KF (see Figure 2 (c)).
Average processing time for all three scenarios was 115.1ms
for EMICP, 27.03ms for WICP, 1.08ms for Horn, 22.8ms for
RF and 10.43ms for KF (see Figure 2 (d), (e), (f)).

As illustrated in Table 1, one can obviously notice how
significantly poorly EMICP and Horn perform. This drawback
often occurs when the shapes present some symmetry. On the
other hand, WICP is better endowed to cope with such
drawbacks since it leverages knowledge about the quality of
features, which helps it in discarding noisy elements. More
importantly, KF and RF are both comparably superior in term
of accuracy, but RF is more precise due to the control of
uncertainty in parameters.

Conclusion & Future Works

A novel approach for robust 3D point cloud registration was
presented. This contribution is based on a recursive optimal
state estimation. After establishing the link between WLS and
its original counterpart (LS), 3D point cloud registration
problem was fitted to KF scheme. However, since KF
parameters for 3D registration (state and projection matrices)
are built from noisy data, a non-negligible estimation instability
was noticed. Consequently, we modelled the uncertainty and
overcame it with an RF-based solution.

The accuracy of the proposed solution was tested on many
synthetic as well as real 3D samples delivered by Kinect.
Precision on the other hand, can be seen on the relatively small
difference in accuracy among comparably noisy samples (red
error bars in Figure 1 (c, d), Figure 2 (a, b, c) on the black line).

The proposed solution requires some feature points to be
extracted from the source and the target point clouds before the
alignment is carried out. The number of keypoints is relatively
small compared to the size of point clouds. In addition, our
solution can be extended to any dimension for data that can be
point clouds, meshes as well as surfaces, given that some
distinctive features are available.

As a future work, we intend to investigate alternative
applications of recursive filtering algorithms in the field of
computer vision. It would be also interesting to implement RF
registration in the graphic processor to reach higher frame rates.
In addition, in a multiview registration scenario (many sensors
streaming images concurrently), data fusion algorithms open a
new perspective for the users to reconstruct 3D scenes and to
track moving objects cooperatively. This new horizon is
convenient for the technologies of virtual and augmented
reality.

2 http://www.naturalpoint.com/optitrack/. 2015
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(a) (c) (d)

(b) (e) (f)

Figure 1 (a) 3D points uncertainty ellipses, (b) Ground truth (OptiTrack) and real data acquisition with Kinect in an indoor scene,
(c), (d) 3D registration RMSE(m) of the New and the Old Kinect, respectively; (e), (f) Time elapsed during registration for the
New and the Old Kinect, respectively. EMICP (pink), WICP (green), Horn (red), RF (black), KF (blue)

(a) (b) (c)

(d) (e) (f)

Figure 2 (a), (b), (c) 3D registration RMSE of the Small, Average and Large noise, respectively; (d), (e), (f) Time elapsed during
registration for Small, Average and Large noise, respectively. EMICP (pink), WICP (green), Horn (red), RF (black), KF (blue)

Noise EMICP WICP Horn RF KF

New

K
in

ec
t 274 152 246 0.72 1.62

Old 310 162 302 1.03 2.03

Small 298 193 285 0.55 1.52

Average 323 235 315 0.91 1.78

Large 332 260 343 0.96 2.10

Table 1 RMSE (mm) for the whole sets of samples: 1000 for
each simulation scenario and 120 for every version of Kinects
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