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Abstract The MUltiple SIgnal Classification (MUSIC)

estimator has been widely studied for a long time for

its high resolution capabilities in the domain of the di-

rectional of arrival (DOA) estimation, with the sources

assumed to be point. However, when the actual sources

are spatially distributed with angular dispersion, the

performance of the conventional MUSIC is degraded.

This paper deals with the sensitivity of MUSIC to mod-

eling error due to coherently distributed (CD) sources.

A performance analysis of an extended MUSIC taking

into account a generalized steering vector based on a

CD source model (CD-MUSIC) is first studied. We es-

tablish closed-form expressions of the DOA estimation

bias and mean square error due to both the model error

and the effects of a finite number of snapshots. The aim

of this paper is also to determine when the point source

assumption is acceptable for standard MUSIC. The an-

alytical results are validated by numerical simulations

and discussed in different configurations.

Keywords array signal processing, distributed source,

CD MUSIC, performance analyses

1 Introduction

DOA estimation issues such as the effects of model er-

rors, the resolution of closely spaced sources, and the

geometry of antennas have been widely studied in the

past, with the sources assumed to be far-field point

transmitters or reflectors [1–5]. Indeed, in most scenar-

ios the point-source assumption is correct, but in some
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cases, as for instance the localization of acoustics [6] [7]

or bio-medical [8] sources, ocean waves [9], or for mo-

bile channel communication [10], a spatially distributed

model of the sources is more appropriate.

The models for spatially distributed sources have

been classified into two types, namely incoherently dis-

tributed (ID) sources and coherently distributed (CD)

sources. On the first hand, for ID sources, signals com-

ing from different points of the same distributed source

can be considered uncorrelated, therefore the rank of

the noise-free correlation matrix does not equal the

number of signals [11] [12] [13]. On the other hand, in

the scenario of CD sources, the received signal from dif-

ferent points of the same signal components are delayed

and scaled replicas, therefore the rank of the noise-free

correlation matrix equals the number of CD sources

[14]. Most of the works deal with the ID model since in

wireless communication, the multi-path dispersion ef-

fects are modeled as discrete ID scatterers of one source

[15]. In our paper, we focus on other applications such

as acoustic localization where the sources are rather

modeled as continuous CD ones, this work has been

partially presented in [16].

Most of the localisation methods that have been

proposed to take into account the distributed sources

model are based on the joint [14] [17] or iterative [12]

[18] 2D estimation of the DOA and the angular disper-

sion parameters. These approaches present two main

drawbacks: they are time consuming due to multi-parameters

estimation and error modeling is introduced due to the

imperfect knowledge of the angular distribution shapes

of the sources. Otherwise, the standard MUSIC DOA

estimator under point source hypothesis can be used

despite the angular dispersion of actual sources, in this

case an estimation error of the DOA arises due to the

mismatch between the model and the sources. In this
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paper, we introduce an estimator called CD-MUSIC

which can be considered as trade off between a 2D es-

timator and the standard MUSIC based on the point

source hypothesis. This DOA estimator exploits a gen-

eralized steering vector based on a CD source model,

nevertheless it requires to know the angular distribu-

tion shape and dispersion parameters of the sources.

Previous works dealing with modeling error due to

spatially distributed sources can be found in [19] for

Beamforming and [20] for MUSIC. Those works are

mainly based on an 1D model for telecommunication

applications with a small spread dispersion, and a first

order Taylor approximation in the DOA estimation er-

ror is used to obtain theoretical expressions for the per-

formances.

The motivations of the present paper are to study

the sensitivity of MUSIC to error modeling due to co-

herently distributed sources (since the standard point

source MUSIC estimator is a particular case of CD-

MUSIC, theoretical performance analysis provided for

CD-MUSIC is also valid for standard MUSIC). Sec-

ondly, we will provide tools to determine when point

source assumption is acceptable for MUSIC, when CD

source model should be considered, or when more com-

plex 2D estimators should be used. In this paper, the

study is focused on applications such as acoustic imag-

ing and source localisation [6] where due to the experi-

ment configuration, the CD model is more appropriate,

large spread dispersion is expected and hypothesis of

Gaussian shape for the angular distribution is not al-

ways valid.

Modeling errors can originate from the following

configurations: i) the shape (uniform, or Gaussian or

others) of the angular distribution is badly known; ii)

the shape of the angular spread distribution is known

but with an improper spread dispersion parameter value

(for example, a uniform distribution with an improper

angular width, or a Gaussian distribution with an im-

proper standard deviation, etc). To analyze the perfor-

mances, we derive expressions with a second order Tay-

lor approximation in the DOA estimation error rather

than the first order techniques proposed in [19] and [20].

The result is a little more complex, but follows better

the simulation especially when two sources are close and

the angular dispersion parameter is over-estimated. In

addition, we also consider the effect of the finite num-

ber of snapshots which was done in [21] [22] in a similar

way in the scenario of point source. Here, we show that

when the two problems arise simutaneously, the finite

snapshots effect can be explicitly factored in the theo-

retical expressions for the performance analyses. Simu-

lation results validate the theoretical results and illus-

trate the limits of the point source MUSIC for a large

modeling error.

The organization of this paper is as follows. The sig-

nal model and the CD-MUSIC are given in section 2.

In section 3, the sensitivity of the estimator to the spa-

tial dispersion of the sources is theoretically analyzed.

Numerical simulations are presented in section 4 to val-

idate the analytical expressions of the previous section.

Finally, conclusions are given in section 5.

2 Signal model and CD-MUSIC

2.1 Notations

In this paper, we use lower case boldface letters to de-

note vectors and upper case boldface letters to denote

matrices. In addition, we use the following notations

throughout the paper: (·)T : transpose; (·)H : Hermitian

transpose; Re{·}: real part; E[·]: expectation operator;

I: identity matrix.

2.2 Signal model

Let us consider q spatially coherently distributed far-

field sources impinging on an array of M sensors. The

q sources and M signals received on the array at mo-

ment t are denoted by s(t) = [s1(t), . . . , sq(t)]
T and

y(t) = [y1(t), . . . , yM (t)]T , respectively. In the scenario

of distributed sources, y(t) is given by:

y(t) = C(θ)s(t) + n(t), (1)

where n(t) ∈ CM×1 represents additive Gaussian or
uniform noise σ2

b , C(θ) = [ch1
(θ1), . . . , chq (θq)] ∈ CM×q

is the array steering matrix composed of q steering vec-

tors chi(θ) that can be written as proposed in [14]:

chi(θi) =

∫ π
2

−π2
a(θi + φ)hi(φ)dφ, (2)

where a(θ) ∈ CM×1 is the steering vector for a point

source which arrives from the DOA θ. In the general

case, a(θ) can be given by a(θi) =
[
e−j2π

v
λ t1(θi), . . . ,

e−j2π
v
λ tm(θi), . . . , e−j2π

v
λ tM (θi)

]T
, where tm(θi) is the

propagation time for source i to the mth sensor, v is

the propagation speed of the signal and λ is the wave-

length.

The function hi(φ) is introduced to describe the an-

gular spread distribution and it can be parameterized

by an angular dispersion ∆i which is omitted in the

notation. For instance, ∆i stands for the support for a

uniform distribution and for the standard deviation for

a Gaussian distribution.
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The source signals and the additive noise are con-

sidered to be centered Gaussian independent random

variables. Assuming that signals and noises are uncor-

related and the signal sources are uncorrelated with

each other, the correlation matrix is given by: R =

E[yyH ] = CRsC
H + σ2

b I, where Rs is the source co-

variance matrix.

2.3 CD-MUSIC

Under the hypothesis that q < M and Rs and C are not

rank deficient, it is well known that the decomposition

of R into eigenvalues λm and eigenvectors em is given

by: R =
∑M
m=1 λmemeHm = UΛsU

H + σ2
bVVH , where

U = [e1, . . . , eq] spans the signal subspace defined by

the columns of C and V = [eq+1, . . . , eM ] spans the

noise subspace defined as the orthogonal complement

of U, Λs = diag{λ1, . . . , λq}.
In this paper, we focus on a MUSIC based crite-

rion which makes use of the orthogonal property of

span{C} = span{U} and span{V} to estimate the

DOA. We assume that the sources distribution shapes

and the sources angular dispersion parameter ∆i are

known in the model, then there is only one parameter

θi for the ith source to estimate:

θ̂i = argmax
θ

1

‖cHh (θ)V‖2
, (3)

which is named CD-MUSIC in the following. Note that

the standard point source MUSIC estimator belongs to

this class of estimators, since the point source case is

obtained for ∆ = 0 and hi(φ) in (2) being the Dirac

delta function. In the following of this paper, the goal

is to evaluate the robustness of this estimator to model

errors.

2.4 Model error definitions

The criterion (3) can be impacted by two types of er-

rors. First, the actual angular spread distribution h of

the source, may not be known in practice, in this case

the function h̃ used by the estimator will be different

from the actual h, that is to say, the shape of h is badly

known, or the shape of h is known but with an error on

the dispersion parameter ∆. Secondly, the covariance

matrix R is estimated from a finite number of snap-

shots, therefore the estimated covariance matrix R̂ and

its noise subspace V̂ are different from the actual R

and V. Taking into consideration the two types of er-

rors, the algorithm that we study is:

θ̂i = arg max
θ

1

‖cH
h̃

(θ)V̂‖2
. (4)

Let us introduce the definitions related to the er-

rors. Assuming that the estimator (4) is based on an

angular distribution h̃, the model error on the steering

vector is defined as ∆c(θi) = ch̃(θi)−chi(θi). Similarly

the model error on the covariance matrix can be de-

fined as ∆R̃ = R̃−R, where R̃ = C̃RsC̃
H

+σ2
b I, C̃ =

[ch̃(θ1), . . . , ch̃(θq)], and ∆Ṽ = Ṽ−V, where the sub-

space decomposition of R̃ is given by R̃ = ŨΛ̃sŨ
H

+

σ2
b ṼṼ

H
. Assuming again that the covariance matrix

is estimated from N snapshots by the empirical esti-

mator R̂ = 1
N

∑N
n=1 y(tn)yH(tn), the errors are de-

fined by ∆R̂ = R̂ − R and ∆V̂ = V̂ − V, where

R̂ = ÛΛ̂sÛ
H

+σ2
b V̂V̂

H
. Let us also define Π̃ = ṼṼ

H
,

Π̂ = V̂V̂
H

, and Π = VVH .

3 Performance analysis

In this section, we will investigate the effects of an im-

perfect knowledge of h(φ), and the finite number of

snapshots on the CD-MUSIC algorithm.

3.1 General case

According to (4), for the i − th source, the DOA esti-

mation θ̂i satisfies that the first order derivative of the

denominator of (4) equals zero so that :

2Re{ċH
h̃

(θ̂i)Π̂ch̃(θ̂i)} = 0, (5)

where ċh̃(θ̂i) = ∂c(θ)
∂θ |θ̂i .

Assuming that, the estimation error (∆θi = θ̂i− θi)
is small, we introduce the second order Taylor series

approximations of ch̃(θ̂i) and ċh̃(θ̂i):

ch̃(θ̂i) ≈ ch̃(θi) +∆θiċh̃(θi) +
1

2
∆θ2i c̈h̃(θi), (6)

ċh̃(θ̂i) ≈ ċh̃(θi) +∆θic̈h̃(θi) +
1

2
∆θ2i

...
c h̃(θi), (7)

where c̈h̃(θi) = ∂2c(θ)
∂θ2 |θi , and

...
c h̃(θi) = ∂3c(θ)

∂θ3 |θi .
In order to derive the expressions of the DOA es-

timation error, we make use of the first order approxi-

mation in [23], which says that: Π̂ −Π = −Π∆R̂Q−
Q∆R̂Π, where Q = U(Λs − σ2

b I)−1UH , I is the q × q
identity matrix.

Introducing (6) and (7) in (5), and the expression

of Π̂ yields:

A(θi)∆θ
2
i +B(θi)∆θi + C(θi) = 0, (8)

where the terms of order greater than 2 in ∆θi have

been neglected, and the scalar A(θi), B(θi), C(θi) are

defined below with B(θi) = B1(θi)+B2(θi) and C(θi) =
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C1(θi) +C2(θi). In the following, we omit the θi in the

notations for simplicity:

A = Re
{

1

2
ċH
h̃
Π c̈h̃ + c̈H

h̃
Π ċh̃ +

1

2

...
cH
h̃
Πch̃

}
,

B1 = Re
{
ċH
h̃
Π ċh̃ + c̈H

h̃
Πch̃

}
,

B2 = Re
{

2ċH
h̃
Π∆R̂Qċh̃ + c̈H

h̃
Π∆R̂Qch̃

}
,

C1 = Re
{
ċH
h̃
Πch̃

}
, C2 = Re

{
ċH
h̃
Π∆R̂Qch̃

}
.

The expression of ∆θi can be obtained by solving

the 2nd order equation (8).The CD-MUSIC criterion

chooses the minimum value of the denominator as the

estimation result, so θ̂i should satisfy:
∂2cH

h̃
(θ)Π̂ch̃(θ)

∂θ2 |θ̂i>
0, which makes it possible to choose the solution of (8):

∆θi =
−B +

√
B2 − 4AC

2A
. (9)

It follows that the estimation bias and the MSE are

given by:

E [∆θi] =
−B1 +

√
B2

1 − 4AC1

2A
, (10)

E[∆θ2i ] =
B2

1 − 2AC1 −B1

√
B2

1 − 4AC1

2A2
+

σ2
b

N

[(
1

4A2
− B1

4A2
√
B2

1 − 4AC1

)
ϕ+

χ

2A
√
B2

1 − 4AC1

]
.

(11)

The calculations and the definitions of ϕ and χ can be

found in Appendix A.

It is interesting to see that the MSE is composed of

two terms: one only depends on the model error, the

other depends on the model error but with a factor

σ2
b/N . It can be expected that the second term will be

negligible when N increases.

3.2 First order approximation

In this subsection, we discuss the situation where the

estimation error ∆θi is small enough, so that the second

order terms in ∆θi can be negligible with respect to the

first order terms. Keeping only the first order terms in

(8) yields:

B∆θi + C = 0. (12)

Introducing the property Πch̃ = Π∆c, and neglect-

ing the second order terms in ∆θi∆c and ∆θi∆R̂, (12)

becomes:

∆θiċ
H
h̃
Π ċh̃ = Re{ċH

h̃
Π∆c + ċH

h̃
Π∆R̂Qch̃}. (13)

Replacing Π by Π̃ − ∆Π̃, and neglecting the sec-

ond order terms in ∆Π̃∆θi, ∆Π̃∆c and ∆Π̃∆R̂, the

expression of the estimation error of DOA can be sim-

plified as:

∆θi =
Re{ċH

h̃
Π̃∆c}

ċH
h̃
Π̃ ċh̃

+
Re{ċH

h̃
Π̃∆R̂Qch̃}

ċH
h̃
Π̃ ċh̃

. (14)

As ∆R̂ follows a Wishart distribution, E[∆R̂] = 0

[24], it follows that the estimation bias is derived as:

E[∆θi] =
Re{ċH

h̃
Π̃∆c}

ċH
h̃
Π̃ ċh̃

, (15)

and the MSE can be given by:

E[∆θ2i ] =

(
Re{ċH

h̃
Π̃∆c}

ċH
h̃
Π̃ ċh̃

)2

+
σ2
b

2N
·
Re{ċH

h̃
Π̃ ċh̃c

H
h̃

QRQch̃}
(ċH
h̃
Π̃ ċh̃)2

.

(16)

Note that this first order approximation makes it pos-

sible to express (15) and the first term of (16) as an

explicit function of the model error ∆c.

To obtain (15) and (16), the second order of Talyor

approximation in ∆θi has been ignored. Therefore, (15)

and (16) are valid in the case that ∆θi is small enough,

while (10) and (11) are also valid for a larger ∆θi.

Assuming that the source angular distribution is

symmetric and the source dispersion is small enough,

and the array aperture is not too large, we introduce a

second order Taylor approximation in φ such that:

chi(θi) =

∫ π
2

−π2
a(θi + φ)hi(φ)dφ ≈ a(θi) +

1

2
ä(θi)σ

2
h,

(17)

ch̃i(θi) =

∫ π
2

−π2
a(θi + φ)h̃i(φ)dφ ≈ a(θi) +

1

2
ä(θi)σ

2
h̃
,

(18)

where σ2
h =

∫
φ2h(φ)dφ, σ2

h̃
=
∫
φ2h̃(φ)dφ is the angu-

lar spread of the source and the model, respectively.

For the sake of simplicity, assume again that we are

in the case of one source. Taking into account that Π̃ =

I − ch̃(cH
h̃

ch̃)−1cH
h̃

, and introducing (17) and (18) in

(15), the estimation bias can be given by:

E[∆θi] =
1

2

(σ2
h̃
− σ2

h)(aH äȧHa−M ȧH ä)

M ȧH ȧ− ȧHaaH ȧ
, (19)

where a is simplified for a(θi), ȧ = ∂a
∂θ , ä = ∂2a

∂θ2 ,
...
a =

∂3a
∂θ3 .
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Let us recall that a(θi) =
[
e−jτ1 , . . . , e−jτm , . . . , e−jτM

]
,

where τm = 2π vλ tm(θi). The estimation bias can be

given as:

E[∆θi] (20)

=
1

2

(σ2
h̃
− σ2

h)(
∑M
m=1 τ̈m

∑M
m=1 τ̇m −M

∑M
m=1 τ̇mτ̈m)

M
∑M
m=1 τ̇

2
m − (

∑M
m=1 τ̇m)2

,

(21)

where τ̇m = ∂τm
∂θ , τ̈m = ∂2τm

∂θ2 .

An important result is that, at first order, the esti-

mation bias only depends on the difference of the an-

gular spread of the source and the model and not on

their shapes.

Assuming a linear array is used, τm = 2πdm sin(θ),

where dm is the distance between the mth sensor and

the origin, and the estimation bias can be given as:

E[∆θi] =
1

2
(σ2
h̃
− σ2

h) tan(θ). (22)

From (19) and (22) we can see that the sign of the

estimation bias depends on the difference between the

angular spread of the source and the model. Note that

in the case of a uniform distribution of the spatial dis-

persion, σ2
h = ∆2/12 while for the Gaussian distribu-

tion σ2
h = ∆2.

4 Numerical results

In this section, numerical examples are presented to il-

lustrate the validity of the analytical results of the esti-

mation performances established in section 3. In all sim-

ulations, source signals s(t) and noise n(t) are complex

Gaussian independent random variables, with zero as

mean value and 1 as source power. A uniform linear ar-

ray (ULA) is composed ofM = 10 omni-directional sen-

sors spaced by half-wavelength. In this case the steer-

ing vector pour point source i can be given as a(θi) =[
1, e−jπsin(θi), . . . , e−jπ(M−1)sin(θi)

]T
. The steering vec-

tor for uniformly distributed and Gaussian source can

be given as chi(θi) = 1
∆

∫ ∆
2

−∆2
a(θi+φ)dφ, and chi(θi) =

1√
2π∆

∫ +∞
−∞ a(θi +φ) exp{− φ2

2∆2 }dφ, respectively. In ad-

dition, SNR = 10dB, and N = 1000 snapshots. Each

Monte-Carlo simulation is a realization of source sig-

nals and additive noise. Different analytical results are

compared to simulation results. We first present the val-

idation of our theoretical results and then we analyze

the performance.
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Fig. 2 DOA estimation error vs. difference of the angular
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4.1 Validation of theoretical results

The validation of estimation bias formulas (10) and (15)

is illustrated in figure 1, with two uniform distributed

sources (θ1 = 33◦, θ2 = 47◦), and with a same angular

dispersion ∆ = 10◦. Figure 1(a) shows the error for an

underestimation of the dispersion parameter ∆ while

Figure 1(b) shows error for an overestimation. As ex-

pected, the estimation bias is null when the exact model

parameter ∆̃ = ∆ = 10◦ is used. Comparing the simu-

lation results, one can observe that the DOA estimation

bias is smaller when the parameter ∆̃ is smaller than

∆ (Figure 1(a)), than when it is larger than ∆ (Fig-

ure 1(b)). Focusing on the validity of the expressions

derived in the previous section, we can notice that for

both θ1 and θ2, the DOA estimation bias obtained in

(10) outperforms the one obtained in (15), where the

advantage of (10) is much more evident for θ1, which

has a larger estimation error.

Figure 2 illustrates the validation of the results ob-

tained in (22) as a function of the difference of the an-

gular spread of the source and model, in order to ex-

press the estimation error as an explicit function of the

model error. In this scenario one source is considered at

θ0 = 45◦ with uniform distribution and ∆ varies from

0◦ to 15◦, the model is uniform in figure 2(a) and Gaus-

sian in figure 2(b). The origin is placed at the center of

the array. We can see that for such an array configu-
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Fig. 3 DOA estimation error |∆θ2| vs. angular dispersion of
the model (2 sources)

ration, the sign of the estimation bias depends on the

difference between angular dispersion of the source and

the model. In particular, when the angular spread of

the source equals to the angular spread of the model,

the estimation bias vanishes.

4.2 Robustness to shape mismatch

These simulations investigate the impact of the model

error due to a mismatch of the shape of the angular

distribution. To localize a source with an actual uni-

form distribution, we compare the performance of three

estimators: i) MUSIC, assuming a point source model

(figure 3(a), 3(b)), ii) CD-MUSIC assuming a uniform

angular dispersion (figure 3(a)), or iii) a Gaussian angu-

lar dispersion (figure 3(b)). We consider the case where

two uniform distributed sources arrive from θ1 = 28◦

and θ2 = 32◦, with an angular dispersion ∆ = 10◦,

assuming that the covariance matrix is known. Esti-

mation error from simulation and theoretical equations

(10) are plotted versus the model dispersion parameter

∆̃.

In figure 3(a), it is shown that the model error due

to a point source model (point model MUSIC) provides

a larger estimation error than the model error due to

a mismatch on parameter ∆, except when ∆ is over-

estimated.

As expected, the error due to distributed sources

can be canceled with CD-MUSIC if the source disper-

sion parameters are known (in this case : uniform distri-

bution and ∆̃ = ∆ = 10◦). Moreover, if the dispersion is

only roughly known (i.e. ∆̃ ≈ ∆ = 10◦ one can see that

CD-MUSIC still outperforms standard MUSIC unless

dispersion is too overestimated.

When the model error is due to the use of a Gaussian

shape instead of a uniform one (figure 3(b)), we can

note that the CD-MUSIC error can be also reduced near

to zero for the value ∆̃ ≈ 3.5◦, which approximately

corresponds to the case σ2
h = σ2

h̃
, when ∆ = 10◦ is the
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(b) Theory eq. (10)

Fig. 4 |E [∆θ1] | vs. the source angular separation |θ2 − θ1|
and model angular dispersion ∆̃ (2 sources)
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(b) Separated sources case

Fig. 5 |E [∆θ1] | vs. model angular dispersion ∆̃ (2 sources)

spread of the rectangular model and ∆ = 3.5◦ is the

standard deviation of the Gaussian model.

The results reveal the robustness of CD-MUSIC to

the spatial distribution of the sources. Even if we take

an angular distribution shape for the model which is

different from that of the source signal, it is possible

to have a DOA estimation bias near to zero providing

∆̃ is well chosen. The only case where standard MU-

SIC outperforms CD-MUSIC is when the dispersion is

badly known and it is overestimated with respect to the

actual value. Also note that in this scenario the theoret-
ical expression fits the simulation results except when

resolution problems arise (mainly when the parameter

∆ is over-estimated).

4.3 Angular separation

In order to explore the resolution capabilities of CD-

MUSIC in presence of model errors, figure 4 shows the

absolute value of the DOA estimation bias when the

model error due to the dispersion parameter (∆̃) and

the angle between the two sources (θ2 − θ1) both vary.

In this scenario, we consider two sources with uniform

angular dispersion (∆ = 10◦) and with θm = 1
2 (θ1 +

θ2) = 30◦. The stars mark the region where the sources

are not resolved, that is to say, the two sources are so

close that the CD-MUSIC criterion has only one peak

in the middle. In order to highlight the behavior of the

estimator, figure 5 plots the estimation error in two

extreme cases : for close sources (θ2 − θ1 = 4◦ - figure
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Fig. 6 DOA RMSE vs. number of snapshots (2 sources) 100
Monte-Carlo simulations)

5(a)) and for separated sources (θ2 − θ1 = 18◦ - figure

5(b)).

From these results one can observe that firstly, CD-

MUSIC achieves high resolution performance for CD

sources under the constraint of small modeling error

(i.e. ∆̃ ≈ ∆ = 10◦). In contrary, standard point source

MUSIC estimator (i.e. ∆̃ = 0) can not provide re-

liable estimate for close CD sources. Secondly, when

CD sources are well separated, CD-MUSIC is robust to

model error on the angular dispersion parameter unless

it is overestimated (∆̃ > ∆). Focussing on point source

MUSIC (∆), one can notice that it provides accurate

estimates in this case. In conclusion, unless for high res-

olution purpose, error modeling due to CD sources can

be neglected.

4.4 Performance versus the number of snapshots

In figure 6, the RMSE (root mean square error) of

the estimator is plotted versus the snapshots number.

A uniform source and a Gaussian source arrive from

θ1 = 26◦ and θ2 = 34◦, respectively. We compare the

performance of CD-MUSIC (with uniform distributed

model in two cases: with a large error on dispersion pa-

rameter ∆̃ = 5◦ and with a smaller error ∆̃ = 9◦), MU-

SIC for point source, and DSPE (with uniform source

model). DSPE proposed in [14] estimates jointly the

DOA and the source angular dispersion parameter, us-

ing a 2D MUSIC based approach but it is more time-

consuming. The RMSE for CD-MUSIC and MUSIC de-

crease as well as N increases, and then converge to non

zero values given by (16). This reveals that when there

are two perturbations, the finite number of snapshots

effect dominates in the case of a small number of snap-

shots whereas the model error effect dominates when

the number of snapshots is large. Also, in the case where

the finite number of snapshots effect dominates, the 1D

estimators have better performances; in contrary, when

the model error effect dominates, the 2D estimator has

better performance.

The advantage of CD-MUSIC in the case that the

information of angular distribution of the actual sources

is roughly known is illustrated by these simulations.

When the model error is small (case ∆̃ = 9◦) CD-

MUSIC outperforms conventional MUSIC but also the

more complex estimator DSPE for N < 100 or N <

1000 according to the type of sources. When the model

error is larger (case ∆̃ = 5◦) CD-MUSIC is almost

equivalent to MUSIC except for a small number of snap-

shots.

Note that for CD-MUSIC and MUSIC, when N is

too small, the theoretical results given by (16) do not

suit the simulation results, because a first order of ap-

proximation of ∆R̂ is not enough when ∆R̂ is too large.

5 Conclusion

This paper has investigated the effects of both the an-

gular dispersion of the source and the finite number

of snapshots on the behavior of the CD-MUSIC. New

analytical expressions of the DOA estimation bias and

MSE as a function of these two perturbations have been

given based on the second order Taylor approximation

in order to provide accurate expressions even for a large

error.

Numerical simulations are in adequacy with the pro-

posed theoretical results. We have shown that, CD-

MUSIC can be viewed as a trade-off between the stan-

dard MUSIC and 2D estimator DSPE. In the case that

the angular dispersions of the sources are roughly known,

it outperforms the standard MUSIC and the perfor-

mance can be quite similar to DSPE (or even better for

a small number of samples) while DSPE has the main

drawback to require the maximization of a 2D criterion.

We also have shown that, at the first order and in the

one source case, the DOA estimation bias only depends

on the difference of the angular spreads between the

model and signal spatial distributions and not on their

shapes. These results also make it possible to determine

when we can use the standard MUSIC and which error

shall be expected, and when, on the contrary, it will be

necessary to use a more computationally complex 2D

method such as DSPE.

Appendix A

Based on (9), we study the case that the number of snapshots
N is big enough, so that ∆R̂, B2, C2 is small, we can make
the approximation :√
B2 − 4AC ≈

√
B2

1 − 4AC1(1 +
1

2

2B1B2 +B2
2 − 4AC2

B2
1 − 4AC1

).

(23)
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Introducing (23) in (9), and keeping only first order terms
in ∆R̂, the expression of DOA estimation error can be given
by:

∆θi ≈
−(B1 +B2) +

√
B2

1 − 4AC1(1 + 1
2

2B1B2−4AC2

B2
1−4AC1

)

2A
. (24)

∆R̂ is a Wishart distribution [24] matrix with the prop-
erty E[∆R̂] = 0, so that E[B2] = E[C2] = 0. It follows that
the DOA estimation bias can be derived as (10). Similarly,
the DOA estimation MSE can be given by:

E[∆θ2i ] =
B2

1 − 2AC1 −B1

√
B2

1 − 4AC1

2A2

+ (1/2A2 −
B1

2A2
√
B2

1 − 4AC1

)E[B2
2 ] +

1

A
√
B2

1 − 4AC1

E[B2C2].

(25)

Using the same method in [21], we obtain E[B2
2 ] =

σ2
b

2N
ϕ

and E[B2C2] =
σ2
b

2N
χ, where:

ϕ ,Re
{

4ċh(θi)
HΠċh(θi)ċh(θi)

HQRQċh(θi)

+ 4c̈h(θi)
HΠċh(θi)ch(θi)QRQch(θi)

+ c̈h(θi)
HΠc̈h(θi)ch(θi)QRQch(θi)

}
,

χ ,Re
{

2ċh(θi)
HΠċh(θi)ċh(θi)QRQch(θi)

+c̈h(θi)
HΠċh(θi)ch(θi)QRQch(θi)

}
.
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