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Abstract In this paper, we propose the use of compensatory
fuzzy logic to extend mathematical morphology (MM) oper-
ators to gray-level images, in a similar way than fuzzy logic
is used, naming it compensatory fuzzy mathematical mor-
phology (CFMM). We study the compliance with the four
principles of quantification and analyze the robustness of
these operators by comparing them with Classic MM and
fuzzy mathematical morphology (FMM), in the context of
the processing of magnetic resonance images under noisy
conditions. We observed that operators of CFMM are more
robust, relative to noise, than MM and FMM ones, for the
type of images used. As an additional result of this work, we
developed a library for CFMM operators, plus an additional
graphical user interface, which brings together the new oper-
ators with a wide range of operators of FMM and Classic
MM.
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1 Introduction

Mathematical morphology (MM) is a theory proposed origi-
nally for the characterization of structural properties of some
materials, based on photographic images [25,26]. Geomet-
ric structures in these images are analyzed using nonlinear
operations, allowing themeasurement of their shape, size and
orientation. A key aspect of MM is the probing of the images
by small sets, named structuring elements (SE). On the other
hand, the theory of Fuzzy Sets found promising applications
in Digital Image Processing, existing, actually, a variety of
tools and methods where it was applied with satisfactory
results [3]. One of these applications is in the Fuzzy Math-
ematical Morphology (FMM), which extends basic binary
operators, like erosions and dilations, to gray-level images
[2]. Additionally, pseudo-morphologies are mathematical
morphology frameworks that lack some of the theoretical
properties of MM, like adjunctions, in order to improve on
someother properties, like efficiency or robustness.As exam-
ple of well-known pseudo-morphologies are those defined
for color images which compute the extrema of the pixels
at the window, without using a total ordering of the color
vector values. Despite not respecting all the theoretical prop-
erties of MM, they can be of interest in various situations
[1,12]. In this direction, a definition of gray-levelmorpholog-
ical operators based on Compensatory Fuzzy Logic, named
Compensatory Fuzzy Mathematical Morphology (CFMM),
was presented in a preliminarywork [5]. It provided improve-
ments over other extensions of MM based on Fuzzy Sets [5].
In this work, we describe a complete formalization of such
extension, showing its compliance with the four principles
of quantification in Rn defined by Serra [25], and study its
robustness, against noise, relative to classic MM and pre-
viously defined FMM operators. Regarding the last part, the
performance of the operators was assessed onmagnetic reso-
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nance images (MRI), since the medical imaging field is ideal
for the application of fuzzy techniques, and in particular, the
generation mechanisms of MRI images result in imprecision
in the definition of the borders between different structures or
tissues [3], which is a situation where fuzzy operators show
to be more robust [5]. In addition, a library of CFMM opera-
tors, and a graphical user interface, were developed, bringing
together a wide range of operators of FMM and MM. The
software allows for full parameterizations and provides dis-
play of the results, to support prototyping and learning. It
also includes general techniques of image processing, such
as enhancement techniques and logical and algebraic opera-
tions, as a complement to the morphological operators.

2 Fuzzy mathematical morphology

The Fuzzy mathematical morphology (FMM) is an exten-
sion of the binary MM to gray-level images, by replacing set
operations by fuzzy set operations [2,13,14]. FMM is based
on Fuzzy Logic and is already able to solve several problems
in image processing. The main idea behind the FMM lies on
the extension of inclusion and intersection, from the Boolean
domain {0, 1}×{0, 1} to {0, 1}, used in binarymorphology, to
implications and conjunctions, which are functions from the
rectangle [0, 1]×[0, 1] to [0, 1]. In this approach, gray-level
images are represented as fuzzy sets, but it does notmean that
they need to be interpreted actually as being fuzzy. The oper-
ations between fuzzy sets are defined from the operations of
conjunction and disjunction on the membership values for
such sets [16].

In this work, μ and ν indicate two fuzzy sets, with mem-
bership functions μ : Uμ ⊂ R2 → [0, 1] and ν : Uν ⊂
R2 → [0, 1], respectively, where the first one corresponds to
the gray-level image under study and the second one to the
fuzzy SE. There are several approaches, developed by dif-
ferent authors in the literature, which study the extension of
binary basic MM operators to gray-level images using fuzzy
set theory [2,13–15,19,22]. Bloch and Maître achieved the
unification of all these approaches, based on t-norms and
s-norms [2]. We describe here the basic FMM operators as
defined there. The fuzzy dilation of the image μ by the SE ν

is defined as:

δ(μ, ν)(x) = sup
y∈Uν

[t (μ(y), ν(y − x))] (1)

where t (a, b) is a t-norm [20,21].
The fuzzy erosion of the image μ by the SE ν is defined

as:

ε(μ, ν)(x) = inf
y∈Uν

[I (μ(y), ν(y − x))] (2)

where I (a, b) is a fuzzy implication [22].

Since I (a, b) = s(N (a), b), Eq. 2 can be rewritten equiv-
alently as follows:

ε(μ, ν)(x) = inf
y∈Uν

[s(μ(y), N (ν(y − x)))] (3)

where s(a, b) is a s-norm, dual to t, and N (a) is the fuzzy
complement [20].

3 Advances in compensatory fuzzy mathematical
morphology

This section presents a description of the advances on the
topic of the CFMM. In the first part, we will describe the
CFMMbasedon thegeometricmean.Next,wewill define the
new Compensatory Logic based on arithmetic mean, and its
use in the definition of a new CFMM based on the arithmetic
mean. Then, we describe the implementation of a Matlab
library, and aGUI-based program for image processing, com-
pletely developed inMatlab©. In the final part of this section,
we show some application of the new operators to problems
of biomedical images segmentation.

3.1 CFMM based on the geometric mean

Fuzzy logic may be viewed as an attempt to formalize the
human ability to make rational decisions in environments
of imprecision, uncertainty, incompleteness of information,
conflicting information, and partiality of truth [27]. Twomain
features of fuzzy logic are a) the associative property of the
conjunction and disjunction operators, and b) the absence
of compensation of the truth values of the basic predicates,
when computing true values for complex predicates. How-
ever, whenmodeling a problemwhere predicates do not have
the same relevance, it is desirable to compensate truth val-
ues of the basic predicates, and for that it is also necessary
to lose the associative property. These needs are solved by
the use of non-associative multivalent logic systems, which
allow for truth value compensation between basic predicates
[17]. Compensatory Fuzzy Logic (CFL) is a multi-valued
logic model that removes classic axioms to attain a sys-
tem which is sensitive and idempotent, and compensates the
predicates. Basically, for fuzzy logic, the truth value of a
conjunction is always smaller or equal than the truth val-
ues of its components, and the truth value of a disjunction
is always greater or equal than them. The removal of these
two constraints is the foundation of the CFL. The decrease
of the truth value in a component variable is compensated
by the increase in another variable, allowing for higher val-
ues on the conjunction. The same behavior can be seen in
disjunctions. This behavior makes the logic more sensitive
to its variables [17,18]. Formally, a CFL is a quadruple
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(C, D, O, N ) of continuous operators, a conjunction C :
[0, 1]n → [0, 1], a disjunction D : [0, 1]n → [0, 1], an order
O : [0, 1]2 → [0, 1] and a negation N : [0, 1] → [0, 1], that
satisfy a set of axioms listed below. Let x = (x1, x2, ..., xn),
y = (y1, y2, ..., yn) and z = (z1, z2, ..., zn) be elements in
[0, 1]n , the operators must satisfy the following properties
[18]:

(a) Compensation: min{x1, x2, . . . , xn} ≤ C(x) ≤
max{x1, x2, . . . , xn}

(b) Commutative: C(x1, . . . , xi , . . . , x j , . . . , xn) =
C(x1, . . . , x j , . . . , xi , . . . , xn)

(c) Strictly Increasing: If x1 = y1, x2 = y2, ..., xi−1 = yi−1,
xi+1 = yi+1, ..., xn = yn are nonzero, and xi > yi then
C(x) > C(y)

(d) Veto: If xi = 0 for some i , 1 ≤ i ≤ n then C(x) = 0
(e) Fuzzy Reciprocity: O(x, y) = N [O(y, x)]
(f) Fuzzy Transitivity: If O(x, y) ≥ 0.5 and O(y, z) ≥ 0.5

then O(x, z) ≥ max{O(x, y), O(y, z)}
(g) De Morgan Laws: N [C(x1, x2, . . . , xn)] =

D(N (x1), N (x2), . . . , N (xn))N [D(x1, x2, . . . , xn)] =
C(N (x1), N (x2), . . . , N (xn))

The compensatory axiom differentiates the CFL from the
more general Fuzzy Logic [18]. The original definition of
CFL, named Geometric Mean Based Compensatory Fuzzy
Logic (GMBCFL), is based on the geometrical mean, and its
dual, to define conjunction and disjunction operators [17].
Equations 4– 7 define the four operators of this compensatory
fuzzy logic:

C(x) = (x1 × x2 × · · · × xn)
1
n (4)

D(x) = 1 − [(1 − x1) × (1 − x2) × · · · × (1 − xn))] 1
n (5)

O(x, y) = 0, 5[C(x) − C(y)] + 0, 5 (6)

N (xi ) = 1 − xi (7)

Based on the CFL, we presented in [5] a pseudo MM,
called compensatory fuzzymathematicalmorphology,where
the t-norms and s-norms of the FMM, used in Eqs. 1 and 2,
were replaced by the compensatory operators of conjunction
and disjunction. This way, the compensatory dilation and
erosion of the image μ by the SE ν are defined, respectively,
as:

δ(μ, ν)(x) = sup
y∈Uν

[C(μ(y), ν(y − x))] (8)

ε(μ, ν)(x) = inf
y∈Uν

[I (ν(y − x), μ(y))] (9)

where C is the compensatory conjunction and I is the com-
pensatory implication defined as I (a, b) = D(N (a), b)with
N the negation operator of Eq. 7. It is important to note
that the order operator O is not used in the definition of the

morphological operators, but it is necessary for a complete
definition of the CFL.

3.2 CFMM based on the arithmetic mean

Previous work on Compensatory Logic was based on a set
of rules, defining which properties a Fuzzy Logic needed to
comply with, to be compensatory, and a explicit definition
of the Geometric Mean Based Compensatory Logic [17,18],
which did indeed comply with the requirements. In [6], we
proved that there are indeed more Fuzzy Logics complying
with these requirements, defining theArithmeticMeanBased
Compensatory Fuzzy Logic (AMBCFL), based on a quartet
of operators (C, D, O, N ), where C and D are replaced by:

C(x) =
[
min(x1, x2, . . . , xn) × 1

n
×

n∑
i=1

xi

] 1
2

(10)

D(x) = 1 − C(1 − x) (11)

The conjunction and disjunction defined by Eqs. 10 and 11
satisfy the CFL properties (a) to (g) [6], and they can be used
to define new compensatory morphological operators [4]. In
posterior chapters, we will prove how these new operators
comply with the some of the properties required for a math-
ematical morphology, as defined in [2].

3.3 Software implementation

As a result of this work, we developed a software library, with
efficient implementation of the operators, providing also a
user-friendly image processing program. This development
also filled the lack of existence of image processing soft-
ware focused on the FMM and CFMM. This tool should help
greatly to the design of prototypes for image processing tasks
based on FMM. This development was done with Matlab©

as programming language, resulting on a library and a graph-
ical interface for image processing,with awide range ofMM,
FMM and CFMMoperators [8]. This tool provides extensive
visualization capabilities, allowing the interactive design of
algorithms.More classical image processing techniqueswere
also included, to complement the morphological operators in
the design of full image processing solutions.

3.4 Applications

Previous results include the detection of vascular trees in
retinal images using CFMM [7] and the tracking of bacteria
movements in dynamic speckle laser images using CFMM
[23]. In [9], we propose a new linguistic representation of
CFMM dilation and erosion operators, in a way that they can
be associatedwith colloquial language. The proposal consists
on replacing the supremum and infimum by the “existential”
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quantifier and the “for all” quantifier, respectively. Addition-
ally, we appliedCFMMto quantify the cover area of a surface
coated by spray, measuring the profile deposition area from
the completely cover surface, to the edge of the spray cone
[24], and applied CFMM operators to the segmentation of
lateral ventricles in MRI [10].

4 Compensatory fuzzy mathematical morphology
based on arithmetic mean

In a previous section, we presented the equations for com-
pensatory dilation and erosion, for an image μ with a SE ν,
which were defined by Eqs. 8 and 9, where C and D are
the compensatory conjunction and disjunction, respectively.
Replacing these operators by the conjunction and disjunction
of the AMBCFL, given by Eqs. 10 and 11, we can define new
morphological operators:

δ(μ, ν)(x) = sup
y∈Uν

[min(μ(y), ν(y − x)) . . .

. . .
μ(y) + ν(y − x)

2

] 1
2

(12)

ε(μ, ν)(x) = inf
y∈Uν

{1 − [min(1 − μ(y), ν(y − x)) . . .

. . .
1 − μ(y) + ν(y − x)

2

] 1
2
}

(13)

The duality between (12) and (13) results from the known
duality betweenC and D.Wemust prove that these operators
verify the four principles proposed by Serra in [25] (that
Bloch and Maître translated to fuzzy language [2]). In the
following section, we show that the new operators, defined
in Eqs. 12 and 13, generate a FMM. Because the operations
of conjunction and disjunction are operations of CFL, we call
the morphology based on these operators as Compensatory
Fuzzy Mathematical Morphology.

4.1 First principle: translation invariance

The first principle establishes that a transformation of fuzzy
sets ϕ is translation invariant if ∀μ ∈ M , ∀t ∈ S, ϕ(μ+ t) =
[ϕ(μ)] + t , where μ + t is a fuzzy set whose member-
ship function μ is translated by t , that is to say: ∀x ∈ S
(μ+ t)(x) = μ(x + t). It is important to clarify that M is the
space of all fuzzy sets and S is the domain of the membership
function μ : S → [0, 1]. Since the same SE is used every-
where in space, the translation invariance is directly derived.
Therefore:

δ(μ, ν) + t = δ(μ + t, ν) (14)

ε(μ, ν) + t = ε(μ + t, ν) (15)

4.2 Second principle: compatible with homothesis

A transformation of fuzzy sets ϕ is compatible with homoth-
esis if ϕ(λμ) = λϕ(μ), ∀μ ∈ M , ∀λ ∈ (0, 1] , where
(λμ)(x) = λμ(x). This principle is not satisfied for the new
operators of the CFMM, as shown by the following example:
let be λ = 0.5, a = 0.3 and b = 0.6:

C(λa, b) = 0.2372 λC(a, b) = 0.1837

D(λa, b) = 0.2929 λD(a, b) = 0.2655

Thus, C(λa, b) �= λC(a, b) and D(λa, b) �= λD(a, b).
However, property 2 does not need to be strongly imposed,
because for fuzzy sets, compatibility with homothesis can be
avoided [2,11].

4.3 Third principle: local knowledge

The fuzzy equivalent to the third principle of MM can be
expressed as follows: Let μ and ν be two fuzzy subsets of
S and let σ be a set a bounded set of S such that μ

⋂
σ is

known. Then, the fuzzy erosion and dilation verified the local
knowledge if a bounded set σ ′ of S exists and it depends
only of σ such that ε(μ

⋂
σ, ν)

⋂
σ ′ = ε(μ, ν)

⋂
σ ′ and

δ(μ
⋂

σ, ν)
⋂

σ ′ = δ(μ, ν)
⋂

σ ′.
To show that the third principle is satisfied, we will use

the following theorem [11]:

Theorem 1 Let μ and ν fuzzy subsets of S, let σ be any
bounded classic set of S in which μ

⋂
σ is known and let

I be a fuzzy implication decreasing with respect to the first
variable and increasing in the second variable and verifying
I (0, b) = 1 ∀b ∈ [0, 1]. Then, the following two equalities
are satisfied:

1. ε(μ
⋂

σ, ν)
⋂

ε(σ, ν◦α) = ε(μ, ν)
⋂

ε(σ, ν◦α)

2. δ((μ
⋂

σ)
⋃

σC , ν)
⋂

ε(σ, (−ν)◦α) = ...

... = δ(μ
⋂

σ, ν)
⋂

ε(σ, (−ν)◦α)

being ν◦α = ⋃
α∈]0,1] να .

To show that the compensatory erosion of the CFMMver-
ifies this principle, we use the fact that it is defined from
implication (Eq. 2) as:

ε(μ, ν)(x) = inf
y∈Uν

[I (ν(y − x), μ(y))]

Therefore, it must be shown that the implication used
in the definition of erosion is decreasing in the first argu-
ment, increasing in the second argument and that it verifies
I (0, b) = 1∀b ∈ [0, 1].

In first place, we show that it is decreasing in the first
argument: let be a ≤ a∗, then:
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min(a, 1 − b) ≤ min(a∗, 1 − b) ∧ (a + 1 − b)

2
≤ a∗ + 1 − b

2[
min(a, 1 − b)

(a + 1 − b)

2

] 1
2 ≤

[
min(a∗, 1 − b)

(a∗ + 1 − b)

2

] 1
2

1 −
[
min(a, 1 − b)

(a + 1 − b)

2

] 1
2 ≥ 1−

[
min(a∗, 1−b)

(a∗+1−b)

2

] 1
2

D(N (a), b) ≥ D(N (a∗), b) ⇒ I (a, b) ≥ I (a∗, b)

In secondplace,weprove that it is decreasing in the second
argument: let be b ≤ b∗, then:

min(a, 1 − b) ≥ min(a, 1 − b∗) ∧ (a + 1 − b)

2
≥ a + 1 − b∗

2[
min(a, 1 − b)

(a + 1 − b)

2

] 1
2 ≥

[
min(a, 1 − b∗)

(a + 1 − b∗)

2

] 1
2

1 −
[
min(a, 1 − b)

(a + 1 − b)

2

] 1
2 ≤ 1−

[
min(a, 1−b∗)

(a+1−b∗)

2

] 1
2

D(N (a), b) ≤ D(N (a), b∗) ⇒ I (a, b) ≤ I (a, b∗)

Finally, we show that it satisfies the condition requested:

I (0, b) = D(N (0), b) = D(1, b) = . . .

. . . = 1 −
[
min(0, 1 − b)

1 − b

2

] 1
2 = 1

Thus, the erosion of the CFMM satisfies the conditions
of the theorem; therefore, it satisfies the principle of local
knowledge. The proof for dilation is similar.

4.4 Fourth principle: morphological transformations
semicontinuity

The following theorem, whose proof can be found in [11],
suggests that if the fuzzy implication used in the definition
of the operators is semicontinuous, then the operator is semi-
continuous.

Theorem 2 Let I be a fuzzy implication I : [0, 1]×[0, 1] →
[0, 1] that is decreasing in the first argument, increasing in
the second argument and semicontinuous. Then, the fuzzy
erosion is semicontinuous, that is ∀x ∈ U:

ε

(
sup
i∈N

μi , inf
j∈N ν j

)
(x) = inf

i, j∈N ε(μi , ν j )(x)

To meet the conditions of this theorem, the fuzzy impli-
cation needs to be semicontinuous, because it was already
shown that it is decreasing in the first argument and increas-
ing in the second. To show semicontinuity, it is easy to verify:

limI (ai , b j ) = inf
n≥0

sup
i, j≥n

I (ai , b j ) = I

(
sup
i∈N

(ai ), inf
j∈N(b j )

)

Therefore, limI (ai , b j ) is bounded, and the implication is
semicontinuous. As a result, the compensatory erosion is a
semicontinuous operator. From duality between operators, it
follows that the compensatory dilation is also semicontinu-
ous.

Therefore, for erosion and dilation of the CFMM, three of
the four principles of mathematical morphological, extended
to FMM in [2], hold true.

5 Robustness analysis

If an operator is heuristically defined to handle a task, robust-
ness is a desirable feature, since it means that the end result
would not be affected by noise on the images. For this anal-
ysis, we used MRI, because they are one of the fields of
interest in biomedical imaging, and noise is one common
issue in this type of images. Therefore, in this section we
analyze the robustness of the basic operators against noise in
the images, comparing classic MM, FMM and CFMM. The
evaluation is based on measuring how much the result, over
noisy images, is different from the result when the operators
are applied on the original, noiseless, images.

5.1 Materials and methods

We call I the original noiseless image, and Iλ the noisy
image, obtained by applying a noise model on I . Let λ a
parameter that controls the amount of noise in the model,
for example the standard deviation for white noise, where
λ = σ 2. To measure the amount of change in the resulting
image, after application of the operator ψ , we define Eλ as
the difference between ψ(I ) and ψ(Iλ). The difference is
measured by the mean square error between the two images:
Eλ = MSE(ψ(I ), ψ(Iλ)). A lowvalue of Eλ indicates a high
similarity between these images, indicating that the noise did
not affect noticeably the operator.

Since the noise was randomly generated, we averaged the
results over the 100 repeats. Finally, the same analysis was
repeatedover 10differentMRI.Additionally, in the definition
of FMM some norms are based on a parameter γ , which was
selected based on the previous experience.

The operators used in the analysis consisted in dilation
and erosion, since most of the morphological operators are
based on these two. Because they are completely defined by
their SE, we used different SE sizes. The technical details are
described in the following list:

• Images: the ten images used were MRI acquired with a
Tesla 1.5 equipment. The protocol included coronal and
axial images, weighted in T2 (TR = 3500 ms, TE! = 32
ms, TE = 96 ms).
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Fig. 1 Fuzzy structuring elements used in the analysis. a 3×3. b 5×5.
c 7 × 7. d 11 × 11. e 15 × 15

Fig. 2 a Original image. b Noisy image (σ 2 = 300)

• FMM: the six different norms used to define the fuzzy
operators are algebraic (T1-S1), standard (T2-S2), bounded
(T3-S3), drastic (T4-S4), Dubois & Prade (T5-S5) and
Hamacher (T6-S6) [5].

• CFMM: the twodefinitions of compensatorymorphology
used are defined by Eqs. 4, 5, 10 and 11. C1 and D1
denote the operators of the GMBCFL. C2 and D2 denote
the operators of the AMBCFL.

• Noise: the noise used follows an additiveGaussianmodel
N (0, σ 2), with six different variance values: σ 2 =
{50, 100, 150, 200, 250, 300}.

• Repeats: the analysis was repeated 100 times, generating
new instances of the random noise each time.

• Operators: dilation and erosion.
• Structuring Element: we used five different symmetric
fuzzy structuring elements, of size 3 × 3, 5 × 5, 7 × 7,
11 × 11 and 15 × 15. The shape of these elements was
defined by aGaussian function centered on the SE center,
as shown in Fig. 1. In the case of MM, the flat SE was
defined as an square of the same size of each fuzzy SE.

• FMM parameter: for these FMM models that need a
parameter γ (Dubois & Prade and Hamacher), the value
used was γ = 0.2.

5.2 Results

In this section, we present the results of the robustness anal-
ysis performed. As an example of results, Fig. 2 shows an
original image and the associated noisy image (for a value of
σ 2 = 300), and Fig. 3 shows the results of the dilation opera-
tor of these two images, forMM,CFMMandFMM(using the
Bounded norm), using a 7× 7 structuring element. Figure 4
shows the results of the erosion operator, for the samemodels.

Figures 5 and 6 show, as an example, the plot of mean
square error (MSE) against noise level for SE of dimension
3 × 3 and 15 × 15. In each graph, the different models are
displayed in different colors. The vertical interval on each

Fig. 3 Dilation of the original and noisy images: a–e FMM using the
Bounded norm, b–f CFMM based on geometric mean, c–g CFMM
based on arithmetic mean, d–e MM

Fig. 4 Erosion of the original and noisy images: a–e FMM using the
Bounded norm, b–f CFMM based on geometric mean, c–g CFMM
based on arithmetic mean, d–e MM
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Fig. 5 MSE for dilation for different SE size. a 3 × 3. b 15 × 15
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Fig. 6 MSE for erosion for different SE size. a 3 × 3. b 15 × 15
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Table 1 Lowest error for dilation

SE σ 2 = 50 σ 2 = 150 σ 2 = 300

3 × 3 (C1) 0.0017772 (C1) 0.0059891 (C1) 0.013032

5 × 5 (C1) 0.0016542 (C1) 0.0057433 (C1) 0.012841

7 × 7 (C1) 0.0016301 (C1) 0.0056658 (C1) 0.012691

11 × 11 (C1) 0.0016262 (C1) 0.0056506 (C1) 0.012685

15 × 15 (C1) 0.0016227 (C1) 0.0056469 (C1) 0.012656

The name of the operators that reached theminimum is denoted between
parentheses next to the error

Table 2 Highest error for dilation

SE σ 2 = 50 σ 2 = 150 σ 2 = 300

3 × 3 (T 4) 0.0039898 (MM) 0.01306 (MM) 0.02892

5 × 5 (T 4) 0.0044384 (MM) 0.01437 (MM) 0.03323

7 × 7 (T 4) 0.0044487 (MM) 0.01440 (MM) 0.03387

11 × 11 (T 4) 0.0044098 (MM) 0.01363 (MM) 0.03285

15 × 15 (T 4) 0.0043956 (MM) 0.01327 (MM) 0.0317

Thenameof the operators that reached themaximum is denotedbetween
parentheses next to the error

Table 3 Lowest error for erosion

SE σ 2 = 50 σ 2 = 150 σ 2 = 300

3 × 3 (D1) 0.001479 (D1) 0.004716 (D1) 0.010246

5 × 5 (D1) 0.001244 (D1) 0.004175 (D1) 0.009376

7 × 7 (D1) 0.001194 (D1) 0.004024 (D1) 0.009090

11 × 11 (D1) 0.001187 (D1) 0.003998 (D1) 0.009043

15 × 15 (D1) 0.001187 (D1) 0.003999 (D1) 0.009028

The name of the operators that reached theminimum is denoted between
parentheses next to the error

Table 4 Highest error for erosion

SE σ 2 = 50 σ 2 = 150 σ 2 = 300

3 × 3 (S4) 0.011203 (S4) 0.018936 (MM) 0.03083

5 × 5 (S4) 0.008249 (S4) 0.015487 (MM) 0.04155

7 × 7 (S4) 0.0063565 (MM) 0.02060 (MM) 0.04847

11 × 11 (S4) 0.0061401 (MM) 0.02285 (MM) 0.05514

15 × 15 (S4) 0.0061705 (MM) 0.02306 (MM) 0.05619

Thenameof the operators that reached themaximum is denotedbetween
parentheses next to the error

value represents the standard deviation of the computedMSE
values, over the 100 iterations.

Table 1 shows for each value of σ 2 and SE, the MSE for
the best operator (lowest MSE), which is indicated between
parentheses next to the error values, when using the dilation
operator. In the same way, Table 2 shows the MSE for the
worst operator. Tables 3 and 4 describe the same results for
the erosion operator.

Finally, Figs. 7 and 8 show the boxplots of the com-
puted MSE values. For each noise level, there is a boxplot
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Fig. 7 Boxplots for dilation for several values of variance. a σ 2 = 50.
b σ 2 = 300
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Fig. 8 Boxplots for erosion for several values of variance. a σ 2 = 50.
b σ 2 = 300

describing the average and deviation of theMSEvalues. They
describe graphically the errors for MM, FMM (based on the
Bounded norm) and the CFMM based on geometric mean.

5.3 Discussion

Regarding performance, Tables 1 and 3 show that CFMM
based on geometric mean has the best performance against
noise. Figures 5 and 6 show also that the CFMM based on
arithmetic mean performance is better than MM and all the
tested FMM.

On the other hand, Tables 2 and 4 show thatMMperforms
worse thanFuzzyoperators, except for small amount of noise,
where the Drastic FMM has worse performance (differently
from other FMM norms, the Drastic FMM is based on a
non-continuous function).

Regarding FMM, the Bounded norm shows the best over-
all performance, while Dubois & Prade and Standard show
very similar results, which can be understood because their
t-norms and s-norms are very similar.

With respect to the SE size, for erosions, the larger is the
SE size, the stronger results the sensibility to noise. This
behavior is not observed for dilation. This shows that robust-
ness against noise is dependent on the SE size for erosions,
but not for dilation.

6 Conclusions

The MM has been broadly used to solve segmentation chal-
lenges in biomedical images, where noise and uncertainty are
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important factors, influencing directly on the performance of
the algorithms. In this work, we presented new operators of
the CFMM using CFL based on arithmetic mean, which sat-
isfy three of the four principles of the MM and handle these
factors by using Compensatory Logic, adding potentially the
ability to obtain better results in this kind of images.

The simulation analysis showed that the CFMMoperators
display, for the model used here, better robustness against
noise than FMM and MM operators. It is be expected that
more complex operators, based on CMM, are also more
robust against noise than the ones constructed from MM or
FMM.

Finally, a library of CFMM operators, and a graphical
user interface, were developed for further usage in analy-
sis and applications. The GUI includes also Digital Image
Processing general techniques for a more complete image
processing.

As a future work, we will analyze for which type of sit-
uations, like different noise models, the operators are better
adapted. Additionally, some important properties of mathe-
matical morphology operators, in particular adjunctions, are
of great importance for the development of a formal theory
and should be treated in the future. Moreover, considering
the importance of quantifiers for CFL, we expect to be able
to advance in the definition of new morphological operators
based on hybrid models.
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