
SEQUENTIAL AND ADAPTIVE BAYESIAN COMPUTATION

FOR INFERENCE AND OPTIMIZATION

Ömer Deniz Akyıldız

in partial fulfillment of the requirements for the degree of Doctor in

Multimedia and Communications

Universidad Carlos III de Madrid

Department of Signal Theory and Communications

Advisor:

Joaqúın Mı́guez

March 2019

ii

Esta tesis se distribuye bajo licencia “Creative Commons Reconocimiento –
No Comercial – Sin Obra Derivada”.

On the mountains of truth, you can never climb in vain:

either you will reach a point higher up today,

or you will be training your powers

so that you will be able to climb higher tomorrow.

— Friedrich Nietzsche

iii

iv

ACKNOWLEDGEMENTS

This thesis has been an unexpected and hard journey. As a result, I needed a lot

of help over the years for various troubles. Without the support of many people

who generously helped, it would be much more difficult to complete this work.

Foremost, I am deeply grateful to my supervisor, Joaqúın Mı́guez, for his con-

stant support, attention, and care. He has been a role model for me in many ways.

Without his unconditional backing and depth of knowledge, I would not be able

to produce this work. I feel lucky to be his student and I will definitely miss the

hours we spent for thinking in his office, in front of the whiteboard, while trying

to crack some problem until one of us comes up with an idea.

Luckily, I have had the chance to work with excellent people outside Carlos

III during my PhD studies. I am deeply grateful to Dan Crisan for hosting me

at Imperial College London, for his support and care, and for the hours we spent

discussing since then. I had a great time during my visit of the Alan Turing

Institute and I am thankful to Chris Oates for hosting me, for his generous support

and our fruitful discussions over Bayesian computation. I am grateful to Mark

Girolami for his generous support and help. Zoran Utkovski hosted me twice at

Fraunhofer Heinrich-Hertz Institute in Berlin and I am thankful to him for his

support and the time we spent discussing various things ranging from wireless

communications to evolutionary dynamics. I am thankful to Émilie Chouzenoux

for the long discussions on optimization, about which I have a lot to learn from

her.

Over the years, I have had the pleasure of working with many nice colleagues

in the Signal Processing Group (GTS) of Carlos III. In particular, I am thankful

to Antonio Artés for his support and to Ana Hernando for repeatedly saving me

from bureaucratic limbos, which were impossible to get out otherwise. I was lucky

to have Vı́ctor Elvira (the other student of the Stoic School) around during 2016

and I am thankful to him for his support and friendship and, of course, for all

fights and discussions since then. Special thanks to Sara Pérez Vieites (sorry that

I made you worry, mostly) for the friendship and enjoyable chats when we took

v

breaks during the long days. I enjoyed the time I spent with Luca Martino (the

Sicilian) and all the noise he generated about various things and his complaints

about my disordered (confused) life and, of course, our scientific discussions (often

quickly turning into fights). I am really grateful to Pablo Olmos for the friend-

ship and his generous support whenever I needed – I really enjoyed the technical

discussions and basket games we had with him (who, in return, enjoyed my tragi-

comic adventures in Leganés). I am also thankful to Melanie Fernandez for she

was always ready to help (even a hospital session!) and fruitful discussions we had

on matrix factorizations and various things, to Alfredo Nazabal, Alejandro Lancho

and Gonzalo Ŕıos for their friendship and support, to Yanfang Liu for enduring

me while sharing the same cubicle. From the Turing crew, I am grateful to Taha

Yusuf Ceritli for his support and friendship. I enjoyed the time I spent with Niko-

las Nüsken, including our technical discussions about stochastic processes and all

the fun we shared.

My family has been a source of constant warmth. I am grateful to my sister

and my brother for their support. I cannot thank enough to my mother for all the

struggle she has gone through for us. She has been a constant inspiration for me

to pursue science since my early childhood, thanks to her brilliant explanations of

everyday physical phenomena. Finally, a word for my father: With his brilliance,

both in my memory and in the stories he left which I listened from many of his old

students, my father has been a role model for me throughout my life and a reason

to not give up when things got difficult since I knew we share the same genetic

makeup. Let’s see if I can keep up with his stories in the rest of my life.

This thesis would have been much harder to complete if I didn’t have support

of the people I have thanked above. But without Büşra Topal, this thesis (and

many other things I have) would not exist. There is no way to put my gratitude

to her into words for standing by me and for her amazing support during difficult

times. Thank you. I dedicate this thesis to you.

Adana, 6 January 2019.

vi

PUBLISHED AND SUBMITTED CONTENT

The following works I authored or co-authored are used in this thesis entirely or

partially.

1. Omer Deniz Akyildiz and Joaquin Miguez. Nudging the particle filter. Under

review, 2017. Preprint can be accessed from: https://arxiv.org/abs/

1708.07801.

• The material in this preprint (which is currently under review) is used

entirely in Chapter 3 of this thesis.

2. Omer Deniz Akyildiz, Victor Elvira, and Joaquin Miguez. The incremen-

tal proximal method: A probabilistic perspective. In Proceedings of 2018

IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), 4279–4283, 2018. The paper can be accessed from: https:

//arxiv.org/abs/1807.04594.

• The material published in this paper is used in Chapter 4 of this thesis.

A preliminary version of this paper appeared as a workshop contribu-

tion with the following details: Akyildiz, Ö. D., Elvira, V., Fernandez-

Bes, J., Miguez, J. On the Relationship between Online Optimizers and

Recursive Filters, NIPS 2016 Workshop on Optimizing the Optimizers.

The pdf can be accessed from: http://www.probabilistic-numerics.

org/assets/pdf/NIPS2016/Akyildiz_Elvira_Fernandez-Bes_Miguez.

pdf.

3. Omer Deniz Akyildiz, Dan Crisan, and Joaquin Miguez. Parallel sequential

Monte Carlo for stochastic optimization. Preprint. The preprint can be

accessed from: https://arxiv.org/abs/1811.09469.

• The material published in this paper is used in Chapter 4 of this thesis.

4. Omer Deniz Akyildiz, Joaquin Miguez. Dictionary filtering: A probabilistic

approach to online matrix factorisation. Signal, Image and Video Processing,

Springer, 2018. https://doi.org/10.1007/s11760-018-1403-9.

vii

https://arxiv.org/abs/1708.07801
https://arxiv.org/abs/1708.07801
https://arxiv.org/abs/1807.04594
https://arxiv.org/abs/1807.04594
http://www.probabilistic-numerics.org/assets/pdf/NIPS2016/Akyildiz_Elvira_Fernandez-Bes_Miguez.pdf
http://www.probabilistic-numerics.org/assets/pdf/NIPS2016/Akyildiz_Elvira_Fernandez-Bes_Miguez.pdf
http://www.probabilistic-numerics.org/assets/pdf/NIPS2016/Akyildiz_Elvira_Fernandez-Bes_Miguez.pdf
https://arxiv.org/abs/1811.09469
https://doi.org/10.1007/s11760-018-1403-9

• The material published in this paper is used entirely in Chapter 5 of

this thesis. An earlier version of this paper appears as a preprint with

the title Matrix Factorisation with Linear Filters, which can be accessed

from: https://arxiv.org/abs/1509.02088.

5. The following works are based on or related to this thesis, but are not entirely

used.

• Omer Deniz Akyildiz, Ines P. Marino, Joaquin Miguez, Adaptive noisy

importance sampling for stochastic optimization, CAMSAP 2017, https:

//doi.org/10.1109/CAMSAP.2017.8313215.

• Omer Deniz Akyildiz, Emilie Chouzenoux, Victor Elvira, Joaqúın Mı́guez,.

A probabilistic incremental proximal gradient method. arXiv preprint

arXiv:1812.01655, 2018, https://arxiv.org/abs/1812.01655.

viii

https://arxiv.org/abs/1509.02088
https://doi.org/10.1109/CAMSAP.2017.8313215
https://doi.org/10.1109/CAMSAP.2017.8313215
https://arxiv.org/abs/1812.01655

Abstract

With the advent of cheap and ubiquitous measurement devices, today more data

is measured, recorded, and archived in a relatively short span of time than all data

recorded throughout history. Moreover, advances in computation have made it

possible to model much more complicated phenomena and to use the vast amounts

of data to calibrate the resulting high-dimensional models. In this thesis, we

are interested in two fundamental problems which are repeatedly being faced in

practice as the dimension of the models and datasets are growing steadily: the

problem of inference in high-dimensional models and the problem of optimization

for problems when the number of data points is very large.

The inference problem gets difficult when the model one wants to calibrate and

estimate is defined in a high-dimensional space. The behavior of computational

algorithms in high-dimensional spaces is complicated and defies intuition. Compu-

tational methods which work accurately for inferring low-dimensional models, for

example, may fail to generalize the same performance to high-dimensional mod-

els. In recent years, due to the significant interest in high-dimensional models,

there has been a plethora of work in signal processing and machine learning to

develop computational methods which are robust in high-dimensional spaces. In

particular, the high-dimensional stochastic filtering problem has attracted signifi-

cant attention as it arises in multiple fields which are of crucial importance such

as geophysics, aerospace, control. In particular, a class of algorithms called parti-

cle filters has received attention and become a fruitful field of research because of

their accuracy and robustness in low-dimensional systems. In short, these methods

keep a cloud of particles (samples in a state space), which describe the empirical

probability distribution over the state variable of interest. The particle filters use

a model of the phenomenon of interest to propagate and predict the future states

and use an observation model to assimilate the observations to correct the state

estimates. The most common particle filter, called the bootstrap particle filter

(BPF), consists of an iterative sampling-weighting-resampling scheme. However,

ix

BPFs also largely fail at inferring high-dimensional dynamical systems due to a

number of reasons.

In this work, we propose a novel particle filter, named the nudged particle filter

(NuPF), which specifically aims at improving the performance of particle filters in

high-dimensional systems. The algorithm relies on the idea of nudging, which has

been widely used in the geophysics literature to tackle high-dimensional inference

problems. In particular, in addition to standard sampling-weighting-resampling

steps of the particle filter, we define a general nudging step based on the gradient

of the likelihoods, which generalize some of the nudging schemes proposed in the

literature. This step is based on modifying the particles, generated in the sampling

step, using the gradients of the likelihoods. In particular, the nudging step moves

a fraction of the particles to the regions under which they have high-likelihoods.

This scheme results in significantly improved behavior in high-dimensional models.

The resulting NuPF is able to track high-dimensional systems successfully. Unlike

the proposed nudging schemes in the literature, the NuPF does not rely on Gaus-

sianity assumptions and can be defined for a general likelihood. We analytically

prove that, because we only move a fraction of the particles and not all of them, the

algorithm has a convergence rate that matches standard Monte Carlo algorithms.

More precisely, the NuPF has the same asymptotic convergence guarantees as the

bootstrap particle filter. As a byproduct, we also show that the nudging step

improves the robustness of the particle filter against model misspecification. In

particular, model misspecification occurs when the true data-generating system

and the model posed by the user of the algorithm differ significantly. In this case,

a majority of computational inference methods fail due to the discrepancy between

the modeling assumptions and the observed data. We show that the nudging step

increases the robustness of particle filters against model misspecification. Specif-

ically, we prove that the NuPF generates particle systems which have provably

higher marginal likelihoods compared to the standard bootstrap particle filter.

This theoretical result is attained by showing that the NuPF can be interpreted

as a bootstrap particle filter for a modified state-space model. Finally, we demon-

strate the empirical behavior of the NuPF with several examples. In particular, we

show results on high-dimensional linear state-space models, a misspecified Lorenz

63 model, a high-dimensional Lorenz 96 model, and a misspecified object tracking

model. In all examples, the NuPF infers the states successfully.

The second problem, the so-called scability problem in optimization, occurs

because of the large number of data points in modern datasets. With the increas-

ing abundance of data, many problems in signal processing, statistical inference,

and machine learning turn into a large-scale optimization problems. For example,

x

in signal processing, one might be interested in estimating a sparse signal given

a large number of corrupted observations. Similarly, maximum-likelihood infer-

ence problems in statistics result in large-scale optimization problems. Another

significant application domain is machine learning, where all important training

methods are defined as optimization problems. To tackle these problems, com-

putational optimization methods developed over the past decades are inefficient

since they need to compute function evaluations or gradients over all the data for

a single iteration. Because of this reason, a class of optimization methods, termed

stochastic optimization methods, have emerged. The algorithms of this class are

designed to tackle problems which are defined over a big number of data points.

In short, these methods utilize a subsample of the dataset in order to update

the parameter estimate and do so iteratively until some convergence criterion is

met. However, there is a major difficulty that has to be addressed: Although the

convergence theory for these algorithms is understood, they can have unstable be-

havior in practice. In particular, the most commonly used stochastic optimization

method, namely the stochastic gradient descent, can diverge easily if its step-size

is poorly set. Over the years, practitioners have developed a number of rules of

thumb to alleviate stability issues.

We argue in this thesis that one way to develop robust stochastic optimization

methods is to frame them as inference methods. In particular, we show that

stochastic optimization schemes can be recast as inference methods and can be

understood as inference algorithms. Framing the problem as an inference problem

opens the way to compare these methods to the optimal inference algorithms and

understand why they might be failing or producing unstable behavior. In this

vein, we show that there is an intrinsic relationship between a class of stochastic

optimization methods, called incremental proximal methods, and Kalman (and

extended Kalman) filters. The filtering approach to stochastic optimization results

in an automatic calibration of the step-size, which removes the instability problems

depending on the step-sizes.

The probabilistic interpretation of stochastic optimization problems also paves

the way to develop new optimization methods based on strategies which are popu-

lar in the inference literature. In particular, one can use a set of sampling methods

in order to solve the inference problem and hence obtain the global minimum. In

this manner, we propose a parallel sequential Monte Carlo optimizer (PSMCO),

which is aiming at solving stochastic optimization problems. The PSMCO is de-

signed as a zeroth order method which does not use gradients. It only uses subsets

of the data points in order to move at each iteration. The PSMCO obtains an

estimate of a global minimum at each iteration by utilizing a cheap kernel density

xi

estimator. We prove that the resulting estimator converges to a global minimum

almost surely as the number of Monte Carlo samples tends to infinity. We also

empirically demonstrate that the algorithm is able to reconstruct multiple global

minima and solve difficult global optimization problems.

By further exploiting the relationship between inference and optimization, we

also propose a probabilistic and online matrix factorization method, termed the

dictionary filter to solve large-scale matrix factorization problems. Matrix fac-

torization methods have received significant interest from the machine learning

community due to their expressive representations of high-dimensional data and

interpretability of their estimates. As the majority of the matrix factorization

methods are defined as optimization problems, they suffer from the same issues

as stochastic optimization methods. In particular, when using stochastic gradi-

ent descent, one might need to try and err many times before deciding to use a

step-size. To alleviate these problems, we introduce a matrix-variate probabilistic

model for which inference results in a matrix factorization scheme. The scheme

is online, in the sense that it only uses a single data point at a time to update

the factors. The algorithm bears relationship with optimization schemes, namely

with the incremental proximal method defined over a matrix-variate cost function.

By way of intuition we developed for the optimization-inference relationship, we

devise a model which results in similar update rules for matrix factorization as for

the incremental proximal method. However, the probabilistic updates are more

stable and efficient. Moreover, the algorithm does not have a step-size parameter

to tune, as its role is played by the posterior covariance matrix. We demonstrate

the utility of the algorithm on a missing data problem and a video processing

problem. We show that the algorithm can be successfully used in machine learn-

ing problems and several promising extensions of the method can be constructed

easily.

xii

Contents

List of Acronyms 6

1 Introduction 7

1.1 Introduction . 7

1.1.1 Stochastic filtering . 8

1.1.2 Stochastic optimization . 11

1.2 Organization and contributions . 14

1.3 Notation and preliminaries . 16

1.3.1 Notation . 16

1.3.2 Preliminary definitions . 18

2 Fundamentals of inference and optimization 19

2.1 Introduction . 19

2.1.1 Bayesian update . 19

2.1.2 Sequential Bayesian update for static models 21

2.1.3 State-space models and the filtering problem 21

2.2 Static inference . 23

2.2.1 Exact inference for Gaussian distributions 23

2.2.2 Perfect Monte Carlo . 24

2.2.3 Importance sampling . 26

2.2.4 Markov chain Monte Carlo methods 29

2.3 Sequential inference . 29

2.3.1 Kalman update . 30

2.3.2 Kalman filters . 31

2.3.3 Extended Kalman filters . 32

2.3.4 Other Kalman-type filters 33

2.3.5 Particle filters . 34

2.4 Numerical optimization . 38

2.4.1 Introduction . 38

1

CONTENTS

2.4.2 Gradient descent . 40

2.4.3 Stochastic gradient descent 41

2.4.4 Proximal point iteration . 41

2.4.5 The incremental proximal method 43

3 Nudging the particle filter 45

3.1 Introduction . 45

3.2 Background . 48

3.2.1 State space models . 48

3.2.2 Bootstrap particle filter . 48

3.3 Nudged particle filter . 50

3.3.1 General algorithm . 50

3.3.2 Selection of particles to be nudged 51

3.3.3 How to nudge . 52

3.3.4 Nudging general particle filters 53

3.4 Analysis . 54

3.4.1 Convergence in Lp . 54

3.4.2 Uniform convergence . 56

3.4.3 Nudging and model evidence 57

3.5 Computer simulations . 59

3.5.1 A high-dimensional, inhomogeneous Linear-Gaussian state-

space model . 60

3.5.2 Stochastic Lorenz 63 model with misspecified parameters . 62

3.5.3 Object tracking with a misspecified model 66

3.5.4 High-dimensional stochastic Lorenz 96 model 67

3.5.5 Assessment of bias . 69

3.6 Experimental results on model inference 71

3.6.1 Nudging the nested particle filter 72

3.6.2 Nudging the particle Metropolis-Hastings 74

4 Stochastic optimization as Bayesian inference 77

4.1 Introduction . 77

4.2 Stochastic optimization as Bayesian inference 79

4.3 Incremental proximal method as inference 81

4.3.1 Proximal operators as Bayes updates 81

4.3.2 The IPM as a Kalman filter 83

4.3.3 EKF as an approximate IPM 85

4.3.4 Some numerical results . 87

2

CONTENTS

4.4 SMC for stochastic optimization 88

4.4.1 Jittering kernel . 90

4.4.2 Estimating the global minima of f(θ) 90

4.4.3 Analysis . 92

4.4.4 Experimental Results . 94

5 Dictionary filtering 101

5.1 Introduction . 101

5.2 Probabilistic model . 104

5.2.1 Model . 104

5.3 Algorithm . 105

5.3.1 Parameter estimation . 105

5.3.2 Inference of the dictionary matrix 105

5.3.3 Dynamic dictionary filter 107

5.4 Links with stochastic optimization 108

5.5 Experiments . 109

5.5.1 Image restoration . 109

5.5.2 Video modeling . 111

6 Conclusions and future work 113

6.1 Conclusions . 113

6.2 Future work . 116

A Proofs 119

A.1 Proofs of Chapter 2 . 119

A.1.1 Lemmata for Chapter 2 . 119

A.1.2 Proofs of Chapter 2 . 120

A.2 Proofs of Chapter 3 . 126

A.3 Proofs of Chapter 4 . 129

A.4 Proofs of Chapter 5 . 134

References 137

3

CONTENTS

4

List of Acronyms

APF auxiliary particle filter

BPF bootstrap particle filter

DF dictionary filter

EKF extended Kalman filter

GD gradient descent

INMF incremental nonnegative matrix factorization

IPM incremental proximal method

IS importance sampling

KDE kernel density estimator

KF Kalman filter

LGSSM linear-Gaussian state-space model

MC Monte Carlo

MCMC Markov chain Monte Carlo

NMF nonnegative matrix factorization

NMSE normalized mean squared error

NPF nested particle filter

NuPF nudged particle filter

ODE ordinary differential equation

5

List of Acronyms

pdf probability density function

PF particle filter

pMH particle Metropolis-Hastings

PPI proximal point iteration

PSMCO parallel sequential Monte Carlo optimizer

SGD stochastic gradient descent

SGDMF stochastic gradient descent matrix factoriza-

tion

SMC sequential Monte Carlo

SNIS self-normalized importance sampling

SSM state-space model

SVGD Stein variational gradient descent

6

1
Introduction

1.1 Introduction

Given a scientific problem, every computational scientist collects observed data

and then develops a model of a phenomenon of interest in order to process the

data. The scientist then will seek ways to calibrate the free variables of the model

with respect to the observed data. In order to do so, the scientist can develop a

probabilistic model and recast the problem as an inference problem. Similarly, but

with a quite different philosophy, he or she can also formulate a cost function, thus

framing the problem as an optimization problem, where the free variables would

satisfy a certain cost criterion and a set of constraints when calibrated. In this

thesis, we are interested in developing computational schemes for some instances

of these two general computational problems of inference and optimization.

Inference, (or more specifically, Bayesian inference [1]), starts with formu-

lating a probabilistic model, in order to capture characteristics of a real world

phenomenon, in which the conditional dependence and independence between ob-

servations (observed data) and hidden variables of interest are defined via proba-

bility distributions. The task of an inference scheme is then to obtain the posterior

probability distribution, which is the distribution of the variables of interest condi-

tioned on observations. The main computations which need to be carried out given

a probability model are conditioning on the observed variables and marginaliza-

7

Chapter 1. Introduction

tion of the latent variables to obtain the posterior distribution of the variables of

interest. Conditioning requires the application of the Bayes’ rule while marginal-

ization requires a possibly high-dimensional integration, neither of which can be

done in closed form in general. The computational problem here is then to ap-

proximate the processes of conditioning and marginalization using computational

statistical methods. Moreover, the need of computing expectations with respect to

the posterior probability distributions again results in the computation of possibly

high-dimensional integrals. In this thesis, we will be interested in such computa-

tional schemes for high-dimensional problems, e.g., sequential Bayesian computa-

tion schemes, such as numerical methods for stochastic filtering [2].

Similarly, the procedure of optimization starts from a model which is, in con-

trast to probabilistic models, described in the form of a cost function1, rather than

as a collection of probability distributions. This cost function is usually defined

by taking the characteristics of the specific problem into account. In a similar

way to probabilistic modeling, the cost function explicitly defines the observed

data and the parameters of interest. The task is then to find the parameter set-

ting which minimizes the cost function by building a computational optimization

method which guarantees some criterion of descent. Usually, derivative informa-

tion of the cost function, e.g., gradients or Hessians, is used to move within the

parameter space. Our interest in optimization in this thesis is twofold. First, we

are interested in stochastic optimization schemes and their connections with se-

quential Bayesian computational methods. Secondly, as a byproduct, we will be

developing stochastic zeroth order [3] optimization schemes.

In the next two subsections, we provide a brief description of our main interests

and potential problems we address in this work.

1.1.1 Stochastic filtering

Our primary interest is the problem of stochastic filtering [4, 5, 2]. Briefly put,

stochastic filtering problem refers to the problem of inferring the states of a dy-

namical system from a sequence of observations, which are usually corrupted by

noise. In particular, consider a dynamical system whose state variables are defined

over time as x0, . . . , xt, . . ., which is described compactly as (xt)t≥0. Given obser-

vations (yt)t≥1 from this dynamical system, the computational goal is to build and

sequentially update conditional probability distributions of the states (xt)t≥0 over

time while assimilating observations one by one. The evolution of the states is

1A cost function qualifies the goodness of a candidate solution given the available data. The

smaller the cost, the better the candidate.

8

Chapter 1. Introduction

described by a transition density τt and the relationship between yt and each xt is

defined via a likelihood function, denoted gt. When τt describes a linear stochastic

dynamical system with Gaussian perturbations and gt describes a linear observa-

tion model with additive Gaussian noise, the exact solution of the filtering problem

can be found via the procedure known as the Kalman filter (KF), first developed

by Rudolf Kalman and Robert Bucy [6–8]. Since then, the KF has received sig-

nificant attention and has been successfully used for many signal processing and

control problems [9], including the control of the Apollo moon landing [10]. Several

variants of the KF for Gaussian models with nonlinearities were also developed,

such as extended Kalman filters [11, 5] for systems which can be linearized (this

scheme uses Taylor expansions of the transition and observation models) or un-

scented Kalman filters (UKF) [12–14] that propagate well-placed points in the

state-space to construct the moments of the conditional densities, which do not

require any gradient information. Another variant of the Kalman filter, called the

ensemble Kalman filter (EnKF), has been introduced to tackle high-dimensional

dynamical problems in geophysics, see, e.g. [15–19].

The computation of the posterior distribution for general transitions and like-

lihoods, i.e., for nonlinear and non-Gaussian models, however, remained elusive

for a long time. Finally, the bootstrap particle filter (BPF) was developed in [20],

which was motivated by the earlier works of [21, 22] and it became possible to

solve the filtering problem numerically for a general model. The BPF is a Monte

Carlo algorithm [23], which aims at drawing samples in order to construct the con-

ditional distributions of the state variables and estimate the quantities of interest

via the use of a sampling-weighting-resampling scheme [22]. The algorithm, for

relatively low-dimensional systems, turned out to be quite efficient and accurate.

This has resulted in a plethora of applications of the BPF scheme to various prob-

lems; see, e.g., [24–26]. As a result of this interest, a comprehensive theory for the

class of algorithms called sequential Monte Carlo (SMC) methods, including the

BPF as a special case, has been developed, framing the algorithm as an interacting

particle system and investigating its long-term behaviour. See, e.g., [2, 27–34] and

references therein.

Despite the success of PFs in relatively low dimensional settings, their use

has been regarded impractical in models where (xt)t≥0 and (yt)t≥1 are sequences

of high-dimensional random variables. This is an instance of a general problem

coined as the the curse of dimensionality. It is referred to as the collapse of the

particle filter within the particle filtering context and it has been studied from

various empirical and theoretical viewpoints in recent years. The authors of [35]

study the weights of the BPF in a high-dimensional setting and they show that the

9

Chapter 1. Introduction

maximum weight tends to 1 (under simplifying assumptions) which, they argue,

causes the filter to collapse effectively (also see [36, 37] for additional research on

the collapse of the BPF). Recently, a “block PF” has been proposed [38] that is

applicable to certain network-like high-dimensional SSMs, and can be proved to

converge for a subset of marginal posterior distributions on the state space under

assumptions on the correlations between state variables. Another scheme, the

space-time particle filter [39] has also been proved to converge even when the state

dimension increases without bound, under certain assumptions on the structure of

the state dynamics.

The collapse of the PF has received significant attention in the weather dy-

namics literature, where models are high-dimensional, obviously approximate, and

do not yield analytic solutions. In particular, in the data assimilation literature,

high-dimensional systems are often dealt with via an operation called nudging

[40–43]. Within the particle filtering context, nudging can be defined as a trans-

formation of the particles, which are pushed towards the observations using some

observation-dependent map [44–47]. If the dimensions of the observations and the

hidden states are different, which is often the case, a gain matrix is computed in

order to perform the nudging operation. In [44–47] nudging is performed after the

sampling step of the particle filter. The importance weights are then computed

accordingly, so that they remain proper. Hence, nudging in this version amounts

to a sophisticated choice of the importance function that generates the particles.

It has been shown (numerically) that the schemes proposed by [44–47] can track

high-dimensional systems with a low number of particles. However, generating

samples from the nudged proposal requires costly computations for each particle

and the evaluation of weights becomes heavier as well. It is also unclear how to ap-

ply existing nudging schemes when non-Gaussianity and nontrivial nonlinearities

are present in the observation model.

A related class of algorithms includes the so-called implicit particle filters

(IPFs) [48–50]. Similar to nudging schemes, IPFs rely on the principle of pushing

particles to high-probability regions in order to prevent the collapse of the filter in

high-dimensional state spaces. In a typical IPF, the region where particles should

be generated is determined by solving an algebraic equation. This equation is

model dependent, yet it can be solved for a variety of different cases (general pro-

cedures for finding solutions are given by [48] and [49]). The fundamental principle

underlying IPFs, moving the particles towards high-probability regions, is similar

to nudging. Note, however, that unlike IPFs, nudging-based methods are not de-

signed to guarantee that the resulting particles land on high-probability regions;

it can be the case that nudged particles are moved to relatively low probability

10

Chapter 1. Introduction

regions (at least occasionally). Since an IPF requires the solution of a model-

dependent algebraic equation for every particle, it can be computationally costly,

similar to the nudging methods by [44–47]. Moreover, it is not straightforward

to derive the map for the translation of particles in general models, hence the

applicability of IPFs depends heavily on the specific model at hand.

In this thesis, we will be interested in high-dimensional stochastic filtering

problem. In particular, we propose a nudging based PF scheme in order to alleviate

some of the problems outlined above. Our contributions to this field is summarized

in Section 1.2.

1.1.2 Stochastic optimization

Our secondary focus in this thesis is the problem of stochastic optimization. Very

broadly, optimization methods can be classified into two main classes: determinis-

tic and stochastic. In deterministic schemes, all of the observed data can be used

in every iteration to achieve the descent direction, e.g., gradient descent uses full

gradients at every iteration. Deterministic optimization methods have received

significant attention in the last decades due to their efficiency and usefulness in

several areas. Especially, convex optimization, where the cost function to be min-

imized is a convex function, has been one of the most active research areas in

recent years [51–53], and it has found applications in compressed sensing [54], ma-

trix completion [55], machine learning [52], signal processing and communications

[56], to name a few.

With the increasing abundance of data, however, these deterministic schemes

have been rendered inefficient. In particular, deterministic methods struggle when

the cost function is of the form

f(θ) =
n∑
k=1

fk(θ), (1.1)

with n very large, where the fk’s are called individual component functions and f

is the cost function. In this case, deterministic methods lead to computationally

very demanding solutions. In response to this challenge, the class of stochastic

optimization methods has emerged. Originated by a paper in 50s [57], stochastic

optimization methods have become widely used in modern signal processing and

machine learning [58–69], due to their efficiency in big data settings. Notably,

stochastic optimization methods do not need to perform computations using all

data points at each iteration. Instead, they obtain noisy estimates of the neces-

sary quantities for optimization using subsampling. The most basic scheme, the

stochastic gradient descent (SGD) algorithm [60], obtains a subsample from the

11

Chapter 1. Introduction

dataset and construct an estimator of the gradient. The resulting estimate is then

used to perform a stochastic descent step. The majority of these stochastic gradi-

ent methods construct the subsamples using sampling with replacement to obtain

unbiased estimates of the gradient. The latter can then be seen as a noisy gradient

estimate with additive, zero-mean noise. In practice, however, there are schemes

that subsample the data set without replacement (hence producing biased gradient

estimators) and it has been argued that such methods can attain better numerical

performance [70, 71]. There has been a massive research effort to improve the

SGD, see, e.g., [65, 68, 69], including second-order extensions [72–75].

An alternative to the gradient-based methods outlined above is the family of

proximal methods [76, 77]. In order to move along the parameter space, proximal

methods regularize the cost function with a term depending on the current value

of the estimate of the solution. The optimization procedure resulting from this

idea is different from a gradient step and can be viewed as a generalization of the

gradient step (see Chapter 2). Proximal methods have received interest over the

past decades in the optimization literature; see, e.g., [76–80]. Such methods have

particularly attracted interest in signal processing [77] and have been used, e.g.,

for signal recovery [81], sparse signal processing [82], and machine learning [83].

Similar to the gradient based methods, several extensions to the stochastic setting

have been proposed, see, e.g., [84–89].

A typical problem of stochastic optimization methods is that they can be in-

efficient and unstable depending on the choice of parameters and the problem. It

is a well-known fact among practitioners that the performance of the SGD is very

sensitive to the step-size parameter and the SGD may diverge easily. To alleviate

such problems, a number of schemes were introduced, e.g., AdaGrad [65], Adam

[68], RMSprop [90], or AdaDelta [64]; see [69] for a review. Such methods usu-

ally precondition the gradient by multiplying it with a (usually diagonal) matrix,

which is updated over the iterations of the algorithm. Because methods of this

type adapt their parameters to the problem over time, they are also referred to

as adaptive stochastic optimization methods [69]. However, despite such meth-

ods have convergence guarantees and practitioners have derived empirical rules to

choose their parameters, the meaning of the parameters is not well-understood.

One way to understand the role played by these quantities is to develop a prob-

abilistic interpretation of the stochastic optimization problem and seeing these

algorithms as inference methods. In recent years, this view has proved fruitful;

see, e.g., [91–93]. This line of investigation is also related to the recently emerging

field of probabilistic numerical methods [94, 95], which comprehends a class of nu-

merical algorithms that propagate and quantify the uncertainty over the solutions

12

Chapter 1. Introduction

of numerical problems. Provided that the stochastic optimization problem can

be recast as an inference problem, one can then interpret the existing adaptive

stochastic optimization methods as mimicking optimal inference methods. There-

fore, one can also identify potential problems of existing methods by comparing

them to optimal inference rules.

A probabilistic interpretation of the stochastic optimization problem also opens

up new paths for developing sampling-based optimization schemes. Although we

have highlighted the successes of gradient-based stochastic optimization methods

above, the gradient information may not be always available, however, due to

different reasons. For example, in an engineering application, the system to be

optimized might be a black-box, e.g., a piece of closed software code with free

parameters, which can be evaluated but cannot be differentiated [96]. In these

cases, one needs to use a gradient-free optimization scheme, meaning that the

scheme must rely only on function evaluations, rather than any sort of actual

gradient information. Classical gradient-free optimization methods have attracted

significant interest over the past decades [97, 98]. These methods proceed either

by a random search which is based on evaluating the cost function at random

points and update the parameter whenever a descent in the function evaluation is

achieved [97], or by constructing a numerical (finite-difference type) approximation

of the gradient that can be used to take a descent step [96].

The techniques in [96–98] and others of the same class are not applicable, how-

ever, if one can only obtain noisy function evaluations or one can only evaluate

certain subsets of component functions. In this case, since the function evaluations

are not exact, random search methods cannot be used reliably. To address this

problem, in recent years, a number of gradient-free stochastic optimization meth-

ods have been proposed, see, e.g., [99–102]. Similar to the classical case, these

methods are based on the use of noisy function evaluations in order to construct a

finite-difference type approximation of the gradient. However, when the cost func-

tion has multiple minima or has some regions where the gradients are nearly zero,

these methods may suffer from poor numerical performance. In particular, the

optimizer can get stuck in a local minimum easily, due to its reliance on gradient

approximations. Moreover, when the gradient contains little information about

any minimum (e.g., in flat regions), gradient-free stochastic optimizers (as well as

perfect gradient schemes) can suffer from slow convergence.

An alternative to constructing a numerical approximation of the gradient is to

build up a probability measure endowed with a probability density function (pdf)

whose maxima coincide with the minima of the cost function. In this way, the

optimization problem can be recast as an inference problem; e.g. [103]. Indeed, one

13

Chapter 1. Introduction

can then resort to a set of sampling techniques to obtain the probability measure

and then estimate the maxima of its pdf. This approach has the advantage of

enabling the reconstruction of multiple minima and finding a global minimum,

since the probability measure is matched to the cost function. Methods of this

nature have long been considered in the literature, including simulated annealing

[104], Monte Carlo expectation maximization [105], Markov chain Monte Carlo

(MCMC) based methods [106] or methods using sequential Monte Carlo (SMC)

[107, 108, 103]. These methods have been restricted to the case where one can

utilize the exact function evaluation to assess the quality of each sample. The

stochastic setting, where it is only possible to compute noisy evaluations of f(θ),

has also received some attention, see, e.g., [109] for a survey. However, the methods

reviewed in [109] contain gradient-based Monte Carlo estimators and address a

different class of stochastic optimizaton problems, where the cost function itself

is defined as an expectation, rather than a finite-sum as in (1.1). In recent years,

extensions of MCMC based sampling methods have been developed in order to

sample from pdfs whose minima match those of a function in the form of eq. (1.1),

see, e.g., [110, 111]. However, these schemes rely on the computation of noisy

gradients, which we herein assume is not possible. There are also other tecniques

using MCMC (see, e.g., [112] which employs noisy Metropolis steps) which do not

require gradients. However, these techniques are primarily designed as sampling

algorithms, rather than optimization methods. A perspective which is closer to

our approach in this thesis was taken in [113], where an adaptive importance

sampler was developed using subsampling to compute biased weights. However,

the method in [113] lacks convergence guarantees.

We summarize our contributions to stochastic optimization in Section 1.2.

1.2 Organization and contributions

As explained in Section 1.1, we are interested in a broad class of problems in

this thesis. The particular contributions we have attained can be summarized as

follows.

In Chapter 2, titled Fundamentals of inference and optimization, we

survey statistical inference and optimization methods which are of interest to us

in this thesis. In particular, we survey Gaussian inference rules and Monte Carlo

statistical inference methods for static and sequential settings. We provide ba-

sic convergence theory for the Monte Carlo schemes with self-contained proofs

provided in Appendix A.1. We also provide a brief survey of the optimization

algorithms which are of interest to us in this work.

14

Chapter 1. Introduction

In Chapter 3, titled Nudging the particle filter, we propose a particle fil-

ter, termed the nudged particle filter (NuPF), aimed at improving the performance

of particle filters whenever (a) there is a significant mismatch between the assumed

model dynamics and the actual system, or (b) the posterior probability tends to

concentrate in relatively small regions of the state space. The proposed scheme

pushes some particles towards specific regions where the likelihood is expected to

be high, an operation known as nudging in the geophysics literature. We prove an-

alytically that nudged particle filters can still attain asymptotic convergence with

the same error rates as conventional particle methods while numerical experiments

show that they can perform very efficiently in practice. Simple analysis also yields

an alternative interpretation of the nudging operation that explains its robustness

to model errors.

In Chapter 4, titled Stochastic optimization as inference, we develop an

interpretation of stochastic optimization problems as inference problems. In par-

ticular, we frame stochastic optimization problems as sequential Bayesian inference

problems. We then identify this connection in a Gaussian setting, by showing that

Kalman and extended Kalman filters can be shown to match a well-known stochas-

tic optimization algorithm, the incremental proximal method [84]. Then, using the

probabilistic interpretation of stochastic optimization, we develop a Monte Carlo

method, namely a parallel sequential Monte Carlo optimizer (PSMCO), to solve

general stochastic global optimization problems where the cost function is built

up by many components. We prove analytically that this sampler converges to a

global maximum. Finally, we demonstrate the utility of the proposed scheme on

two challenging stochastic optimization problems.

In Chapter 5, titled Dictionary filtering, we investigate links between ma-

trix factorisation algorithms and recursive linear filters. In particular, we describe

a probabilistic model in which probabilistic inference naturally leads to a matrix

factorisation procedure. Using this probabilistic model, we derive a matrix-variate

recursive linear filter that can be run efficiently in high dimensional settings and

leads to the factorisation of the data matrix into a dictionary matrix and a co-

efficient matrix. The resulting algorithm is inherently online and we refer to it

as the dictionary filter. Numerical results are provided for image restoration and

video modeling problems. We also show that the algorithm bears relationships

to stochastic optimization-based schemes, hence this algorithm can be seen as an

application of the concepts developed in Chapter 4.

Finally, in Chapter 6, titled Conclusions, we summarize our contributions

and lay out the plans for future work.

The contributions of this thesis have been published in [114, 115, 91, 116, 117].

15

Chapter 1. Introduction

1.3 Notation and preliminaries

1.3.1 Notation

We denote the set of real numbers as R, while Rd = R× d· · · ×R is the space of

d-dimensional real vectors. We denote the set of positive integers with N and the

set of positive reals with R+. We represent the state space with X ⊂ Rdx and the

observation space with Y ⊂ Rdy .
In order to denote sequences, we use the shorthand notation xi1:i2 = {xi1 , . . . , xi2}.

For sets of integers, we use [n] = {1, . . . , n}. The Euclidean p-norm of a vector

x ∈ Rd is defined by ‖x‖p = (xp1 + · · · + xpd)
1/p. The supremum norm of a real

function ϕ : X → R is denoted ‖ϕ‖∞ = supx∈X |ϕ(x)|. The Lp norm of a random

variable z with probability density function (pdf) p(z) is denoted ‖z‖p and defined

as

‖z‖p =

(∫
|z|pp(z)dz

)1/p

,

for p ≥ 1. It is important to observe that Lp norm of a random variable is directly

related to its expectation: E[|z|p] = ‖z‖pp. A function is bounded if ‖ϕ‖∞ < ∞
and we indicate the space of real bounded functions X→ R as B(X).

The set of probability measures on X is denoted P(X), the Borel σ-algebra of

subsets of X is denoted B(X) and the integral of a function ϕ : X→ R with respect

to (w.r.t.) a measure µ on the measurable space (X,B(X)) is denoted

(ϕ, µ) :=

∫
ϕ(x)µ(dx).

The unit Dirac delta measure located at x′ ∈ Rd is denoted δx′(dx) and we note

that
∫
ϕ(x)δx′(dx) = ϕ(x′) for any ϕ ∈ B(X). The Monte Carlo approximation of

a measure µ constructed using N samples is denoted as µN . More precisely, given

N samples {x(i)}Ni=1 ∼ µ, we write the empirical random measure µN associated

to µ as,

µN (dx) =
1

N

N∑
i=1

δx(i)(dx).

Given a Markov kernel τ(dx′|x) and a measure π(dx), we define the notation

ξ(dx′) = τπ(dx′) ,
∫
τ(dx′|x)π(dx). We say that π is absolutely continuous w.r.t.

q, and write π � q, if q(A) = 0 implies π(A) = 0 for any A ∈ B(X).

We often abuse the notation and denote the probability measures and their

densities, i.e., probability density functions (pdfs), with respect to the Lebesgue

measure with same letters. For instance, while µ(dx) denotes a probability mea-

sure, we use the notation µ(x) to denote its density. Whether a given object, say

16

Chapter 1. Introduction

µ, denotes a probability measure or a pdf should be clarified by the context and

the notation for the argument (µ(dx) or µ(A), for a set A versus µ(x) for a point

x).

Let α = (α1, . . . , αd) ∈ N∗ × · · · × N∗, where N∗ = N ∪ {0}, be a multi-index.

We define the partial derivative operator Dα as

Dαh =
∂α1 · · · ∂αdh
∂θα1

1 · · · ∂θ
αd
d

for a sufficiently differentiable function h : Rd → R. We use |α| =
∑d

i=1 αi to

denote the order of the derivative. Finally, the notation bxc indicates the floor

function for a real number x, which returns the biggest integer k ≤ x.

Matrix notations

Throughout the thesis, Id denotes the d×d identity matrix and vec(·) stands for the

column-vectorisation operation. Specifically, for an m × r matrix A, a = vec(A)

is an mr × 1 vector constructed by stacking the columns of A. To revert this

operation, we define the reshaping operator A = vec−1
m×r(a), where the subscript

indicates the dimension of A. We usually denote vectors with lower-case letters

and matrices with capital letters.

We recall some useful equalities below. Let A be of dimension m× r and B be

of dimension r × n; then [118],

vec(AXB) = (B> ⊗A)vec(X). (1.2)

where ⊗ denotes the Kronecker product [118]. As a particular case, for an r × 1

vector x we have

Ax = vec(Ax) = (x> ⊗ Im)vec(A). (1.3)

We also draw from properties of the Kronecker product, namely the mixed product

property [118],

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (1.4)

and the inversion property [118],

(A⊗B)−1 = A−1 ⊗B−1. (1.5)

17

Chapter 1. Introduction

Notation for distributions

We often rely on an argument-wise notation for probability density functions.

Given two random vectors (r.v.’s) x and y, p(x) denotes the pdf of x and p(y)

denotes the, possibly different, pdf of y. Similarly, we use p(x, y) for the joint pdf

of the two r.v.’s and p(y|x) is the conditional density of y given x.

The Gaussian (normal) probability density evaluated at x with mean m and

covariance matrix C is denotedN (x;m,C). The Student’s-t distribution evaluated

at x with mean m, scaling parameter σ2, and degree of freedom ν is denoted

T (x;m,σ2, ν). The Gamma distribution with parameters (a, θ) is denoted G(a, θ)

and the Beta distribution with parameters (α, β) is denoted B(α, β).

1.3.2 Preliminary definitions

In this section, we list some preliminary definitions. The following definitions

about Markov chain can be found in, e.g., [105].

Definition 1.1. (Markov kernel) A Markov transition kernel κ(·|·) defined on

X× B(X) is a function such that,

(i) For every x ∈ X, κ(·|x) is a probability measure,

(ii) For every A ∈ B(X), κ(A|·) is measurable.

Next, Markov chains are defined using Markov kernels.

Definition 1.2. (Markov chain) Consider a probability space (X,B(X),P). A se-

quence of random variables x0, . . . , xt forms a Markov chain, if for some transition

kernel κ, the following holds,

P(xt+1 ∈ A|x0, . . . , xt) = P(xt+1 ∈ A|xt) =

∫
A
κ(dxt+1|xt).

Definition 1.3. (Convexity) A function f : X→ R is said to be convex if, for any

x, y ∈ X,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for every λ ∈ [0, 1].

18

2
Fundamentals of

inference and optimization

In this section, we provide an introduction to inference and optimization, together

with a brief survey of methods which are commonly used in the field and, partic-

ularly, in the rest of this thesis. In particular, we review some exact inference

methods, Monte Carlo methods for statistical inference, and numerical optimiza-

tion algorithms.

2.1 Introduction

2.1.1 Bayesian update

The problem of Bayesian inference starts with a probabilistic model. The model is

usually in the form of a collection of probability distributions. In its most simple

form, we are given a model that consists of a prior distribution π0(x), which

reflects the belief of the model designer about the variable x, and a likelihood

function g(y|x), which characterizes the relationship between data and the quantity

of interest. Given the model, a typical interest is the computation of the posterior

19

Chapter 2. Fundamentals

density, denoted π(x|y), using the Bayes’ rule,

π(x|y) = π0(x)
g(y|x)∫

X g(y|x)π0(x)dx
.

Bayes’ rule was first proposed by Thomas Bayes in his 1763 essay titled An Essay

towards solving a Problem in the Doctrine of Chances [119]. However, the modern

form of the rule, as written above, is due to Laplace [120], and introduced in 1820.

More formally, let us assume we are given a prior measure π0 defined on a

space X ⊂ Rdx with a likelihood function g(y|x) : X → R, where y is fixed. The

posterior probability measure in this case is given by

π(dx) = π0(dx)
g(y|x)π0(dx)∫

X g(y|x)
. (2.1)

In this thesis, we use the measure and density notation interchangeably and we

will denote the densities and measures with the same letters as indicated in the

notation section.

Often, the goal in Bayesian inference is to compute expectations of test func-

tions ϕ ∈ B(X) with respect to the posterior distribution π. Given ϕ ∈ B(X), it is

useful express the update in terms of expectations using (2.1), i.e.,

(ϕ, π) =
(ϕg, π0)

(g, π0)
, (2.2)

which is the Bayes update in integral form.

We also note that the update (2.2) can be defined for general positive real-

valued functions G : X → R+, termed potential functions, which does not nec-

essarily correspond to any likelihood function associated to an observation. This

view is pertinent in several fields of physics, e.g., statistical mechanics or computa-

tional physics, where the dynamics of objects are defined via potential functions.

In recent years, this view has been quite popular for the analysis of Monte Carlo

methods as well [33, 121]. In this case, the update can be written as

π(dx) = π0(dx)
G(x)∫

XG(x)π0(dx)
(2.3)

for a potential G : X → R+. This view will be useful for us when we deal with

optimization problems in a probabilistic setup. Also, it is customary to write the

likelihood functions by dropping the observation dependence from the notation,

as we will see in the next section.

20

Chapter 2. Fundamentals

2.1.2 Sequential Bayesian update for static models

In some models, which are amenable to sequential computation, one can use the

Bayes’ rule described above sequentially. The principle of sequential Bayesian

inference is that the posterior becomes the new prior over the iterations.

Let us assume in this case that we have a sequence of observations (yt)t≥1

each defining a likelihood function, which we denote as1 gt(x) := gt(yt|x). We

also denote the prior measure as π0. Given the posterior distribution πt−1(dx)

conditioned on y1:t−1, the update is given as

πt(dx) = πt−1(dx)
gt(x)∫

X gt(x)πt−1(dx)
. (2.4)

One can also write this update in terms of expectations, similar to (2.2),

(ϕ, πt) =
(ϕgt, πt−1)

(gt, πt−1)
. (2.5)

The expressions (2.4) and (2.5) cannot be computed in closed form in general.

In this static setup, this computation can only be done exactly for models that

retain certain conjugacy properties. An example we will use repeatedly is the case

where π0 and gt are both Gaussian. In this case, the posterior distribution is also

Gaussian [5], and its moments can be sequentially computed in closed form, see

Section 2.3.1.

2.1.3 State-space models and the filtering problem

In this section we introduce the class of state-space models (SSMs). An SSM

consists of two stochastic processes: the hidden state process (xt)t≥0 and the ob-

servation process (yt)t≥1. The hidden state is a Markov process whereas the obser-

vations are conditionally independent given the hidden state process. Compactly,

we can write an SSM as

x0 ∼ π0(dx0), (2.6)

xt|xt−1 ∼ τt(dxt|xt−1), (2.7)

yt|xt ∼ gt(yt|xt), t ∈ N, (2.8)

where xt ∈ X ⊂ Rdx is the dx-dimensional system state at time t, yt ∈ Y ⊂ Rdy is

the t-th dy-dimensional observation, the measure π0 describes the prior probability

distribution of the initial state, τt is a Markov transition kernel on X, and gt(yt|xt)
1We often drop the observation from the notation, called implicit conditioning, which clarifies

the notation significantly.

21

Chapter 2. Fundamentals

is the (possibly non-normalized) pdf of the observation yt conditional on the state

xt. We assume the observation sequence (yt)t≥1 is arbitrary but fixed. Hence, it

is convenient to think of the conditional pdf gt as a likelihood function and we

write gt(xt) := gt(yt|xt) for conciseness. Also from now on, we also denote SSMs

compactly as (π0, τt, gt)t≥1.

We are interested in the sequence of posterior probability distributions (πt)t≥1

of the states generated by the SSM. To be specific, at each time t = 1, 2, ... we

aim at computing (or, at least, approximating) the probability measure πt which

describes the probability distribution of the state xt conditional on the observation

of the sequence y1:t. When it exists, we use π(xt|y1:t) to denote the pdf of xt

given y1:t with respect to the Lebesgue measure, i.e., πt(dxt) = π(xt|y1:t)dxt. The

measure πt is often termed the optimal filter at time t. The computation of the

sequence of measures (πt)t≥1 is referred to as the filtering problem, as introduced

in Chapter 1.

The optimal filter πt is closely related to another probability measure ξt, which

describes the probability distribution of the state xt conditional on y1:t−1 and it is,

therefore, termed the predictive measure at time t. As for the case of the optimal

filter, we use ξ(xt|y1:t−1) to denote the pdf (when it exists), with respect to the

Lebesgue measure, of xt given y1:t−1. The predictive measure and the optimal

filter can be constructed recursively. Assume that we are given the optimal filter

πt−1. In order to obtain the filter πt, one needs to first compute the predictive

measure ξt via the Chapman-Kolmogorov equation [2, 122, 123],

ξt(dxt) =

∫
τt(dxt|xt−1)πt−1(dxt−1). (2.9)

Note that we can similarly write the prediction Eq. 2.9 for the expectation of a

test function ϕ ∈ B(X), as

(ϕ, ξt) = ((ϕ, τt), πt−1) .

Once we obtain the predictive measure ξt, we can compute the filter at time t as

πt(dxt) = ξt(dxt)
gt(xt)∫

X gt(xt)ξt(dxt)
. (2.10)

Similarly to (2.5), we can write the update Eq. (2.10) as

(ϕ, πt) =
(ϕgt, ξt)

(gt, ξt)
(2.11)

for any test function ϕ ∈ B(X). In general, the recursions (2.9) and (2.10), or

the expectations with respect to them, are not available in closed form, apart

22

Chapter 2. Fundamentals

from a restricted class of models, e.g., models with linear-Gaussian transitions and

likelihoods (for which the Kalman filter [6] yields exact solutions). We will review

numerical methods for both Gaussian and general cases in the following sections.

2.2 Static inference

In this section, we review numerical methods for the problem of inferring a poste-

rior probability measure π and then compute integrals of the form

(ϕ, π) =

∫
X
ϕ(x)π(dx), (2.12)

which are analytically intractable in general. Specifically, we review Monte Carlo

(MC) methods which aim at constructing a random grid by sampling from the

base distribution π(dx) and then approximating the integral using these samples

[23]. Moreover, since it is often the case that we cannot sample from π directly, it

is crucial to devise schemes that generate a suitable random grid by other means.

We remark that the integral (2.12) is directly related to the problem of Bayesian

inference since it is often of crucial interest to estimate integrals with respect to

posterior distributions.

2.2.1 Exact inference for Gaussian distributions

As indicated in the previous section, for special cases it is possible to obtain the

posterior distribution using the Bayes’ rule. An important case is the one where

conjugate priors are chosen for specific likelihoods, in such a way that the posterior

distribution can be obtained in closed form and usually in the form of the prior

[124, 125]. In this section, we review one specific (but important) case where

exact inference is possible. More specifically, we focus on the case where the prior

distribution and the likelihood function are chosen as Gaussian and free from

nonlinearities in their moments.

In this section, we summarize the inference rules for a Gaussian likelihood and

prior. In particular, we assume that we have a model

π0(x) = N (x;µ0, V0), (2.13)

g(y|x) = N (y;Hx,R), (2.14)

where µ0 ∈ Rdx and V0 ∈ Rdx×dx are the mean and covariance parameters of

the prior, respectively, H ∈ Rdy×dx is the observation matrix, and R ∈ Rdx×dx is

the observation covariance matrix. In this case, the posterior pdf π(x|y) can be

computed in closed form and it is given by the following lemma [125, 126].

23

Chapter 2. Fundamentals

Lemma 2.1. Assume that the prior and the likelihood are defined as in Eqs. (2.13)–

(2.14). Then the posterior distribution is Gaussian, specifically

π(x|y) = N (x;µ, V),

where

µ = µ0 + V0H
>(R+HV0H

>)−1(y −Hµ0), and

V = V0 − V0H
>(R+HV0H

>)−1HV0.

Proof. See, e.g., [125, 126]. �

This Gaussian update can be implemented recursively when one has a data

sequence (yt)t≥0. This is the key operation of the Kalman filter, which we will

review in Section 2.3.1. Given π, one can compute integrals of the form (2.12)

either in closed form or by using perfect sampling (which is introduced in the

next section) if the test function ϕ prevents the exact computation of the integral

(2.12).

2.2.2 Perfect Monte Carlo

The numerical estimation of the integral in (2.12) is the simplest when we can sam-

ple from π directly. Using independent samples from a certain probability measure

to calculate integrals is the core principle of Monte Carlo methods [23]. When in-

dependent sampling is achievable, the integral (2.12) can be estimated efficiently.

This can be done in various ways, e.g., via the inversion method (provided that

one has an access to a uniform random number generator and the inverse of the

cdf for the target distribution) or various other schemes which makes it possible

to obtain i.i.d. samples from π [127, 128]. In this subsection, we just assume that

we have access to an i.i.d. sampling scheme for π.

One can approximate (2.12) using samples from π and this type of approxima-

tions are called Monte Carlo (or particle) approximations of the integral. Formally,

given a collection of samples {x(i)}Ni=1, where x(i) ∼ π i.i.d, we first construct the

empirical measure, i.e., the empirical approximation of π, as

πN (dx) =
1

N

N∑
i=1

δx(i)(dx). (2.15)

Given the empirical measure πN , the integral (2.12) can be approximated as

(ϕ, π) ≈ (ϕ, πN) =
1

N

N∑
i=1

ϕ(x(i)), (2.16)

24

Chapter 2. Fundamentals

i.e., we replace a (possibly complicated) integral w.r.t. π by an integral w.r.t. πN

which is straightforward to compute. As a classical result, the estimate (2.16)

converges to the true integral by the strong law of large numbers [129], i.e.,

lim
N→∞

(ϕ, πN) = (ϕ, π) a.s. (2.17)

provided the variance of ϕ(x) is finite. The Monte Carlo estimator (2.16) is unbi-

ased and its variance is given by [105]

var
[
(ϕ, πN)

]
=

1

N2

N∑
i=1

varπ[ϕ(x(i))] =
varπ[ϕ(x)]

N
,

which vanishes as N → ∞. In the sequel, we prove a well-known Lp convergence

result for the case where we can sample from π directly.

Theorem 2.1. Given a test function ϕ ∈ B(X), we have the explicit error bound∥∥(ϕ, π)− (ϕ, πN)
∥∥
p
≤ cp‖ϕ‖∞√

N
,

where cp <∞ is a constant independent of N .

Proof. A simple proof for p = 2 and general integer p are both given in Appendix

A.1. �

This theorem is a typical result that displays the classical O(N−1/2) Monte

Carlo rate of convergence. We will see that many other Monte Carlo methods also

preserve this rate. It is also possible to give an explicit convergence rate for the

random approximation error (instead of the expected error in Theorem 2.1).

Corollary 2.1. Assume Theorem 2.1 holds. Then we have the following bound

for the random error,

|(ϕ, πN)− (ϕ, π)| ≤ Uδ

N
1
2
−δ
, (2.18)

where Uδ is an almost surely (a.s.) finite random variable independent of N and

δ < 1
2 is an arbitrarily small positive constant. As a consequence,

lim
N→∞

(ϕ, πN) = (ϕ, π), a.s. (2.19)

for any ϕ ∈ B(X).

Proof. See the Appendix A.1. �

Since δ > 0 can be arbitrarily small, the random error |(ϕ, πN) − (ϕ, π)| also

converges with a rate O(N−
1
2). Corollary 2.1 is implied by Theorem 2.1, hence it

will be possible to prove the same type of result for other Monte Carlo samplers

which converge in Lp.

25

Chapter 2. Fundamentals

2.2.3 Importance sampling

In many cases, it is not possible to directly sample from the probability measure π.

In that situation, one can use an instrumental distribution, also called a proposal

distribution, which is easy to sample from in order to obtain samples and use

a weighting scheme to obtain a proper approximation. We introduce here the

importance sampling (IS) method, which utilizes this idea. The IS method was

first introduced in [130]. Since then, it has been one of the most popular Monte

Carlo integration methods. For the basic theory and some applications see, e.g.,

[105, 123].

We denote the proposal measure with q(dx) (whose density w.r.t. Lebesgue

measure will be denoted by q) and we assume that it is easy to sample from

it directly. Formally, we assume that the target is absolutely continuous w.r.t.

the proposal, i.e., π � q. Given that we can sample from q, the IS estimate is

constructed as follows. First recall that our aim is to estimate integrals of form

(2.12). Provided that π � q, we readily have,

(ϕ, π) =

∫
X
ϕ(x)

dπ

dq
(x)q(dx) :=

∫
X
ϕ(x)w(x)q(dx), (2.20)

where the Radon-Nikodym derivative dπ
dq : X→ R+ is also referred to as the weight

function and denoted as w(x). Assuming that both π and q have densities w.r.t.

Lebesgue measure (denoted with same letters), we can write

w(x) =
π(x)

q(x)
.

Now the integral in (2.20) can be estimated using the empirical measures

qN (dx) =
1

N

N∑
i=1

δx(i)(dx) and πN (dx) =
1

N

N∑
i=1

w(i)δx(i)(dx) (2.21)

where x(i) ∼ q(dx) i.i.d. for i = 1, . . . , N and w(i) = w(x(i)) are called importance

weights. We denote the IS estimate in this case as

(ϕ, πN) =
1

N

N∑
i=1

w(i)ϕ(x(i)). (2.22)

Remark 2.1. The estimator (2.22) is an unbiased estimator of the integral in

(2.20), as shown easily by

E[(ϕ, πN)] =
1

N

N∑
i=1

E[w(x)ϕ(x)] = Eπ[ϕ(x)] = (ϕ, π).

�

26

Chapter 2. Fundamentals

Algorithm 2.1 Self-normalized importance sampling

1: Sample from proposal x(i) ∼ q(dx) for i = 1, . . . , N .

2: Compute weights,

w(i) =
W (i)∑N
i=1W

(i)
where W (i) =

Π(x(i))

q(x(i))
, for i = 1, . . . , N.

3: Report,

π̃N (dx) =
N∑
i=1

w(i)δx(i)(dx) and (ϕ, π̃N) =
∑

w(i)ϕ(x(i)).

The unbiasedness property of the IS estimator only holds for the case where

one can evaluate π(x) exactly. In the next section, we review the IS scheme for

the (practically more relevant) case in which one can only evaluate π(x) up to a

normalization constant.

Self-normalized importance sampling

While the IS scheme we have introduced is convenient, it is often not possible to

implement it exactly as it requires evaluations of the target density π. In practice,

the target π is only known up to a normalization constant, denoted Zπ. The

unnormalized target is denoted with Π and we can write

π(dx) =
Π(dx)

Zπ
and π(x) =

Π(x)

Zπ

for the target measure and the target pdf, respectively, where

Zπ =

∫
X

Π(dx) = Π(X).

Let us again assume Π� q. In this case, we can rewrite the integral (ϕ, π) as

(ϕ, π) =
1

Zπ

∫
X
ϕ(x)Π(dx).

In a similar way to the derivation in (2.20), we write,

(ϕ, π) =

∫
X ϕ(x)dΠ

dq (x)q(dx)∫
X

dΠ
dq (x)q(dx)

:=

∫
X ϕ(x)W (x)q(dx)∫

XW (x)q(dx)
, (2.23)

where now the Radon-Nikodym derivative dΠ
dq : X→ R+ is called the unnormalized

weight function, which we also denote as W (x). The normalized weight function

27

Chapter 2. Fundamentals

w : X→ R+, i.e., the Radon-Nikodym derivative of π w.r.t. q, w(x) := dπ
dq (x), can

be written in terms of the unnormalized weight function as

w(x) :=
dπ

dq
(x) =

W (x)∫
XW (x′)q(dx′)

.

Given these constructions, the IS algorithm for this case can be constructed as

follows. Assume that we sample {x(i)}Ni=1 i.i.d. from q(dx) and obtain the empir-

ical measure (2.21). Then, (2.23) yields the self-normalized importance sampling

(SNIS) estimator

(ϕ, π̃N) =

∑N
i=1W

(i)ϕ(x(i))∑N
i=1W

(i)
,

where W (i) := W (x(i)) for i = 1, . . . , N . We can write this estimate more com-

pactly as

(ϕ, π̃N) =

N∑
i=1

w(i)ϕ(x(i)), where w(i) =
W (i)∑N
i=1W

(i)
. (2.24)

This estimator is biased as it is defined as a ratio of two unbiased estimators, which

follows from Jensen’s inequality2. Although the estimator is biased for finite N ,

the bias vanishes as N →∞ with a rate O(1/N). Actually, the estimator (2.24) is

consistent [105]. In what follows, we present an Lp convergence result concerning

the estimator (2.24), i.e., an IS version of Theorem 2.1.

Theorem 2.2. Assume that ‖W‖∞ <∞. Then, for any ϕ ∈ B(X), we have

‖(ϕ, π)− (ϕ, π̃N)‖p ≤
cp‖ϕ‖∞√

N

for any p ≥ 1, where cp is a constant independent of N .

Proof. See Appendix A.1. �

Similarly to the perfect Monte Carlo, we have the following result for SNIS

estimators.

Corollary 2.2. Under the assumptions of Theorem 2.2, for any ϕ ∈ B(X) we

have

|(ϕ, π̃N)− (ϕ, π)| ≤ Ũδ

N
1
2
−δ
, (2.25)

2The bias also follows from the fact that w(i) 6= w(x(i)).

28

Chapter 2. Fundamentals

where Ũδ is an almost surely finite random variable and δ < 1
2 is an arbitrarily

small and positive constant independent of N . As a consequence,

lim
N→∞

(ϕ, π̃N) = (ϕ, π) a.s. (2.26)

for any ϕ ∈ B(X).

Proof. The proof of this corollary follows from Theorem 2.2 and the proof of

Corollary 2.1. �

The SNIS scheme is outlined in Algorithm 2.1.

2.2.4 Markov chain Monte Carlo methods

An alternative to building an importance sampling-type sampler is to use Markov

chain Monte Carlo (MCMC) methods. MCMC techniques are based on the prin-

ciple of simulating a Markov chain (xt)t≥0 with a stationary distribution π, which

coincides with the target distribution (see [105] for precise definitions of a Markov

chain and its stationary distribution). This is done via designing a Markov kernel

κ(·|·) which leaves π invariant, i.e., π = κπ. More precisely, the kernel κ should

satisfy,

π(dx′|x) =

∫
κ(dx′|x)π(dx).

Provided that one can design such a kernel and obtain random variables (xt)t≥1,

the marginal distribution of xt converges to π as t→∞. For conditions and modes

of convergence see [105].

2.3 Sequential inference

In many scenarios for probabilistic inference, such as sequential inference or filter-

ing, it is required to estimate a sequence of distributions (πt)t≥0 and integrals of

the form

(ϕ, πt) =

∫
X
ϕ(x)πt(dx), for t ∈ N. (2.27)

For example, in Bayesian statistics, each πt is conditioned on more and more data

as t grows. In this case, it is computationally prohibitive to use the methods we

have introduced in the previous section, as the complexity of the problem grows

with the number of iterations. It is therefore crucial to develop methods tailored

for the sequential structure of the problem. In the following sections, we review

methods for sequential inference.

29

Chapter 2. Fundamentals

2.3.1 Kalman update

Assume that we are given a Gaussian prior π0(x) and a sequence of Gaussian

likelihoods g(yt|x) for t ≥ 1. As we have summarized in Sec. 2.2.1, one-step Bayes

update can be performed in closed form when the prior and a single likelihood are

Gaussian. It is therefore natural to generalize this idea for sequential Bayesian

updating.

More specifically, we consider the following Gaussian probability model,

π0(x) = N (x;µ0, V0) (2.28)

g(yt|x) = N (yt;Htx,Rt), (2.29)

where (µ0, V0) are parameters of the prior, (Ht)t≥1 defines the sequence of observa-

tion matrices, and (Rt)t≥1 are observation noise covariances. Given the posterior

pdf πt(x|y1:t−1), the posterior pdf at time t is given by

πt(x|y1:t) = πt−1(x|y1:t−1)
gt(yt|x)∫

X πt−1(x|y1:t−1)gt(yt|x)dx
,

where π(x|y0) := π0(x). The parameters of this posterior distribution can be found

via the following recursions, which are referred to as Kalman updates.

Lemma 2.2. Given the model (2.28)–(2.29) and the posterior distribution π(x|y1:t−1) =

N (x;µt−1, Vt−1), we obtain

π(x|y1:t) = N (x;µt, Vt),

where,

µt = µt−1 + Vt−1H
>
t (Rt +HtVt−1H

>
t)−1(yt −Htµt−1),

Vt = Vt−1 − Vt−1H
>
t (Rt +HtVt−1H

>
t)−1HtVt−1,

for t ≥ 1 and π(x|y0) := π0(x).

Proof. See, e.g., [6, 5, 125, 126]. �

Again, the integrals (ϕ, πt) for certain ϕ can be computed, since πt can be

obtained in closed form. However, again, for general ϕ, one may need to resort

to sampling methods to estimate the integral if it is not possible to integrate ϕ

against a Gaussian.

30

Chapter 2. Fundamentals

2.3.2 Kalman filters

Assume that we are given an SSM (π0, τt, gt)t≥1 of the form,

π0(x0) = N (x0;µ0, V0), (2.30)

τt(xt|xt−1) = N (xt;Atxt−1 +Btut, Qt), (2.31)

gt(yt|xt) = N (yt;Htxt, Rt), (2.32)

where (At)t≥1 ∈ Rdx×dx and (Qt)t≥1 ∈ Rdx×dx denote the linear transition ma-

trices and the process covariance matrices, respectively. The sequences (Ht)t≥1

and (Rt)t≥1 characterize the observation model. In particular, (Ht)t≥1 denotes

the linear observation model and the sequence (Rt)t≥1 stands for the observation

noise covariance, respectively. Finally, the sequences (Bt, ut)t≥1 define the control

inputs. We refer to models of the form (2.30)–(2.32) as linear-Gaussian state-space

models (LGSSMs), indicating that the transition and observation models of the

SSM are linear-Gaussian. For this type of models, the posterior distribution of the

state πt(xt|y1:t) is available in closed form. The procedure to compute the sufficient

statistics of πt(xt|y1:t) is called the Kalman filter (KF) [6, 5]. More specifically,

the moments of the πt are given by the following lemma.

Lemma 2.3. Assume we are given an SSM of form (2.30)–(2.32). Given the

optimal filter at time t− 1,

πt−1(xt−1|y1:t−1) = N (xt−1;µt−1, Vt−1),

the predictive distribution ξt(xt|y1:t−1) is given by

ξt(xt|y1:t−1) = N (xt; µ̃t, Ṽt),

where,

µ̃t = Atµt−1 +Btut, (2.33)

Ṽt = AtVt−1A
>
t +Qt. (2.34)

Finally, the optimal filter πt(xt|y1:t) is given by

πt(xt|y1:t−1) = N (xt;µt, Vt),

where,

µt = µ̃t + ṼtH
>
t (Rt +HtṼtH

>
t)−1(yt −Htµ̃t), (2.35)

Vt = Ṽt − ṼtH>t (Rt +HtṼtH
>
t)−1HtṼt, (2.36)

from Lemma 2.2.

31

Chapter 2. Fundamentals

Proof. See, e.g., [6, 5, 125, 126]. �

The recursions (2.33)–(2.36) are together referred to as the Kalman filtering

recursions.

2.3.3 Extended Kalman filters

Given an SSM where the transition and observation models are nonlinear, it is

not possible to utilize the KF. However, it is reasonable to assume that when

the transition and observation models are locally linear, and the process and the

observation noise are Gaussian, one can linearize the SSM and obtain a Kalman-

type filter for a nonlinear model, which is called as the extended Kalman filter

(EKF) [5]. Note, however, that the distributions approximated by the EKF are just

approximate. We will make this fact clear by denoting the posterior distributions

as πEt , instead of πt. The EKF can be shown to converge if the model satisfies

certain conditions, see, e.g., [2] for a discussion.

Assume that we are given the SSM

π0(x0) = N (x0;µ0, V0),

τt(xt|xt−1) = N (xt; at(xt−1), Qt)

gt(yt|xt) = N (yt;ht(xt), Rt).

where at : X→ X, ht : X→ Y, Qt ∈ Rdx×dx , and Rt ∈ Rdy×dy . Assume that the ap-

proximate posterior distribution at time t− 1 is πEt−1(xt−1) = N (xt−1;µEt−1, V
E
t−1).

If the model is approximately locally linear, one can linearize at(xt) around µEt−1

and obtain the dynamical model

āt(xt) = at(µ
E
t−1) +At(xt − µEt−1) = at(µ

E
t−1) +Atxt −AtµEt−1, (2.37)

where

At =
∂at(x)

∂x

∣∣∣∣
x=µEt−1

.

We can see (2.37) as a linear model with control inputs. Hence, the prediction

step with this linearized model simply becomes

µ̃Et = at(µt−1).

The uncertainty is propagated also as in the KF, since (2.37) is a linear model,

hence we obtain

Ṽ E
t = AtV

E
t−1A

>
t +Qt.

32

Chapter 2. Fundamentals

Similarly, given µ̃Et , in order to proceed with the observation model we can linearize

ht around µ̃Et , i.e., we construct

h̄t(xt) = ht(µ̃
E
t) +Ht(xt − µ̃Et),

where

Ht =
∂ht(x)

∂x

∣∣∣∣
x=µ̃t

.

Given the linearization, the EKF update step now becomes

µEt = µ̃Et−1 + Ṽ E
t H

>
t (HtṼ

E
t H

>
t)−1(yt − ht(µ̃Et)),

V E
t = Ṽ E

t − Ṽ E
t H

>
t (HtṼ

E
t H

>
t)−1HtṼ

E
t .

Finally, one can compactly summarize the EKF as follows. Given πEt−1(xt−1) =

N (xt−1;µEt−1, V
E
t−1), the new posterior pdf πEt (xt) = N (xt;µ

E
t , V

E
t) is obtained via

µ̃Et = at(µt−1), (2.38)

Ṽ E
t = AtV

E
t−1A

>
t +Qt, (2.39)

µEt = µ̃Et−1 + Ṽ E
t H

>
t (HtṼ

E
t H

>
t)−1(yt − ht(µ̃Et)), (2.40)

V E
t = Ṽ E

t − Ṽ E
t H

>
t (HtṼ

E
t H

>
t)−1HtṼ

E
t . (2.41)

From now on, the equations (2.38)–(2.41) for t ≥ 1 are referred to as the EKF

recursions.

2.3.4 Other Kalman-type filters

The EKF is not the only way to deal with nonlinearities when one is interested in

inferring nonlinear Gaussian state-space models. Actually, when there are severe

nonlinearities present in an SSM, the EKF may not be suitable to use. Further-

more, as it requires derivatives of the transition and observation models, it may

not be applicable to certain models.

An alternative approach to obtain a Kalman-like filtering algorithm for a non-

linear SSM is the so-called unscented Kalman filter (UKF) [12–14]. These methods

define a precomputed grid, which is designed so that the moments before and after

the nonlinear transformations stay consistent. There is a class of similar methods

called sigma-point filters, which rely on the same principle [126]. The UKF can

be successfully applied for cases where derivatives of the models are not available.

The second Kalman-type filter, which is widely used by weather prediction prac-

titioners, is the ensemble Kalman filter (EnKF). The EnKF resembles a Monte

33

Chapter 2. Fundamentals

Algorithm 2.2 Bootstrap Particle Filter

1: Generate the initial particle system {x(i)
0 }Ni=1 by drawing N times indepen-

dently from the prior π0.

2: for t ≥ 1 do

3: Sampling: draw x̄
(i)
t ∼ τt(dxt|x

(i)
t−1) independently for every i = 1, . . . , N .

4: Weighting: compute w
(i)
t = gt(x̄

(i)
t)/Z̄Nt for every i = 1, . . . , N , where

Z̄Nt =
∑N

i=1 gt(x̄
(i)
t).

5: Resampling: draw x
(i)
t , i = 1, ..., N from the discrete distribution∑

i w
(i)
t δx̄(i)t

(dx), independently for i = 1, ..., N .

6: end for

Carlo method since it proceeds by generating samples in the state space using

the state equation. The covariance matrices and some other key quantities for

the Kalman filter are approximated empirically in the filter using the ensemble of

samples. The EnKF has been proved successful, especially for high-dimensional

problems, and has been consistently used in practice, e.g., for weather prediction

[15–19].

2.3.5 Particle filters

Consider a general SSM (π0, τt, gt)t≥1,

x0 ∼ π0(x0),

xt|xt−1 ∼ τt(xt|xt−1),

yt|xt ∼ gt(yt|xt), t ∈ N+,

where π0, τt, and gt denote the prior, the transition model, and the likelihood func-

tion, respectively. Suppose that τt and gt are such that none of the Kalman-type

filters summarized above are applicable due to non-Gaussianity and nonlinearities.

In this case, a generic inference method, based on the Monte Carlo principle, can

be developed. This type of Monte Carlo estimators are called sequential Monte

Carlo (SMC) methods [131–133]. In the rest of this section, we introduce a special

class of SMC methods called bootstrap particle filters (BPFs); then we review

general particle filters (PFs).

Bootstrap particle filters

Suppose that we are given a collection of particles {x(i)
t−1}Ni=1 at time t−1, forming

an empirical approximation πNt−1 of the optimal filter πt−1. The BPF first obtains

34

Chapter 2. Fundamentals

the empirical approximation ξNt of the predictive measure ξt, by propagating the

existing samples using the transition kernel, i.e., by sampling

x̄
(i)
t ∼ τt(dxt|x

(i)
t−1), i = 1, . . . , N,

and then constructs the approximate predictive measure

ξNt (dxt) =
1

N

N∑
i=1

δ
x̄
(i)
t

(dxt).

Next, each sample is assessed and given weights using the likelihood. Recalling

the notation gt(xt) := gt(yt|xt), the weight of the i-th particle becomes

w
(i)
t =

gt(x̄
(i)
t)∑N

i=1 gt(x̄
(i)
t)

, i = 1, . . . , N,

and it yields the weighted measure

π̃Nt (dxt) =
N∑
i=1

w
(i)
t δx̄(i)t

(dxt).

Although, π̃Nt is enough to estimate expectations w.r.t. πt, in practice weights w
(i)
t

become degenerate, rendering the algorithm practically useless [131–133]. In order

to tackle this problem, a resampling step is usually performed after the weighting

step, by sampling N i.i.d. particles

x
(i)
t ∼ π̃Nt (dxt), i = 1, . . . , N,

and constructing the resampled measure

πNt (dxt) =
1

N

N∑
i=1

δ
x
(i)
t

(dxt).

We note that the resampling step, as we have described it here, corresponds to

multinomial resampling scheme. There are alternative resampling schemes with

practically improved performance [134].

The BPF possesses several useful theoretical properties. In the following, we

state an Lp convergence proof.

Assumption 2.1. The likelihood function is positive and bounded, i.e.,

gt(xt) > 0 and ‖gt‖∞ = sup
xt∈X
|gt(xt)| <∞,

for t = 1, . . . , T .

35

Chapter 2. Fundamentals

Theorem 2.3. Let y1:T be arbitrary but fixed observation sequence with T < ∞.

If Assumption 2.1 is satisfied, then

‖(ϕ, πt)− (ϕ, πNt)‖p ≤
ct,p‖ϕ‖∞√

N
(2.42)

for t = 1, . . . , T , any ϕ ∈ B(X), any p ≥ 1 and some constant ct,p <∞ independent

of N .

Proof. See Appendix A.1. �

Note that Theorem 2.3 can be used to prove a uniform convergence result with

additional assumptions [30]. We make this aspect clearer in Chapter 3, when we

present a result similar to Theorem 2.3 for the nudged particle filter.

Moreover, we have the following bound for the random error made by the BPF.

Corollary 2.3. Assume Theorem 2.3 holds. Then for every t ≥ 1,

|(ϕ, πNt)− (ϕ, πt)| ≤
Ut,δ

N
1
2
−δ
, (2.43)

where Ut,δ is an almost surely finite random variable and 0 < δ < 1
2 is a constant

independent of N . As a consequence,

lim
N→∞

(ϕ, πNt) = (ϕ, πt), a.s. (2.44)

for any ϕ ∈ B(X).

Proof. The proof of this corollary follows from Theorem 2.3 and the proof of

Corollary 2.1. �

The full procedure of the BPF is outlined in Algorithm 2.2.

General particle filters

The BPF can be seen as a special case of a general sequential Monte Carlo method.

In this section, we introduce the general PF formulation as an importance sampling

method for increasing dimension. To be more precise, we introduce the PF with

general proposals. The convergence of this scheme has been studied but we will

not go into the details, instead refer to, e.g., [135] for L4 convergence. We assume

all distributions are absolutely continuous with respect to Lebesgue measure for

simplicity.

36

Chapter 2. Fundamentals

Algorithm 2.3 General Particle Filter

1: Generate the initial particle system {x(i)
0 }Ni=1 by drawing N times indepen-

dently from the prior π0.

2: for t ≥ 1 do

3: Sampling: draw x̄
(i)
t ∼ qt(dxt|x

(i)
t−1) independently for every i = 1, . . . , N .

4: Weighting: compute

w
(i)
t ∝

τ(x̄
(i)
t |x

(i)
t−1)gt(x̄

(i)
t)

qt(x̄
(i)
t |x

(i)
t−1)

,

for every i = 1, . . . , N .

5: Resampling: draw x
(i)
t , i = 1, ..., N from the discrete distribution∑

i w
(i)
t δx̄(i)t

(dx), independently for i = 1, ..., N .

6: end for

Let us define a product space X⊗t :=
⊗t

k=1 X at time t. The unnormalized

distribution of the SSM defined on X⊗t is given as,

Πt(x1:t) = π0(x0)

t∏
k=1

τk(xk|xk−1)gk(xk).

In order to define an importance sampling procedure, let us define a proposal

distribution on X⊗t as

q̃t(x1:t) =

t∏
k=1

qk(xk|x1:k−1).

Now, we can write the weights of the importance sampler at time t for the entire

trajectory as

Wt(x1:t) =
dΠt

dqt
(x1:t),

=
Πt−1(x1:t−1)

q̃t−1(x1:t−1)︸ ︷︷ ︸
W1:t−1(x1:t−1)

Πt(x1:t)

Πt−1(x1:t−1)

1

qt(xt|x1:t−1)
. (2.45)

Expression (2.45) finally yields

W1:t(x1:t) = Wt−1(x1:t−1)wt(x1:t),

where wt(x1:t) is called the incremental weight function and can be written as

wt(x1:t) =
τt(xt|xt−1)gt(xt)

qt(xt|x1:t−1)
. (2.46)

37

Chapter 2. Fundamentals

The PF is a method which takes advantage of the sequential structure of the

weights. It can be seen that one can update the weights by computing only the

incremental weight. When the proposal qt(xt|x1:t−1) depends only on the pair

(xt−1, xt), this leads to very efficient importance samplers on the path space, in

the sense that they can be implemented without the need of increasing the com-

putational cost per iteration.

Assume that we are given the particle system in the path space {x(i)
1:t−1}Ni=1.

Also, let us assume that the proposal qt only depends on the previous time, that is,

it is a Markov kernel which admits a density of the form qt(xt|xt−1). The general

PF first samples from this kernel, i.e.,

x̄
(i)
t ∼ qt(dxt|x

(i)
t−1) i.i.d. for i = 1, . . . , N.

Next, we compute weights as shown in (2.46), i.e.,

w
(i)
t ∝

τt(x̄
(i)
t |x

(i)
t−1)gt(x̄

(i)
t)

qt(x̄
(i)
t |x

(i)
t−1)

, for i = 1, . . . , N.

Note that the incremental weight in (2.46) is unnormalized, we thus use the no-

tation ∝ to indicate that the weights w
(i)
t are normalized accordingly. Finally, a

resampling scheme is implemented in order to prevent weights from degenerating,

x
(i)
t ∼

N∑
i=1

w
(i)
t δx̄(i)t

(dxt), for i = 1, . . . , N,

and the approximation of πt is constructed as

πNt (dxt) =
1

N

N∑
i=1

δ
x
(i)
t

(dxt).

The full procedure of the general PF is outlined in Algorithm 2.3.

2.4 Numerical optimization

2.4.1 Introduction

Optimization methods play a central role in this thesis. An optimization problem

can be defined as finding some θ∗ such that

θ? ∈ argmin
θ∈Θ

f(θ), (2.47)

where f(·) is some cost function. In this section, we are interested in unconstrained

optimization, therefore Θ = Rd. If f is a convex function, one can say that

38

Chapter 2. Fundamentals

there is a unique function value for the global minima, i.e., there exists a unique

f? := minθ f(θ). To have a unique minimum θ?, one needs strong convexity of f

[53].

Most optimization problems cannot be solved analytically, hence typically a nu-

merical optimization method is used. Given an initial point, a numerical method

for optimization (which we term an optimizer) collects information about the

function and utilizes this information to achieve descent moves, i.e., moves which

reduce the value of the cost function. A numerical optimizer can use function eval-

uations, gradients (or higher order information), or tools like proximal operators

(which we will introduce later) to achieve a descent direction. Broadly, we can

classify optimizers into three general classes:

• Zeroth-order optimizers which only have access to function evaluations f(·),

• First-order optimizers which have access to function evaluations f(·) and

gradients ∇f(·),

• Second-order optimizers which have access to function evaluations f(·), gra-

dients ∇f(·), and Hessians ∇2f(·).

In many important scenarios arising in signal processing and machine learning,

however, it is often the case that quantities like function evaluations or gradients

can only be computed approximately. This kind of problems are referred to as

stochastic optimization problems. In general, stochastic optimizers can also be

classified into the same three classes, namely: (i) zeroth order, (ii) first order, and

(iii) second order optimizers. In this case, however, the quantities used by the

optimizer contain some form of randomness. This randomness does not have to

be limited to the case of additive noise, as we will make clear in the sequel.

In this work we are particularly interested in the stochastic setting that arises

when the cost function has the additive form

f(θ) =
1

n

n∑
k=1

fk(θ) (2.48)

with large n. In this case, it is inefficient to compute function evaluations or gra-

dients since, in an applied setup, each fk (which we refer to as the kth component

function) is parameterized by a data-point. This means that computing the gra-

dient of f requires processing all dataset for a single iteration. In this case, there

are different strategies to move in the parameter space while using only a few

of the component functions at each iteration. One such strategy is subsampling

with replacement of the individual functions fk and constructing a surrogate cost

39

Chapter 2. Fundamentals

function, which yields an unbiased estimator of the function evaluation and its

gradient. In particular, let us assume that we obtain

f̃(θ) =
1

K

K∑
k=1

fik(θ),

where i1, . . . , iK are sampled uniformly from the index set [n] = {1, . . . , n}. In this

context, K is called as the mini-batch size. This leads to an unbiased estimate of

the function, i.e.,

Ei1,...,iK
[
f̃(θ)

]
= f(θ).

Subsampling with replacement is especially used to estimate the gradients of the

functions, i.e., at time t, one obtains

gt =
1

K

K∑
k=1

∇fik(θt−1),

where

Ei1,...,iK [gt] = ∇f(θt−1).

Although this estimate is unbiased, it is not possible to obtain the exact form of

the randomness in this case. It is clear that, as K increases, the noise induced

on the function evaluations and gradients approaches a Gaussian random variable,

whose variance is related to the mini-batch size K.

Although stochastic gradient methods use subsampling with replacement, and

the theory of SGD methods rely heavily on this assumption, there are many other

stochastic optimization methods which use, e.g., subsampling without replace-

ment, see [84, 85] for some convergence results regarding subgradient methods

with different subsampling methods.

2.4.2 Gradient descent

One of the most basic and popular optimization algorithms is the well-known

gradient descent (GD) method. Given a function f and an initial point θ0, the

GD recursion has the form

θt = θt−1 − γ∇f(θt−1), (2.49)

where γ > 0 is a step-size parameter. Eq. (2.49) describes a dynamical system that

moves θt in the direction of negative gradient, hence obtaining a sequence (θt)t≥0

that progressively moves toward a minimum of f . Under suitable conditions, the

GD is known to converge asymptotically as t→∞ with a rate O(1/t) for convex

f [53].

40

Chapter 2. Fundamentals

2.4.3 Stochastic gradient descent

As we have mentioned in Section 2.4.1, it is often the case that gradients can

only be obtained with some noise. In this section, we introduce the stochastic

gradient descent (SGD) method, the most basic extension of the GD that uses

noisy gradients instead of exact gradients.

In particular, at iteration t, we denote the noisy gradient as gt, and it can be

written as

gt = ∇f(θt−1) + ηt,

where ηt is a random variable. If E[ηt] = 0, then the noisy gradient is unbiased.

Having obtained the noisy gradient at time t− 1, the SGD recursion is defined as

θt = θt−1 − γtgt,

where (γt)t≥1 is a sequence of step-sizes, which has to satisfy certain conditions for

convergence. For asymptotic convergence, i.e., for the regime t→∞, it is enough

to assume [60, 61] that ∑
t

γt =∞ and
∑
t

γ2
t <∞.

In finite time, under suitable assumptions, the SGD converges with a rateO(1/
√
t),

slower than the GD rate O(1/t), due to the noise on the gradients. The rate can be

improved under different conditions, such as strong convexity. See [62, 67, 136, 137]

and references therein for the detailed investigation of the convergence of the SGD.

2.4.4 Proximal point iteration

Despite GD-based optimization has dominated many application areas, there are

cases where it is not possible to apply GD based optimization, e.g., the case of

nondifferentiable cost functions. An alternative to GD methods for such a scenario

is to use a proximal operator in order to identify a descent direction. The methods

utilizing proximal operators are collectively called proximal methods and they have

become increasingly popular for nonsmooth optimization- See, e.g., [77, 76] for an

introduction and applications in signal processing.

In this section, we introduce the proximal point iteration (PPI), the most basic

proximal algorithm. First, we start by defining the proximal operator [76].

Definition 2.1. Given a function f , its proximal operator proxf,V (θ0) with a

symmetric positive definite matrix V ∈ Rd×d is defined as

proxf,V (θ0) = argmin
θ∈Rdθ

f(θ) +
1

2
‖θ − θ0‖22,V , (2.50)

41

Chapter 2. Fundamentals

where

‖θ‖2,V =
√
θ>V −1θ.

When V = I, we simplify the notation and write proxf (θ0). We also note the

proximal operator of γf , which follows from Definition 2.1,

proxγf (θ0) = argmin
θ∈Rd

f(θ) +
1

2γ
‖θ − θ0‖22.

We have noted that the proximal operator achieves a descent step in the parameter

space. Therefore, it can be viewed as an alternative to the gradient step, when the

latter is not possible to implement. Although we will not prove the fact that the

proximal operator achieves a descent step, we discuss some interpretations of the

proximal operators, which are useful in order to understand its relationship with

the gradient descent.

Remark 2.2. Proximal operator implements an implicit gradient step. More

precisely, we can interpret the proximal operator as an implicit gradient step for

differentiable f . Note that, in order to compute proxγf (θ0), we have to solve the

equation

∇θ
(
f(θ) +

1

2γ
‖θ − θ0‖22

)
= 0,

which yields

θ = θ0 − γ∇f(θ).

This is an implicit equation that has to be solved for θ. �

Remark 2.3. Conversely, an explicit gradient step can be seen as an approxima-

tion to the proximal operator [138]. In order to see this, consider the following

linear approximation of f(θ) around θ0,

f̄(θ) = f(θ0) +∇f(θ0)>(θ − θ0).

Dropping the terms unrelated to θ, the proximal operator of f̄ , i.e., proxγf̄ (θ0) can

be written as

θ = argmax
θ∈Rd

∇f(θ0)>θ +
1

2γ
‖θ − θ0‖22.

Solving this problem for θ yields the usual explicit gradient step:

θ = θ0 − γ∇f(θ0).

�

42

Chapter 2. Fundamentals

Next, we summarize a proximal point iteration to solve the minimization prob-

lem of f . In order to minimize a general f (which is not necessarily smooth)

starting from an initial parameter θ0, one can use the following recursion, which

is called as the PPI [76],

θt = proxγf (θt−1). (2.51)

The PPI has a convergence rate O(1/t) for convex f , when γ > 0, and constant

or bounded away from zero for every t.

Remark 2.4. We note that, in the light of Remark 2.2, the iteration (2.51) has an

intrinsic relationship with gradient descent for smooth f . In particular, it is well

known that the gradient descent scheme can be seen as an explicit Euler integration

of the continuous-time gradient flow ordinary differential equation (ODE) [76],

dθ(t)

dt
= −∇f(θ(t)).

Using Remark 2.2, on the other hand, we can conclude that recursion (2.51) can

be seen as an implicit Euler integration of the same ODE [76]. Therefore, the GD

and the PPI can be seen as different numerical methods for solving the same ODE.

�

2.4.5 The incremental proximal method

The incremental proximal method (IPM) is a stochastic proximal method, meaning

that it minimizes cost functions of the form (2.48), while only using one (or a few)

component functions at each iteration. The IPM method has been analyzed from

different perspectives, see e.g., [84, 85, 138]. To be specific, at iteration t, the

incremental proximal method solves

θt = proxγfit (θt−1)

where fit is the itth component function and it ∼ [n] is drawn uniformly at random.

However, as analyzed in [84, 85], the algorithm has also convergence guarantees

when the component functions are chosen without replacement or in cyclic order,

i.e., when one scans the dataset multiple times in same order. The IPM converges

with rate O(1/
√
t) and, similar to the SGD, this rate can be improved to O(1/t)

under additional assumptions on the cost function; see, e.g., [139]. We remark

that the IPM is of special interest to us in this thesis, since it turns out that it

can be understood as a sequential inference method (see Chapter 4 for details).

43

Chapter 2. Fundamentals

44

3
Nudging the particle filter

In this chapter, we introduce the nudged particle filter (NuPF), a novel particle

filtering method aimed at addressing some shortcomings of the bootstrap particle

filter (BPF). In particular, the NuPF incorporates a sampling scheme based on the

general idea of nudging the particles towards high-likelihood regions. This approach

improves performance for mis-modeled dynamical systems as well as for some high-

dimensional examples.

3.1 Introduction

In this chapter, we propose a modification of the PF, termed the nudged particle

filter (NuPF) and assess its performance in high dimensional settings and with

misspecified models.

We use the same idea for nudging that is presented in the literature, as re-

viewed in Chapter 1. However, our algorithm has subtle but crucial differences.

Recall that nudging is defined as a step aiming at moving state particles towards

observed data, via some observation dependent operator. Although, we use the

same concept to move our particles, we note the following crucial differences.

• First, we define the nudging step not just as a relaxation step towards obser-

vations but as a step that strictly increases the likelihood of a subset of parti-

cles. This definition paves the way for using different nudging schemes, such

45

Chapter 3. Nudging the particle filter

as using the gradients of likelihoods or employing random search schemes to

move around the state-space. In particular, classical nudging (relaxation)

operations arise as a special case of nudging using gradients when the likeli-

hood is assumed to be Gaussian. Compared to IPFs, the nudging operation

we propose is easier to implement as we only demand the likelihood to in-

crease (rather than the posterior density). Indeed, nudging operators can be

implemented in relatively straightforward forms, without the need to solve

model-dependent equations.

• Second, unlike the other nudging based PFs, we do not correct the bias

induced by the nudging operation during the weighting step. Instead, we

compute the weights in the same way they would be computed in a conven-

tional (non-nudged) PF. However, we carry out the nudging step in a way

that preserves the convergence rate of the PF under mild standard assump-

tions. In particular, we push only a fraction of particles and leave others

untouched, which is key to preserving the Monte Carlo convergence rate, in

addition to a significant computational gain. Also, computing biased weights

is usually faster than computing proper (unbiased) weights. Depending on

the choice of nudging scheme, the proposed algorithm can have an almost

negligible computational overhead compared to the conventional PF from

which it is derived.

• Finally, we show that a nudged PF for a given SSM (say M0) is equivalent

to a standard BPF running on a modified SSM (denoted M1) which is a

better fit for the available data sequence. In particular, we prove that the

evidence (the probability density of the observations conditional on the SSM)

of M1 is greater than the evidence of M0 under very mild assumptions. As

a consequence, nudged PFs can be expected to be more robust to model

mismatches than standard PFs as they implicitly “adapt to the data”.

In order to illustrate the contributions outlined above, we present computer

the results of several computer experiments with both synthetic and real data.

In the first example, we assess the performance of the NuPF when applied to a

linear-Gaussian SSM. The aim of these computer simulations is to compare the es-

timation accuracy and the computational cost of the proposed scheme with several

other competing algorithms, namely a standard BPF, a PF with optimal proposal

function and a NuPF with proper weights. The fact that the underlying SSM is

linear-Gaussian enables the computation of the optimal importance function (in-

tractable in a general setting) and proper weights for the NuPF. We implement

46

Chapter 3. Nudging the particle filter

the latter scheme because of its similarity to standard nudging filters in the liter-

ature. This example shows that the NuPF suffers just from a slight performance

degradation compared to the PF with optimal importance function or the NuPF

with proper weights, while the latter two algorithms are computationally more

demanding.

The second and third examples are aimed at testing the robustness of the NuPF

when there is a significant misspecification in the state equation of the SSM. This

is helpful in real-world applications because practitioners often have more control

over measurement systems, which determine the likelihood, than they have over

the state dynamics. We present computer simulation results for a stochastic Lorenz

63 model and a maneuvering target tracking problem.

In the fourth example, we present numerical results for a stochastic Lorenz 96

model, in order to show how a relatively high-dimensional system can be tracked

without a major increase of the computational effort compared to the standard

BPF. For this set of computer simulations we have also compared the NuPF with

the Ensemble Kalman filter (EnKF), which is the de facto choice for tackling this

type of systems.

Let us remark that, for the two stochastic Lorenz systems, the Markov kernel

in the SSM can be sampled in a relatively straightforward way, yet transition

probability densities cannot be computed (as they involve a sequence of noise

variables mapped by a composition of nonlinear functions). Therefore, computing

proper weights for proposal functions other than the Markov kernel itself is, in

general, not possible for these examples.

Finally, we demonstrate the practical use of the NuPF on a problem where a

real dataset is used to fit a stochastic volatility model using either particle Markov

chain Monte Carlo (pMCMC) [140] or nested particle filters [141].

Organization

The chapter is structured as follows. We describe the SSMs of interest and the

BPF in Section 3.2. Then in Section 3.3, we outline the general algorithm and the

specific nudging schemes we propose to use within the PF. We prove a convergence

result in Section 3.4 which shows that the new algorithm has the same asymptotic

convergence rate as the BPF. We also provide an alternative interpretation of

the nudging operation that explains its robustness in scenarios where there is

a mismatch between the observed data and the assumed SSM. We discuss the

computer simulation experiments in Section 3.5 and present results for real data

in Section 3.6.

47

Chapter 3. Nudging the particle filter

3.2 Background

In this section, we briefly recall the notions we have introduced in Chapter 2.

3.2.1 State space models

We consider SSMs of the form

x0 ∼ π0(dx0) (3.1)

xt|xt−1 ∼ τt(dxt|xt−1) (3.2)

yt|xt ∼ gt(yt|xt), t ∈ N, (3.3)

where xt ∈ X is the system state at time t, yt ∈ Y is the t-th observation, the

measure π0 describes the prior probability distribution of the initial state, τt is

a Markov transition kernel on X, and gt(yt|xt) is the (possibly non-normalized)

pdf of the observation yt conditional on the state xt. We assume the observation

sequence (yt)t∈N is arbitrary but fixed. Hence, it is convenient to think of the

conditional pdf gt as a likelihood function and we write gt(xt) := gt(yt|xt) for

conciseness.

We are interested in the sequence of posterior probability distributions of the

states generated by the SSM. In particular, we aim at computing the sequence

of probability distributions πt, for t = 1, . . . , T , which describes the probability

distribution of the state xt conditional on the observation of the sequence y1:t. The

measure πt is often termed the optimal filter at time t. We denote the predictive

measure as ξt.

3.2.2 Bootstrap particle filter

As we already discussed in Chapter 2, the BPF [20] is a recursive algorithm that

produces successive Monte Carlo approximations of ξt and πt for t = 1, 2, The

method can be outlined as shown in Algorithm 2.2. After an initialization stage,

where a set of independent and identically distributed (i.i.d.) samples from the

prior are drawn, the BPF consists of three recursive steps which can be schemati-

cally represented as

πNt−1 →︸︷︷︸
sampling

ξNt →︸︷︷︸
weighting

π̃Nt →︸︷︷︸
resampling

πNt . (3.4)

48

Chapter 3. Nudging the particle filter

Given a Monte Carlo approximation πNt−1 = 1
N

∑N
i=1 δx(i)t−1

computed at time t− 1,

the sampling step yields an approximation of the predictive measure ξt of the form

ξNt =
1

N

N∑
i=1

δ
x̄
(i)
t

by propagating the particles {x(i)
t−1}Ni=1 via the Markov kernel τt(·|x(i)

t−1). The ob-

servation yt is assimilated via the importance weights w
(i)
t ∝ gt(x

(i)
t), to obtain the

approximate filter

π̃Nt =
N∑
i=1

w
(i)
t δx̄(i)t

,

and the resampling step produces a set of un-weighted particles that completes

the recursive loop and yields the approximation

πNt =
1

N

N∑
i=1

δ
x
(i)
t
.

The random measures ξNt , π̃Nt and πNt are commonly used to estimate a poste-

riori expectations conditional on the available observations. For example, if ϕ is a

function X→ R, then the expectation of the random variable ϕ(xt) conditional on

y1:t−1 is E [ϕ(xt)|y1:t−1] = (ϕ, ξt). The latter integral can be approximated using

ξNt , namely,

(ϕ, ξt) =

∫
ϕ(xt)ξt(dxt) ≈ (ϕ, ξNt)

=

∫
ϕ(xt)ξ

N
t (dxt) =

1

N

N∑
i=1

ϕ(x̄
(i)
t).

Similarly, we can have estimators (ϕ, π̃Nt) ≈ (ϕ, πt) and (ϕ, πNt) ≈ (ϕ, πt). Classical

convergence results are usually proved for real bounded functions, e.g., if ϕ ∈ B(X)

then

lim
N→∞

|(ϕ, πt)− (ϕ, πNt)| = 0 almost surely (a.s.)

under mild assumptions; see [33, 2] and references therein.

We recall that, as summarized in Section 2.3.5, the BPF can be generalized

by using arbitrary proposal pdf’s qt(xt|x(i)
t−1, yt), possibly observation-dependent,

instead of the Markov kernel τt(·|x(i)
t−1), in order to generate the particles {x̄(i)

t }Ni=1

in the sampling step. This can lead to more efficient algorithms, but the weight

computation has to account for the new proposal and we obtain [131],

w
(i)
t ∝

gt(x̄
(i)
t)τt(x̄

(i)
t |x

(i)
t)

qt(x̄
(i)
t |x

(i)
t−1, yt)

, (3.5)

49

Chapter 3. Nudging the particle filter

which can be more costly to evaluate. This issue is related to the nudged PF

to be introduced in Section 3.3 below, which can be interpreted as a scheme to

choose a certain observation-dependent proposal qt(xt|x(i)
t−1, yt). However, the new

method does not require that the weights be computed as in (3.5) in order to

ensure convergence of the estimators.

3.3 Nudged particle filter

3.3.1 General algorithm

Compared to the standard BPF, the nudged particle filter (NuPF) incorporates

one additional step right after the sampling of the particles {x̄(i)
t }Ni=1 at time t.

The schematic depiction of the BPF in (3.4) now becomes

πNt−1 →︸︷︷︸
sampling

ξNt →︸︷︷︸
nudging

ξ̃Nt →︸︷︷︸
weighting

π̃Nt →︸︷︷︸
resampling

πNt , (3.6)

where the new nudging step intuitively consists in pushing a subset of the gener-

ated particles {x̄(i)
t }Ni=1 towards regions of the state space X where the likelihood

function gt(x) takes higher values.

When considered jointly, the sampling and nudging steps in (3.6) can be seen

as sampling from a proposal distribution which is obtained by modifying the kernel

τt(·|xt−1) in a way that depends on the observation yt. Indeed, this is the classical

view of nudging in the literature [44–47]. However, unlike in this classical approach,

here the weighting step does not account for the effect of nudging. In the proposed

NuPF, the weights are kept the same as in the original filter, w
(i)
t ∝ gt(x

(i)
t). In

doing so, we save computations but, at the same time, introduce bias in the Monte

Carlo estimators. One of the contributions of this chapter is to show that this bias

can be controlled using simple design rules for the nudging step, while practical

performance can be improved at the same time.

In order to provide an explicit description of the NuPF, let us first state a

definition for the nudging step.

Definition 3.1. A nudging operator αytt : X → X associated with the likelihood

function gt(x) is a map such that

if x′ = αytt (x) then gt(x
′) ≥ gt(x) (3.7)

for every x, x′ ∈ X.

Intuitively, we define nudging herein as an operation that increases the likeli-

hood. There are several ways in which this can be achieved and we discuss some

50

Chapter 3. Nudging the particle filter

examples in Sections 3.3.2 and 3.3.3. The NuPF with nudging operator αytt : X→ X

is outlined in Algorithm 3.1.

Algorithm 3.1 Nudged Particle Filter (NuPF)

1: Generate the initial particle system {x(i)
0 }Ni=1 by drawing N times indepen-

dently from the prior π0.

2: for t ≥ 1 do

3: Sampling: draw x̄
(i)
t ∼ τt(dxt|x

(i)
t−1) independently for every i = 1, . . . , N .

4: Nudging: choose a set of indices It ⊂ [N], then compute x̃
(i)
t = αytt (x̄

(i)
t)

for every i ∈ It. Keep x̃
(i)
t = x̄

(i)
t for every i ∈ [N]\It.

5: Weighting: compute w
(i)
t = gt(x̃

(i)
t)/Z̃Nt for every i = 1, . . . , N , where

Z̃Nt =
∑N

i=1 g(x̃
(i)
t).

6: Resample: draw x
(i)
t from

∑
iw

(i)
t δx̃(i)t

(dx) independently for i = 1, ..., N .

7: end for

It can be seen that the nudging operation is implemented in two stages.

• First, we choose a set of indices It ⊂ [N] that identifies the particles to be

nudged. Let M = |It| denote the number of elements in It. We prove in

Section 3.4 that keeping M ≤ O
(√

N
)

allows the NuPF to converge with

the same error rates O
(

1√
N

)
as the BPF. In Section 3.3.2 we discuss two

simple methods to build It in practice.

• Second, we choose an operator αytt that guarantees an increase of the likeli-

hood of any particle. We discuss different implementations of αytt in Section

3.3.3.

We devote the rest of this section to a discussion of how these two steps can be

implemented (in several ways).

3.3.2 Selection of particles to be nudged

The set of indices It, that identifies the particles to be nudged in Algorithm 3.1,

can be constructed in several different ways, either random or deterministic. In

this chapter, we describe two simple random procedures with little computational

overhead.

• Batch nudging: Let the number of nudged particles M be fixed. A simple way

to construct It is to draw indices i1, i2, . . . , iM uniformly from [N] without

replacement, and then let It = i1:M . We refer to this scheme as batch

51

Chapter 3. Nudging the particle filter

nudging, referring to selection of the indices at once. One advantage of this

scheme is that the number of particles to be nudged, M , is deterministic and

can be set a priori.

• Independent nudging: The size and the elements of It can also be selected

randomly in a number of ways. Here, we have studied a procedure in which,

for each index i = 1, ..., N , we assign i ∈ It with probability M
N . In this way,

the actual cardinality |It| is random, but its expected value is exactly M .

This procedure is particularly suitable for parallel implementations, since

each index can be assigned to It (or not) at the same time as all others.

3.3.3 How to nudge

The nudging step is aimed at increasing the likelihood of a subset of individual par-

ticles, namely those with indices contained in It. Therefore, any map αytt : X→ X

such that (gt◦αytt)(x) ≥ gt(x) when x ∈ X is a valid nudging operator. Typical pro-

cedures used for optimization, such as gradient moves or random search schemes,

can be easily adapted to implement (relatively) inexpensive nudging steps. Here

we briefly describe a few of such techniques.

• Gradient nudging: If gt(xt) is a differentiable function of xt, one straightfor-

ward way to nudge particles is to take gradient steps. In Algorithm 3.2 we

show a simple procedure with one gradient step alone, and where γ > 0 is a

step-size parameter and ∇xgt(x) denotes the vector of partial derivatives of

gt with respect to the state variables, i.e.,

∇xtgt =


∂gt
∂x1,t
∂gt
∂x2,t

...
∂gt

∂xdx,t

 for xt =


x1,t

x2,t

...

xdx,t

 ∈ X.

Algorithms can obviously be designed where nudging involves several gradi-

ent steps. In this work we limit our study to the single-step case, which is

shown to be effective and keeps the computational overhead to a minimum.

We also note that the performance of gradient nudging can be sensitive to

the choice of the step-size parameter γ > 0, and this is, in turn, model

dependent.

• Random nudging: Gradient-free techniques inherited from the field of global

optimization can also be employed in order to push particles towards regions

52

Chapter 3. Nudging the particle filter

where they have higher likelihoods. A simple stochastic-search technique

adapted to the nudging framework is shown in Algorithm 3.3. We hereafter

refer to the latter scheme as random-search nudging.

• Model specific nudging: Particles can also be nudged using the specific model

information. For instance, in some applications the state vector xt can be

split into two subvectors, xobs
t and xunobs

t (observed and unobserved, respec-

tively), such that gt(xt) = gt(x
obs
t), i.e., the likelihood depends only on xobs

t

and not on xunobs
t . If the relationship between xobs

t and xunobs
t is tractable,

one can first nudge xobs
t in order to increase the likelihood and then modify

xunobs
t in order to keep it coherent with xobs

t . A typical example of this kind

arises in object tracking problems, where positions and velocities have a spe-

cial and simple physical relationship but usually only position variables are

observed through a linear or nonlinear transformation. In this case, nudging

would only effect position variables. However, using position variables, one

can also nudge velocity variables with simple rules. We discuss this idea and

show numerical results in Section 3.5.

Algorithm 3.2 Gradient nudging

1: for every i ∈ It do

x̃
(i)
t = x̄

(i)
t + γ∇xtgt(x̄

(i)
t)

2: end for

Algorithm 3.3 Random search nudging

1: repeat

2: Generate x̃
(i)
t = x̄

(i)
t + ηt where ηt ∼ N (0, C) for some covariance matrix

C.

3: If gt(x̃
(i)
t) > gt(x̄

(i)
t) then keep x̃

(i)
t , otherwise set x̃

(i)
t = x̄

(i)
t .

4: until the particle is nudged.

3.3.4 Nudging general particle filters

In this chapter we limit our presentation to BPFs in order to focus on the key

concepts of nudging and ease presentation. It should be apparent, however, that

nudging steps can be plugged into general PFs. More specifically, since the nudging

step is algorithmically detached from the sampling and weighting steps, it can be

53

Chapter 3. Nudging the particle filter

easily used within any PF, even if it relies on different proposals and different

weighting schemes. We leave for future work the investigation of the performance

of nudging within widely used PFs, such as auxiliary particle filters (APFs). [142].

3.4 Analysis

The nudging step modifies the random generation of particles in a way that is not

compensated by the importance weights. Therefore, we can expect nudging to

introduce bias in the resulting estimators in general. However, in Section 3.4.1 we

prove that, as long as some basic guidelines are followed, the estimators of integrals

with respect to the filtering measure πt and the predictive measure ξt converge in

Lp as N → ∞ with the usual Monte Carlo rate O(1/
√
N). The analysis is based

on a simple induction argument and ensures the consistency of the estimators.

In Section 3.4.2 we briefly comment on the conditions needed to guarantee that

convergence is attained uniformly over time. We do not provide a full proof, but

this can be done extending the classical arguments in [30] or [33] and using the

same treatment of the nudging step as in the induction proof of Section 3.4.1.

Finally, in Section 3.4.3, we provide an interpretation of nudging in a scenario

with modelling errors. In particular, we show that the NuPF can be seen as a

standard PF for a modified SSM which is “a better fit” for the available data than

the original model.

3.4.1 Convergence in Lp

The goal in this section is to provide theoretical guarantees of convergence for the

NuPF under mild assumptions. First, we analyze a general NuPF (with arbitrary

nudging operator αytt and an upper bound on the size M of the index set It) and

then we provide a result for a NuPF with gradient nudging.

Before proceeding with the analysis, let us note that the NuPF produces several

approximate measures, depending on the set of particles (and weights) used to

construct them. After the sampling step, we have the random probability measure

ξNt =
1

N

N∑
i=1

δ
x̄
(i)
t
, (3.8)

which converts into

ξ̃Nt =
1

N

N∑
i=1

δ
x̃
(i)
t

(3.9)

54

Chapter 3. Nudging the particle filter

after nudging. Once the weights w
(i)
t are computed, we obtain the approximate

filter

π̃Nt =
N∑
i=1

w
(i)
t δx̃(i)t

, (3.10)

which finally yields

πNt =
1

N

N∑
i=1

δ
x
(i)
t

(3.11)

after the resampling step.

Similar to the BPF, the simple Assumption 3.1 stated next is sufficient for

consistency and to obtain explicit error rates [29, 143, 103] for the NuPF, as

stated in Theorem 3.1 below.

Assumption 3.1. The likelihood function is positive and bounded, i.e.,

gt(xt) > 0 and ‖gt‖∞ = sup
xt∈X
|gt(xt)| <∞

for t = 1, . . . , T .

Theorem 3.1. Let y1:T be an arbitrary but fixed sequence of observations, with

T < ∞, and choose any M ≤
√
N and any map αytt : X → X. If Assumption 3.1

is satisfied and |It| = M , then

‖(ϕ, πNt)− (ϕ, πt)‖p ≤
ct,p‖ϕ‖∞√

N
(3.12)

for every t = 1, 2, ..., T , any ϕ ∈ B(X), any p ≥ 1 and some constant ct,p < ∞
independent of N .

See Appendix A.2 for a proof.

Theorem 3.1 is very general; it actually holds for any map αytt : X → X, i.e.,

not necessarily a nudging operator. We can also obtain error rates for specific

choices of the nudging scheme. A simple, yet practically appealing, setup is the

combination of batch and gradient nudging, as described in Sections 3.3.2 and

3.3.3, respectively.

Assumption 3.2. The gradient of the likelihood is bounded. In particular, there

are constants Gt <∞ such that

‖∇xgt(x)‖2 ≤ Gt <∞

for every x ∈ X and t = 1, 2, . . . , T .

55

Chapter 3. Nudging the particle filter

Lemma 3.1. Choose a step-size γ > 0 and the number of nudged particles M > 0

in such a way that γM ≤
√
N . If Assumption 3.2 holds and ϕ is a Lipschitz

test function, then the error introduced by the batch gradient nudging step with

|It| = M can be bounded as,∥∥∥(ϕ, ξNt)− (ϕ, ξ̃Nt)
∥∥∥
p
≤ LGt√

N
,

where L is the Lipschitz constant of ϕ, for every t = 1, . . . , T .

See Appendix A.2 for a proof.

It is straightforward to apply Lemma 3.1 to prove convergence of the NuPF

with a batch gradient-nudging step. Specifically, we have the following result.

Theorem 3.2. Let y1:T be an arbitrary but fixed sequence of observations, with

T < ∞, and choose a step size γ > 0 and an integer M such that γM ≤
√
N .

Let πNt denote the filter approximation obtained with a NuPF with batch gradient

nudging. If Assumptions 3.1 and 3.2 are satisfied and |It| = M , then

‖(ϕ, πNt)− (ϕ, πt)‖p ≤
ct,p‖ϕ‖∞√

N
(3.13)

for every t = 1, 2, ..., T , any bounded Lipschitz function ϕ, some constant ct,p <∞
independent of N for any integer p ≥ 1.

The proof is straightforward (using the same argument as in the proof of The-

orem 3.1 combined with Lemma 3.1) and we omit it here. We note that Lemma

3.1 provides a guideline for the choice of M and γ. In particular, one can se-

lect M = Nβ, where 0 < β < 1, together with γ ≤ N
1
2
−β in order to ensure

γM ≤
√
N . Actually, it would be sufficient to set γ ≤ CN

1
2
−β for some constant

C <∞ in order to keep the same error rate (albeit with a different constant in the

numerator of the bound). Therefore, Lemma 3.1 provides a heuristic to balance

the step size with the number of nudged particles. We can increase the number of

nudged particles but in that case we need to shrink the step size accordingly, so

as to keep γM ≤
√
N . Similar results can be obtained using the gradient of the

log-likelihood, log gt, if the gt comes from the exponential family of densities.

3.4.2 Uniform convergence

Uniform convergence can be proved for the NuPF under the same standard as-

sumptions as for the conventional BPF; see, e.g., [30, 33]. The latter can be

summarised as follows [33]:

56

Chapter 3. Nudging the particle filter

(i) The likelihood function is bounded and bounded away from zero, i.e., gt ∈
B(X) and there is some constant a > 0 such that inft>0,x∈X gt(x) ≥ a.

(ii) The kernel mixes sufficiently well, namely, for any given integer m there is a

constant 0 < ε < 1 such that

inf
t>0;(x,x′)∈X2

τt+m|t(A|x)

τt+m|t(A|x′)
> ε

for any Borel set A, where τt+m|t is the composition of the kernels τt+m ◦
τt+m−1 ◦ · · · ◦ τt.

When (i) and (ii) above hold, the sequence of optimal filters {πt}t≥0 is stable and

it can be proved that

sup
t>0
‖(ϕ, πt)− (ϕ, πNt)‖p ≤

cp√
N

for any bounded function ϕ ∈ B(X), cp < ∞ is constant with respect to N and t

and πNt is the particle approximation produced by either the NuPF (as in Theorem

3.1 or, provided supt>0Gt < ∞, as in Theorem 3.2) or the BPF algorithms. We

skip a formal proof as, again, it is straightforward combination of the standard

argument by [33] (see also, e.g., [144] and [141]) with the same handling of the

nudging operator in the proofs of Theorem 3.1 or Lemma 3.1 .

3.4.3 Nudging and model evidence

We have found in computer simulation experiments that the NuPF is consistently

more robust to model errors than the conventional BPF. In order to obtain some

analytical insight of this scenario, in this section we reinterpret the NuPF as a

standard BPF for a modified SSM and show that this modified model is a better

fit for the given data than the original SSM. In this way, the NuPF can be seen as

an automatic adaptation of the underlying model to the available data.

In Bayesian methodology, a common approach to compare two competing prob-

abilistic models, say M0 and M1, for a given data set y1:T is to evaluate the

so-called model evidence [145] for both M0 and M1.

Definition 3.2. The evidence (or likelihood) of a probabilistic model M for a

given data set y1:T is the probability density of the data conditional on the model,

that we denote as p(y1:T |M).

We say thatM1 is a better fit thanM0 for the data set y1:T when p(y1:T |M1) >

p(y1:T |M0).

57

Chapter 3. Nudging the particle filter

If the models to be compared are SSMs, then they are defined by the prior

τ0, the kernels τt and the likelihood functions gt(x) = gt(yt|x), for t ≥ 1. In

this section we write the latter as gytt (x) = gt(yt|x), in order to emphasize that

gt is parameterized by the observation yt, and we also assume that every gytt is a

normalized pdf in yt for the sake of clarity. Hence, we can formally represent the

SSM defined by (3.1), (3.2) and (3.3) asM0 = (τ0, τt, g
yt
t)t≥1, and its evidence can

be written as

p(y1:T |M0) =

∫
· · ·
∫ T∏

t=1

gytt (xt)τt(dxt|xt−1)τ0(dx0). (3.14)

Now, let us assume y1:T to be fixed and construct the alternative SSM M1 =

(τ0, τ̃
yt
t , g

yt
t)t≥1, where

τ̃ytt (dxt|xt−1) :=(1− εM)τt(dxt|xt−1) + εM

∫
δαytt (x̄t)

(dxt)τt(dx̄t|xt−1), (3.15)

εM = M
N and the nudging operator αytt is a one-to-one map that depends on the

(fixed) observation yt. We note that the kernel τ̃ytt jointly represents the Markov

transition induced by the original kernel τt followed by an independent nudging

transformation (namely, each particle is independently nudged with probability

εM). As a consequence, the standard BPF for modelM1 coincides exactly with a

NuPF for modelM0 with independent nudging and operator αytt . Indeed, accord-

ing to the definition of τ̃ytt in (3.15), generating a sample x̃
(i)
t from τ̃ytt (dxt|x(i)

t−1)

is a three-step process where

• we first draw x̄
(i)
t from τt(dxt|x(i)

t−1),

• the generate a sample u
(i)
t from the uniform distribution U(0, 1), and

• if u
(i)
t < εM then we set x̃

(i)
t = αytt (x̄

(i)
t), else we set x̃

(i)
t = x̄

(i)
t .

After sampling, the importance weight for the BPF applied to modelM1 is w
(i)
t ∝

gytt (x̃
(i)
t). This is exactly the same procedure as in the NuPF applied to the original

SSM M0 (see Algorithm 3.1).

It turns out thatM1 is a better fit for the given sequence of observations y1:T

than M0, in terms of the model evidence, and, hence, the NuPF is itself (in this

sense) a better fit than the BPF for the given data. This is made formal by the

following result.

Proposition 3.1. Let y1:T be fixed and take the SSMs M0 = (τ0, τt, g
yt
t)t≥1 and

M1 = (τ0, τ̃
yt
t , g

yt
t)t≥1, where τ̃ytt is defined as in (3.15), the map αytt is one-to-one

and gt > 0 for t = 1, . . . , T . Then, p(y1:T |M1) > p(y1:T |M0).

58

Chapter 3. Nudging the particle filter

See Appendix A.2 for a proof.

A few remarks are in order regarding the interpretation of Proposition 3.1:

• If the nudging operator αytt is a continuous function of yt, then the inequality

in Proposition 3.1 holds as well, for the same sequence of kernels τ̃t, t =

1, ..., T , if we evaluate the model evidence for any sequence y′1:T within a

(sufficiently small) neighbourhood of y1:T .

• The assumption in expression (3.15) that the nudging operator αytt is one-to-

one can be relaxed. In particular, it is relatively straightforward to extend

Proposition 3.1 to some models where αytt is a many-to-one map. In particu-

lar, if there is a partition X =
⋃nt
j=1 Xj such that the restrictions αytt,j : Xj → X

of the map αytt are one-to-one, then it is possible to prove the same result as

in Proposition 3.1 with just some additional notational burden.

• If we fix the maps αytt and the likelihoods g
y′t
t are normalised, i.e.,

∫
gt(y

′
t|x)dy′t =

1, then the function p(y′1:T |M1) is a proper pdf, i.e.,

∫
p(y′1:T |M1)dy′1:T =

∫
· · ·
∫ T∏

t=1

(g
y′t
t ◦ α

yt
t)(xt)τt(dxt|xt−1)τ0(dx0)dy′1:T = 1

for arbitrary but fixed y1:T .

3.5 Computer simulations

In this section, we present the results of several computer experiments. In the first

one, we address the tracking of a linear-Gaussian system. This is a very simple

model which enables a clearcut comparison of the NuPF and other competing

schemes, including a conventional PF with optimal importance function (which is

intractable for all other examples) and a PF with nudging and proper importance

weights. Then, we study three nonlinear tracking problems:

• a stochastic Lorenz 63 model with misspecified parameters,

• a maneuvering target monitored by a network of sensors collecting nonlinear

observations corrupted with heavy-tailed noise,

• and, finally, a high-dimensional stochastic Lorenz 96 model1.

1For the experiments involving Lorenz 96 model, simulation from the model is implemented in

C++ and integrated into Matlab. The rest of the simulations are fully implemented in Matlab.

59

Chapter 3. Nudging the particle filter

Optimal PF NuPF NuPF-PW BPF
Algorithms

(a)

10-2

10-1

100

N
or

m
al

is
ed

 M
SE

Optimal PF NuPF NuPF-PW BPF
Algorithms

(b)

0.2

0.4

0.6

0.8

1

1.2

1.4

W
al

l-c
lo

ck
 ti

m
es

 (s
ec

s.
) x

 N
M

SE
Figure 3.1: (a) Empirical NMSE of the Optimal PF, NuPF-PW, NuPF, and BPF methods

implemented for the high-dimensional linear-Gaussian SSM given in (3.16)–(3.18). The

box-plots are constructed from 1,000 independent Monte Carlo runs. It can be seen that

the NMSE of the NuPF is comparable to the error of the Optimal PF and the NuPF-PW

methods. (b) Runtimes×NMSEs of all methods. This experiment shows that, in addition

to the fact that the NuPF attains a comparable estimation performance, which can be

seen in (a), it has a computational cost similar to the plain BPF. The figure demonstrates

that the NuPF has a comparable performance to the optimal PF for this model.

We have used gradient nudging in all experiments, with either M ≤
√
N (de-

terministically, with batch nudging) or E[M] ≤
√
N (with independent nudging).

This ensures the validity of the theoretical results presented in Section 3.4. For

the object tracking experiment, we have used a large step-size, but this choice does

not affect the convergence rate of the NuPF algorithm either.

3.5.1 A high-dimensional, inhomogeneous Linear-Gaussian state-

space model

In this experiment we compare different PFs implemented to track a high-dimensional

linear Gaussian SSM. In particular, the model under consideration is,

x0 ∼ N (0, Idx), (3.16)

xt|xt−1 ∼ N (xt−1, Q), (3.17)

yt|xt ∼ N (Ctxt, R), (3.18)

where (xt)t≥0 are hidden states, (yt)t≥1 are observations, and Q and R are the

process and the observation noise covariance matrices, respectively. The latter

are diagonal matrices, namely Q = qIdx and R = Idy , where q = 0.1, dx = 100

60

Chapter 3. Nudging the particle filter

and dy = 20. The sequence (Ct)t≥1 defines a time-varying observation model.

The elements of this sequence are chosen as random binary matrices, i.e., Ct ∈
{0, 1}dy×dx where each entry is generated as an independent Bernoulli random

variable with p = 0.5. Once generated, they are fixed and fed into all algorithms

we describe below for each independent Monte Carlo run.

We compare the NuPF with three alternative PFs. The first method we im-

plement is the PF with the optimal proposal pdf p(xt|xt−1, yt), abbreviated as

Optimal PF. The pdf p(xt|xt−1, yt) leads to an analytically tractable Gaussian

density for the model (3.16)–(3.18) [131] but not in the nonlinear tracking exam-

ples below. Note, however, that at each time step, the mean and covariance matrix

of this proposal have to be explicitly evaluated in order to compute the importance

weights.

The second filter is a nudged PF with proper importance weights (NuPF-

PW). In this case, we treat the generation of the nudged particles as a proposal

function to be accounted for during the weighting step. To be specific, the proposal

distribution resulting from the NuPF has the form

τ̃t(dxt|xt−1) = (1− εN)τt(dxt|xt−1) + εN τ̄t(dxt|xt−1), (3.19)

where εN = 1√
N

and

τ̄t(dxt|xt−1) =

∫
δαytt (x̄t)

(dxt)τt(dx̄t|xt−1).

The latter conditional distribution admits an explicit representation as a Gaussian

for model (3.16)-(3.18) when αt operator is designed as a gradient step, but this

approach is intractable for the examples in Section 3.5.2 and Section 3.5.4. Note

that τ̃t is a mixture of two time-varying Gaussians and this fact adds to the cost of

the sampling and weighting steps. Specifically, computing weights for the NuPF-

PW is significantly more costly, compared to the BPF or the NuPF, because the

mixture (3.19) has to be evaluated together with the likelihood and the transition

pdf.

The third tracking algorithm implemented for model (3.16)–(3.18) is the con-

ventional BPF.

For all filters, we have set the number of particles as N = 100. In order to

implement the NuPF and NuPF-PW schemes, we have selected the step size γ =

2 × 10−2. We have run 1,000 independent Monte Carlo runs for this experiment.

To evaluate different methods, we have computed the empirical normalised mean

61

Chapter 3. Nudging the particle filter

101 102 103 104 105

Number of Particles
(a)

10 -2

10 -1

N
or

m
al

is
ed

 M
SE

BPF
NuPF

250 300 350 400 450 500
Time steps

(b)

-30

-20

-10

0

10

20

30

True
BPF
NuPF

Figure 3.2: (a) NMSE results of the BPF and NuPF algorithms for a misspecified Lorenz

63 system. The results have been obtained from 1,000 independent Monte Carlo runs

for each N ∈ {10, 100, 500, 1K, 5K, 10K, 20K, 50K, 100K}. The dashed lines indicate 1

standard deviation. The misspecified parameter is bε = b+ ε, where b = 8/3 and ε = 0.75.

(b) A sample path of the true state variable x2,t and its estimates in a run with N = 500

particles.

squared errors (NMSEs). Specifically, the NMSE for the j-th simulation is

NMSE(j) =

∑tf
t=1 ‖x̄t − x̂t(j)‖22∑tf

t=1 ‖xt‖22
, (3.20)

where x̄t is the exact posterior mean of the state xt conditioned on the observations

up to time t and x̂t(j) is the estimate of the state vector in the j-th simulation

run. In the figures, we usually plot the mean and the standard deviation of the

sample of errors, NMSE(1), . . . ,NMSE(1000).

The results are shown in Fig. 3.1. In particular, in Fig. 3.1(a), we observe that

the NMSE performance of the NuPF compared to the optimal PF and NuPF-

PW (which is similar to a classical PF with nudging) is comparable. However,

Fig. 3.1(b) reveals that the NuPF is significantly less demanding compared to the

optimal PF and the NuPF-PW method. Indeed, the runtimes of the NuPF are

almost identical to the those of the plain BPF. As a result, the plot of the NMSEs

multiplied by the running times displayed in Fig. 3.1(b) reveals that the proposed

algorithm is as favorable as the optimal PF, which can be implemented for this

model, but not for general models unlike the NuPF.

3.5.2 Stochastic Lorenz 63 model with misspecified parameters

In this experiment, we demonstrate the performance of the NuPF a misspeci-

fied stochastic Lorenz 63 model. The dynamics of the system is described by a

62

Chapter 3. Nudging the particle filter

stochastic differential equation (SDE) in three dimensions,

dx1 = −s(x1 − x2) + dw1,

dx2 = rx1 − x2 − x1x3 + dw2,

dx3 = x1x2 − bx3 + dw3,

where {wi(s)}s∈(0,∞) for i = 1, 2, 3 are 1-dimensional independent Wiener processes

and s, r, b ∈ R are fixed model parameters. We discretise the model using the Euler-

Maruyama scheme with integration step T > 0 and obtain the system of difference

equations

x1,t = x1,t−1 − Ts(x1,t−1 − x2,t−1) +
√
Tu1,t (3.21)

x2,t = x2,t−1 + T(rx1,t−1 − x2,t−1 − x1,t−1x3,t−1) +
√
Tu2,t

x3,t = x3,t−1 + T(x1,t−1x2,t−1 − bx3,t−1) +
√
Tu3,t

where {ui,t}t∈N, i = 1, 2, 3 are i.i.d. Gaussian random variables with zero mean

and unit variance. We assume that we can only observe the variable x1,t every

ts > 1 discrete time steps and contaminated by additive noise. To be specific, we

collect the sequence of observations

yn = kox1,nts + vn, n = 1, 2, ...,

where {vn}n∈N is a sequence of i.i.d. Gaussian random variables with zero mean

and unit variance and the scale parameter ko is assumed known.

In order to simulate both the state signal and the synthetic observations from

this model, we choose the so-called standard parameter values

(s, r, b) =

(
10, 28,

8

3

)
,

which make the system dynamics chaotic. The initial condition is set as

x0 = [−5.91652,−5.52332, 24.5723]>,

which corresponds to a deterministic trajectory of the system (i.e., with no state

noise) with the same parameter set [146]. We assume that the system is observed

every ts = 40 discrete time steps and for each simulation we simulate the system

for t = 0, 1, . . . , tf , with tf = 20, 000. Since ts = 40, we have a sequence of
tf
ts

= 500

observations overall.

Let us note here that the Markov kernel which takes the state from time n−1 to

time n (i.e., from the time of one observation to the time of the next observation)

is straightforward to simulate using the Euler-Maruyama scheme (3.21), however

63

Chapter 3. Nudging the particle filter

0 1 2 3
Step-size

(a)

10-2

10-1

N
M

SE

BPF
NuPF

0 20 40
Variance of the random search step

(b)

10-2

10-1

N
M

SE
BPF
NuPF

0 1 2 3
Step-size

(c)

1

1.2

1.4

1.6

1.8

2

W
al

l-c
lo

ck
 ti

m
es

 (s
ec

s)

BPF
NuPF

0 20 40
Variance of the random search step

(d)

1

1.2

1.4

1.6

1.8

2

W
al

l-c
lo

ck
 ti

m
es

 (s
ec

s)

BPF
NuPF

Figure 3.3: A comparison of gradient nudging and random search nudging for a variety

of parameter settings. From (a), it can be seen that gradient nudging is robust within a

large interval for γ. From (b), one can see that the same is true for random search nudging

with the covariance of the form C = σ2I for a wide range of σ2. From (c)–(d), it can be

seen that while gradient nudging causes negligible computational overhead, random search

nudging is more demanding in terms of computation time and this behavior is expected

to be more apparent in higher dimensional spaces. Comparing (a)–(b), it can also be seen

that gradient nudging attains lower error rates in general.

the associated transition probability density cannot be evaluated because it in-

volves the mapping of both the state and a sequence of ts noise samples through a

composition of nonlinear functions. This precludes the use of importance sampling

schemes that require the evaluation of this density when computing the weights.

We run the BPF and NuPF algorithms for the model described above, except

that the parameter b is replaced by bε = b + ε, with ε = 0.75 (hence bε ≈ 3.417

versus b ≈ 2.667 for the actual system). As the system underlying dynamics is

chaotic, this mismatch affects the predictability of the system significantly.

We have implemented the NuPF with independent gradient nudging. Each

particle is nudged with probability 1√
N

, where N is the number of particles (hence

E[M] =
√
N), and the size of the gradient steps is set to γ = 0.75 (see Algorithm

3.2). As a figure of merit, we evaluate the NMSE for the 3-dimensional state

vector, averaged over 1,000 independent Monte Carlo simulations.

For this example (as well as in the rest of this section), it is not possible to

compute the exact posterior mean of the state variables. Therefore, the NMSE

values are computed with respect to the ground truth, i.e.,

NMSE(j) =

∑tf
t=1 ‖xt − x̂t(j)‖22∑tf

t=1 ‖xt‖22
, (3.22)

where (xt)t≥1 is the ground truth signal.

Fig. 3.2 (a) displays the NMSE, attained for varying number of particles N ,

for the standard BPF and the NuPF. It is seen that the NuPF outperforms the

BPF for the whole range of values of N in the experiment, both in terms of

64

Chapter 3. Nudging the particle filter

100 150 200
x1
(a)

-150

-100

-50

0

50

100

150

x 2

NuPF

100 150 200
x1
(b)

-150

-100

-50

0

50

100

150

x 2

EKF

100 150 200
x1
(c)

-150

-100

-50

0

50

100

150

x 2

APF

100 150 200
x1
(d)

-150

-100

-50

0

50

100

150

x 2

BPF

NuPF EKF APF BPF
(e)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
M

SE

Box-plot of errors

Figure 3.4: Plots (a)–(d): A typical simulation run for the BPF, APF, EKF and NuPF

algorithms using N = 500 particles. The black dots denote the real trajectory of the

object, the red dots are sensors and the blue dots are position estimates as provided by

the filters. Plot (e): Box-plot of the errors NMSE(1), . . . ,NMSE(10, 000) obtained for the

set of independent simulation runs. The NuPF achieves a low NMSE with a low variance

whereas the EKF exhibits a large variance.

the mean and the standard deviation of the errors, although the NMSE values

become closer for larger N . The plot on the right displays the values of x2,t

and its estimates for a typical simulation. In general, the experiment shows that

the NuPF can track the actual system using the misspecified model and a small

number of particles, whereas the BPF requires a higher computational effort to

attain a similar performance.

As a final experiment with this model, we have tested the robustness of the

algorithms with respect to the choice of parameters in the nudging step. In par-

ticular, we have tested the NuPF with independent gradient nudging for a wide

range of step-sizes γ. Also, we have tested the NuPF with random search nudging

using a wide range of covariances of the form C = σ2I by varying σ2.

The results can be seen in Fig. 3.3. This figure shows that the algorithm is

robust to the choice of parameters for a range of step-sizes and variances of the

random search step. As expected, random search nudging takes longer running

time compared to gradient steps. This difference in run-times is expected to be

larger in higher-dimensional models since random search is expected to be harder

in such scenarios.

65

Chapter 3. Nudging the particle filter

3.5.3 Object tracking with a misspecified model

In this experiment, we consider a tracking scenario where a target is observed

through sensors collecting radio signal strength (RSS) measurements contaminated

with additive heavy-tailed noise. The target dynamics are described by the model,

xt = Axt−1 +BL(xt−1 − xo) + ut

where xt ∈ R4 denotes the target state, consisting of its position rt ∈ R2 and its

velocity, vt ∈ R2, hence xt =

[
rt

vt

]
∈ R4. The parameter xo is a deterministic,

pre-chosen state to be attained by the target. Each element in the sequence {ut}t∈N
is a zero-mean Gaussian random vector with covariance matrix Q. The parameters

A,B,Q are selected as

A =

[
I2 κI2

0 0.99I2

]
, B =

[
0 I2

]>
,

and

Q =

[
κ3

3 I2
κ2

2 I2

κ2

2 I2 κI2

]
,

where I2 is the 2×2 identity matrix and κ = 0.04. The policy matrix L ∈ R2×4 de-

termines the trajectory of the target from an initial position x0 = [140, 140, 50, 0]>

to a final state xT = [140,−140, 0, 0]> and it is computed by solving a Riccati

equation (see [147] for details), which yields

L =

[
−0.0134 0 −0.0381 0

0 −0.0134 0 −0.0381

]
.

This policy results in a highly maneuvering trajectory. In order to design the

NuPF, however, we assume the simpler dynamical model

xt = Axt−1 + ut,

hence there is a considerable model mismatch.

The observations are nonlinear and coming from 10 sensors placed in the region

where the target moves. The measurement collected at the i-th sensor, time t, is

modelled as

yt,i = 10 log10

(
P0

‖rt − si‖2
+ η

)
+ wt,i

66

Chapter 3. Nudging the particle filter

where rt ∈ R2 is the position vector, si is the position of the ith sensor and wt,i ∼
T (0, 1, ν) is an independent t-distributed random variable for each i = 1, . . . , 10.

Intuitively, the closer the parameter ν to 1, the more explosive the observations

become. In particular, we set ν = 1.01 to make the observations explosive and

heavy-tailed. As for the sensor parameters, we set the transmitted RSS as P0 = 1

and the sensitivity parameter as η = 10−9. The latter yields a soft lower bound of

−90 decibel (dB) for the RSS measurements.

We have implemented the NuPF with batch gradient nudging, with a large-

step size γ = 5.5 and M = b
√
Nc. Since the observations depend on the position

vector rt only, an additional model-specific nudging step is needed for the velocity

vector vt. In particular, after nudging the r
(i)
t = [x

(i)
1,t, x

(i)
2,t]
>, we update the velocity

variables as

v
(i)
t =

1

κ
(r

(i)
t − r

(i)
t−1), where v

(i)
t = [x

(i)
3,t, x

(i)
4,t]
>,

where κ = 0.04 as defined for the model. The motivation for this additional

transformation comes from the physical relationship between position and velocity.

We note, however, that the NuPF also works without nudging the velocities.

We have run 10, 000 Monte Carlo runs with N = 500 particles in the auxiliary

particle filter (APF) [142, 148, 149], the BPF [20] and the NuPF. We have also

implemented the extended Kalman filter (EKF), which uses the gradient of the

observation model.

Fig. 3.4 shows a typical simulation run with each one of the four algorithms (on

the left side, plots (a)–(d)) and a box-plot of the NMSEs obtained for the 10,000

simulations (on the right, plot (e)). Plots (a)–(d) show that, while the EKF also

uses the gradient of the observation model, it fails to handle the heavy-tailed noise,

as it relies on Gaussian approximations. The BPF and the APF collapse due to

the model mismatch in the state equation. Plot (d) shows that the NMSE of the

NuPF is just slightly smaller in the mean than the NMSE of the EKF, but much

more stable.

3.5.4 High-dimensional stochastic Lorenz 96 model

In this computer experiment, we compare the NuPF with the ensemble Kalman

filter (EnKF) for the tracking of a stochastic Lorenz 96 system. The latter is

described by the set of stochastic differential equations (SDEs)

dxi = (xi+1 − xi−2)xi−1 − xi + F + dwi, i = 1, . . . , d,

where {wi(s)}s∈(0,∞), i = 1, . . . , d, are independent Wiener processes, d is the

system dimension and the forcing parameter is set to F = 8, which ensures a

67

Chapter 3. Nudging the particle filter

101 102 103 104 105

Number of Particles
(a)

10 -2

10 -1

100

101

N
or

m
al

is
ed

 M
SE

BPF
NuPF

101 102 103 104 105

Number of Particles
(b)

10 -2

100

102

104

W
al

l-c
lo

ck
 ti

m
es

 (s
ec

s)
 x

 N
M

SE BPF
NuPF

Figure 3.5: Comparison of the NuPF and the BPF for the stochastic Lorenz 96 system with

model dimension d = 40. The results have been obtained from a set of 1, 024 independent

Monte Carlo runs. Plot (a): average NMSE and standard deviation (dashed lines) as the

number of particles N is increased. Plot (b): Running-times×NMSE of the BPF and

the NuPF for the same set of simulations. Since the increase in computational cost of

the NuPF, compared to the BPF, is negligible, it is clearly seen from (b) that the NuPF

performs better when errors and run-times are considered jointly.

chaotic regime. The model is assumed to have a circular structure, so that x−1 =

xd−1, x0 = xd, and xd+1 = x1. In order to simulate data from this model, we apply

the Euler-Maruyama discretization scheme and obtain the difference equations,

xi,t = xi,t−1 + T[(xi+1,t−1 − xi−2,t−1)xi−1,t−1 − xi,t−1 + F] +
√
Tui,t

where ui,t are zero-mean, unit-variance Gaussian random variables.

We assume that the system is only partially observed. In particular, half of the

state variables are observed, in Gaussian noise, every ts = 10 time steps, namely,

yj,n = x2j−1,nts + uj,n, n = 1, 2, . . . , j = 1, 2, . . . , bd/2c,

where uj,n is a normal random variable with zero mean and unit variance. The

same as in the stochastic Lorenz 63 example of Section 3.5.2, the transition pdf

that takes the state from time (n − 1)ts to time nts is simple to simulate but

hard to evaluate, since it involves mapping a sequence of noise variables through

a composition of nonlinearities.

In all the simulations for this system we run the NuPF with batch gradient

nudging (with M = b
√
Nc nudged particles and step-size γ = 0.075). In the first

computer experiment, we fixed the dimension d = 40 and run the BPF and the

NuPF with increasing number of particles. The results can be seen in Fig. 3.5,

which shows how the NuPF performs better than the BPF in terms of NMSE (plot

(a)) while the running times of both algorithms are nearly identical (plot (b)).

68

Chapter 3. Nudging the particle filter

101 102 103 104

dimensions
(a)

10 -2

10 -1

100

N
or

m
al

is
ed

 M
SE

NuPF
EnKF

101 102 103 104

dimensions
(b)

10 -2

100

102

104

W
al

l-c
lo

ck
 ti

m
es

 (s
ec

s)
 x

 N
M

SE NuPF
EnKF

Figure 3.6: Comparison of the NuPF with the EnKF for the stochastic Lorenz 96 model

with increasing dimension d and fixed number of particles N = 500 (this is the same as

the number of ensemble members in the EnKF). We have run 1,000 independent Monte

Carlo trials for this experiment. Plot (a): NMSE versus dimension d. The EnKF attains

a smaller error for lower dimensions but then it explodes for d > 103, while the NuPF

remains stable. Plot (b): Running-times×NMSE plot for the same set of simulations. It

can be seen that the overall performance of the NuPF is better beyond 1K dimensions

compared to the EnKF.

In a second computer experiment, we compared the NuPF with the EnKF.

Fig. 3.6(a) shows how the NMSE of the two algorithms grows as the model dimen-

sion d increases and the number of particles N is kept fixed. In particular, the

EnKF attains a better performance for smaller dimensions (up to d = 103), how-

ever its NMSE blows up for d > 103 while the performance of the NuPF remains

stable. The running time of the EnKF was also higher than the running time of

the NuPF in the range of higher dimensions (d ≥ 103).

3.5.5 Assessment of bias

In this section, we numerically quantify the bias of our algorithm on a low-

dimensional linear-Gaussian state-space model. To assess the bias, we compute

the marginal likelihood estimates given by the BPF and the NuPF. The reason

for this choice is the well-known unbiasedness property of the BPF [33], i.e., the

marginal likelihood estimates given by the BPF are unbiased2. Since the NuPF

leads to biased marginal likelihood estimates (with respect to the original model),

but the BPF does not, our aim here is to quantify this bias by looking at the differ-

ence. To this end, we choose a simple linear-Gaussian state space model for which

2Note that the estimates of the expectations given by the BPF and the NuPF are both biased

and the bias vanishes with the same rate for both algorithms as a result of Theorem 3.1.

69

Chapter 3. Nudging the particle filter

0 200 400 600 800 1000
Number of Simulations

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

R
at

io
 o

f N
or

m
al

iz
in

g
C

on
st

an
ts

BPF
NuPF

Figure 3.7: The evolution of Z̄NBPF/Z
? (black) and Z̄NNuPF/Z

? (red) for the number of

simulationsK = 1, . . . , 1000 withN = 100, 000 for both filters. It can be seen that the ratio

for the BPF converges to 1, implying unbiasedness. The ratio for the NuPF converges to a

number slightly larger than 1, showing the induced bias on marginal likelihood estimates.

the marginal likelihood can be exactly computed as a byproduct of the Kalman

filter. We then compare this exact marginal likelihood to the estimates given by

the BPF and the NuPF.

Particularly, we define the state-space model,

x0 ∼ N (x0;µ0, P0) (3.23)

xt|xt−1 ∼ N (xt;xt−1, Q), (3.24)

yt|xt ∼ N (yt;Ctxt, R), (3.25)

where (Ct)t≥0 ∈ [0, 1]1×2 is a sequence of randomly chosen observation matrices,

µ0 is a zero vector, and xt ∈ R2 and yt ∈ R. The dynamical model is correlated,

i.e.,

Q =

[
2.7 −0.48

−0.48 2.05

]
,

and R = 1. We have chosen the prior covariance as P0 = Idx . We have simulated

the system for T = 200 time steps. Given a fixed observation sequence y1:T , the

marginal likelihood for the system given in Eqs. (3.24)-(3.25) is

Z? = p(y1:T),

which can be exactly computed via the Kalman filter.

70

Chapter 3. Nudging the particle filter

We denote the estimate of Z? given by the BPF and the NuPF as ZNBPF and

ZNNuPF, respectively. It is well-known that the following unbiasedness property

holds for the BPF [33],

E[ZNBPF] = Z?, (3.26)

where E[·] denotes the expectation with respect to the particles. Numerically, this

suggests that as one runs identical Monte Carlo simulations to obtain {ZN,kBPF}Kk=1

and compute the average

Z̄NBPF =
1

K

K∑
k=1

ZN,kBPF, (3.27)

then it follows from the unbiasedness property (3.26) that the ratio of the average

in (3.27) and the true value Z? should satisfy,

Z̄NBPF

Z?
→ 1 as K →∞.

Since the marginal likelihood estimates provided by the NuPF are not unbiased

with respect to the original SSM and take higher values (which follows from

Prop. 3.1), if we define

Z̄NNuPF =
1

K

K∑
k=1

ZN,kNuPF,

then as K →∞, we should see,

Z̄NNuPF

Z?
→ 1 + ε as K →∞,

for some ε > 0.

We have conducted the experiment suggested by this reasoning by choosing

N = 100, 000 for the both filters and γ = 0.1 for the NuPF with gradient nudging.

From Fig. 3.7, one can see that we exactly observe the behavior suggested by the

theory. This shows that, with respect to the original SSM, the use of nudging

induces some upward bias and provides higher marginal likelihood estimates. The

induced bias is relatively small for this experiment.

3.6 Experimental results on model inference

In this section, we illustrate the application of the NuPF to estimate the parame-

ters of a financial time-series model. In particular, we adopt a stochastic-volatility

71

Chapter 3. Nudging the particle filter

SSM and we aim at estimating its unknown parameters (and track its state vari-

ables) using the EURUSD log-return data from 2014-12-31 to 2016-12-31 (obtained

from www.quandl.com). For this task, we apply two recently proposed Monte Carlo

schemes: the nested particle filter (NPF) [146] (a purely recursive, particle-filter

style Monte Carlo method) and the particle Metropolis-Hastings (pMH) algorithm

[140] (a batch Markov chain Monte Carlo procedure). In their original forms, both

algorithms use the marginal likelihood estimators given by the BPF to construct

a Monte Carlo approximation of the posterior distribution of the unknown model

parameters. Here, we compare the performance of these algorithms when the

marginal likelihoods are computed using either the BPF or the proposed NuPF.

We assume the stochastic volatility SSM [150],

x0 ∼ N
(
µ,

σ2
v

1− φ2

)
, (3.28)

xt|xt−1 ∼ N (µ+ φ(xt−1 − µ), σ2
v), (3.29)

yt|xt ∼ N (0, exp(xt)), (3.30)

where µ ∈ R, σv ∈ R+, and φ ∈ [−1, 1] are fixed but unknown parameters. The

states (xt)1≤t≤T are log-volatilities and the observations (yt)1≤t≤T are log-returns.

We follow the same procedure as [151] to pre-process the observations. Given the

historical price sequence s0, . . . , sT , the log-return at time t is calculated as

yt = 100 log(st/st−1)

for 1 ≤ t ≤ T . Then, given y1:T , we tackle the joint Bayesian estimation of x1:T and

the unknown parameters θ = (µ, σv, φ). In the next two subsections we compare

the conventional BPF and the NuPF as building blocks of the NPF and the pMH

algorithms.

3.6.1 Nudging the nested particle filter

The NPF in [146] consists of two layers of particle filters which are used to jointly

approximate the posterior distributions of the parameters and the states. The

filter in the first layer builds a particle approximation of the marginal posterior

distribution of the parameters. Then, for each particle in the parameter space,

say θ(i), there is an inner filter that approximates the posterior distribution of

the states conditional on the parameter vector θ(i). The inner filters are classi-

cal particle filters, which are essentially used to compute the importance weights

(marginal likelihoods) of the particles in the parameter space. In the implemen-

tation of [146], the inner filters are conventional BPFs. We have compared this

72

Chapter 3. Nudging the particle filter

Nudged NPF NPF
K=10 and N=20 with = 4

(a)

-620

-600

-580

-560

-540

-520

-500

-480

M
ar

gi
na

l L
og

-L
ik

el
ih

oo
d

Nudged NPF NPF
K=100 and N=500 with = 4

(b)

-620

-600

-580

-560

-540

-520

-500

-480

M
ar

gi
na

l L
og

-L
ik

el
ih

oo
d

Nudged NPF NPF
K=200 and N=500 with = 4

(c)

-620

-600

-580

-560

-540

-520

-500

-480

M
ar

gi
na

l L
og

-L
ik

el
ih

oo
d

Figure 3.8: Model evidence estimates produced by the nudged NPF and the conventional

NPF with varying computational effort. From (a) to (c), it can be seen that, as we increase

the number of particles in the parameter space and the state space, the variances of the

estimates are smaller. The nudged NPF results in much more stable estimates, with lower

variance and few extreme values.

conventional implementation with an alternative one where the BPFs are replaced

by the NuPFs. For a detailed description of the NPF, see [146].

In order to assess the performances of the nudged and classical versions of the

NPF, we compute the model evidence estimate estimate given by the nested filter

by integrating out both the parameters and the states. In particular, if the set of

particles in the parameter space at time t is {θ(i)
t }Ki=1 and for each particle θ

(i)
t we

have a set of particles in the state space {x(i,j)
t }Nj=1, we compute

p̂(y1:T) =
T∏
t=1

 1

KN

K∑
i=1

N∑
j=1

gt(x
(i,j)
t)

 .
The model evidence quantifies the fitness of the stochastic volatility model for the

given dataset, hence we expect to see a higher value when a method attains a better

performance (the intuition is that if we have better estimates of the parameters

and the states, then the model will fit better). For this experiment, we compute

the model evidence for the nudged NPF before the nudging step, so as to make

the comparison with the conventional algorithm fair.

We have conducted 1,000 independent Monte Carlo runs for each algorithm

and computed the model evidence estimates. We have used the same parameters

and the same setup for the two versions of the NPF (nudged and conventional). In

particular, each unknown parameter is jittered independently. The parameter µ is

jittered with a zero-mean Gaussian kernel variance σ2
µ = 10−3, the parameter σv

is jittered with a truncated Gaussian kernel on (0,∞) with variance σ2
σv = 10−4,

and the parameter φ is jittered with a zero-mean truncated Gaussian kernel on

[−1, 1], with variance σ2
φ = 10−4. We have chosen a large step-size for the nudging

73

Chapter 3. Nudging the particle filter

pMH-NuPF pMH-BPF
N=100 with step size: 0.1

(a)

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 ra

te

pMH-NuPF pMH-BPF
N=250 with step size: 0.1

(b)

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 ra

te

pMH-NuPF pMH-BPF
N=500 with step size: 0.1

(c)

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 ra

te

Figure 3.9: Empirical acceptance rates computed for the pMH running BPF and the

pMH running NuPF. From (a), it can be seen that there is a significant increase in the

acceptance rates when the number of particles are low, e.g., N = 100. From (b) and (c),

it can be seen that the pMH-NuPF is still better for increasing number of particles but

the pMH-BPF is catching up with the performance of the pMH-NuPF.

step, γ = 4, and we have used batch nudging with M = b
√
Nc.

The results in Fig. 3.8 demonstrate empirically that the use of the nudging

step within the NPF reduces the variance of the model evidence estimators, hence

it improves the stability and reliability of the NPF.

3.6.2 Nudging the particle Metropolis-Hastings

The pMH algorithm is a Markov chain Monte Carlo (MCMC) method for inferring

parameters of general SSMs [140]. The pMH uses PFs as auxiliary devices to

estimate parameter likelihoods in a similar way as the NPF uses them to compute

importance weights. In the case of the pMH, these estimates should be unbiased

and they are needed to determine the acceptance probability for each element of

the Markov chain. For the details of the algorithm, see [140] (or [151] for a tutorial-

style introduction). Let us note that the use of NuPF does not lead to an unbiased

estimate of the likelihood with respect to the assumed SSM. However, as discussed

in Section 3.4.3, the use of nudging implies an implicit SSM, and the likelihood

estimates are unbiased with respect to this model. Thus, one can view the use of

nudging here as an implementation of pMH with an implicit SSM derived from

the original SSM as well.

We have carried out a computer experiment to compare the performance of the

pMH scheme using either BPFs or NuPFs to compute acceptance probabilities.

The two algorithms are labeled pMH-BPF and pMH-NuPF, respectively, hereafter.

The parameter priors in the experiment are

p(µ) = N (0, 1) p(σv) = G(2, 0.1) p(φ) = B(120, 2)

74

Chapter 3. Nudging the particle filter

0 50 100
Lag

0.6

0.7

0.8

0.9

1

AC
F

pMH-BPF
pMH-NuPF

0 50 100
Lag

(a) N = 100

0.7

0.8

0.9

1

AC
F

v

pMH-BPF
pMH-NuPF

0 50 100
Lag

0.2

0.4

0.6

0.8

1

AC
F

pMH-BPF
pMH-NuPF

0 50 100
Lag

0.5

0.6

0.7

0.8

0.9

1

AC
F

pMH-BPF
pMH-NuPF

0 50 100
Lag

(b) N = 250

0.6

0.7

0.8

0.9

1

AC
F

v

pMH-BPF
pMH-NuPF

0 50 100
Lag

0

0.2

0.4

0.6

0.8

1

AC
F

pMH-BPF
pMH-NuPF

0 50 100
Lag

0.5

0.6

0.7

0.8

0.9

1

AC
F

pMH-BPF
pMH-NuPF

0 50 100
Lag

(c) N = 500

0.5

0.6

0.7

0.8

0.9

1

AC
F

v

pMH-BPF
pMH-NuPF

0 50 100
Lag

0

0.2

0.4

0.6

0.8

1

AC
F

pMH-BPF
pMH-NuPF

Figure 3.10: Empirical autocorrelation functions (ACFs) computed for the pMH -BPF and

the pMH-NuPF. From (a)–(c), it can be seen that using the NuPF instead of BPF within

the pMH causes faster autocorrelation decay. These results are obtained by averaging

ACFs over 1, 000 Monte Carlo runs.

where G(a, θ) denotes the Gamma pdf with shape parameter a and scale parameter

θ, and B(α, β) denotes the Beta pdf with shape parameters (α, β). Unlike [151],

who use a truncated Gaussian prior centered on 0.95 with a small variance for φ,

we use the Beta pdf, which is defined on [0, 1], with mean α/(α + β) = 0.9836,

which puts a significant probability mass on the interval [0.9, 1].

We have compared the pMH-BPF algorithm and the pMH-NuPF scheme (us-

ing a batch nudging procedure with γ = 0.1 and M = b
√
Nc) by running 1,000

independent Monte Carlo trials. We have computed the marginal likelihood esti-

mates in the NuPF after the nudging step.

The resulting empirical acceptance rates can be seen from Fig. 3.9. It is ob-

served that the use of nudging leads to higher acceptance rates, making the pMH

75

Chapter 3. Nudging the particle filter

more efficient to use.

Another key figure of merit for an MCMC algorithm is the degree of correlation

in the chain. Fig. 3.10 displays the average autocorrelation functions (ACFs)

of the chains obtained in the 1,000 independent simulations. We see that the

autocorrelation of the chains produced by the pMH-NuPF method decays more

quickly than the autocorrelation of the chains output by the conventional pMH-

BPF. Less correlation can be expected to translate into better estimates as well

for a fixed length of the chain.

76

4
Stochastic optimization as

Bayesian inference

In this chapter, we reformulate the stochastic optimization problem as an inference

problem by describing probabilistic models where the maxima of the probability

density of interest coincide with the minima of the original cost function. We

then focus on the Gaussian case and show that the inference rules coincide with

an incremental optimization procedure. Finally, we propose a more general Monte

Carlo simulation method which aims at estimating the minima of the cost function

by sampling from a posterior probability measure and constructing an estimate of

the maxima of its associated probability density.

4.1 Introduction

In recent years, a surge of interest in stochastic optimization methods has been

propelled by the recent developments in signal processing and machine learning.

In particular, the following optimization problem,

min
θ∈Rd

f(θ) :=
n∑
i=1

fi(θ) (4.1)

where n is very large, has attracted significant attention in the machine learning

literature.

77

Chapter 4. Stochastic optimization as Bayesian inference

In this chapter, our goal is to develop new probabilistic methods for stochastic

optimization. The algorithms we introduce are incremental, meaning that they

subsample the data points without replacement. Since the stochastic optimization

methods which draw our interest are sequential algorithms which use subsets of

data at each iteration, it is natural to reframe them as sequential Bayesian inference

methods. Thus, in Section 4.2 we first formulate a general Bayes recursion, defined

via a sequence of potential functions (Gt)t≥1 which do not necessarily correspond

to any explicit likelihood. In particular, the potentials are constructed using mini-

batches of the cost function, which are sampled without replacement. We show

that the probability distributions resulting from this recursion can be used to find

the global minima of the original cost function in (4.1).

Next, in Section 4.3, we highlight a connection between the incremental prox-

imal method and stochastic filters. We begin by showing that the proximal op-

erators coincide, and hence can be realized with, Bayes updates. We give the

explicit form of the updates for the linear regression problem and show that there

is a one-to-one correspondence between the proximal operator of the least-squares

regression and the Bayes update when the prior and the likelihood are Gaussian.

We then carry out this observation to a general sequential setting: We consider the

incremental proximal method, which is an algorithm for large-scale optimization,

and show that, for a linear-quadratic cost function, it can naturally be realized

by the Kalman filter. In particular, we show that for a specific choice of the fi’s

in (4.1), it is possible to obtain a well-known incremental optimization method,

called the incremental proximal method [84] (IPM), as a sequential Bayes update

with Gaussian likelihoods. In this case, the Bayes recursion can be implemented

exactly. Not surprisingly, these exact equations coincide with the Kalman updates

and it can be shown that they correspond to a variable-metric extension of the

IPM. Then we generalize this idea to a broad class of nonlinear least squares prob-

lems and develop an IPM-type optimizer in the form of an extended Kalman filter

(EKF), which we argue can provide a systematic way for the derivation of practical

procedures.

Finally, we move on to the general case with general potentials in Section 4.4.

Since the Bayes update cannot be computed in closed form for general potentials,

we propose a particle method to simulate these updates. To be specific, we devise

a parallel sequential Monte Carlo optimizer (PSMCO) to minimize cost functions

with finite-sum structure. The PSMCO is a zeroth-order stochastic optimization

algorithm, in the sense that it only uses evaluations of small batches of individual

components fi(θ) in (1.1). The proposed scheme proceeds by constructing parallel

samplers each of which aims at minimizing (1.1). Each sampler performs subsam-

78

Chapter 4. Stochastic optimization as Bayesian inference

pling without replacement to obtain its mini-batches of individual components and

passes over the dataset only once. Using these mini-batches, the PSMCO con-

structs potential functions, propagates samples via a jittering scheme [152], and

selects samples by applying a weighting-resampling procedure. The communica-

tion between parallel samplers is only necessary when an estimate of the minimum

is required. In this case, the best performing sampler is selected and the min-

imum is estimated. We analytically prove that the estimate provided by each

sampler converges almost surely to a global minimum of the cost function when

the number of Monte Carlo samples at each sampler tends to infinity. We then

provide numerical results for two optimization problems where classical stochas-

tic optimization methods struggle to perform. We remark the difference between

the proposed scheme and the SMC-based schemes in [107, 103] where the authors

partitioned the parameter and modeled it as a dynamical system which is suitable

for many global optimization problems [153]. In contrast, we aim at estimating

the full parameter at each iteration.

4.2 Stochastic optimization as Bayesian inference

In this section, we describe how to construct a sequence of probability distributions

that can be linked to the solution of problem (1.1). Let π0 ∈ P(Θ) be the initial

element of the sequence. We construct the rest of the sequence recursively as

πt(dθ) = πt−1(dθ)
Gt(θ)∫

ΘGt(θ)πt−1(dθ)
, for t ≥ 1, (4.2)

where Gt : Θ → R+ are termed potential functions [33]. The key idea is to

associate these potentials (Gt)t≥1 with mini-batches of individual components of

the cost function (subsets of the fi’s) in order to construct a sequence of measures

π0, π1, . . . , πT such that (for a prescribed value of T) the global maxima of the

density of πT match the global minima of f(θ). We remark that the measures

π1, . . . , πT are all absolutely continuous with respect to π0 if the potential functions

Gt, t = 1, . . . , T are bounded and positive.

To construct the potentials, we use mini-batches consisting of K individual

functions fi for each iteration t. To be specific, we randomly select subsets of

indices It, t = 1, . . . , T , by drawing uniformly from {1, . . . , n} without replacement.

Each subset has |It| = K elements, in such a way that we obtain T subsets

satisfying
⋃T
i=1 It = [L] and Ii ∩ Ij = ∅ when i 6= j. Finally, we define the

79

Chapter 4. Stochastic optimization as Bayesian inference

potential functions (Gt)t≥1 as

Gt(θ) = exp

(
−
∑
i∈It

fi(θ)

)
, t = 1, . . . , T. (4.3)

Below, we provide a result that establishes a precise connection between the op-

timization problem in (4.1) and the sequence of probability measures defined in

(4.2), provided that Assumption 4.1 below is satisfied.

Assumption 4.1. The sequence of functions (Gt)t≥1 are positive and bounded,

i.e., Gt(θ) > 0 ∀θ ∈ Θ and Gt ∈ B(Θ).

Next, we prove the result showing the relationship between the minima of f(θ)

and the maxima of dπT
dπ0

.

Proposition 4.1. Assume that the potentials are selected as in (4.3) for 1 ≤ t ≤
T , with Ii ∩ Ij = ∅ and

⋃
i Ii = [n]. Let πT be the T -th probability measure

constructed by means of recursion (4.2). If Assumption 4.1 holds and π0 ∈ P(Θ),

then

argmax
θ∈Θ

dπT
dπ0

(θ) = argmin
θ∈Θ

n∑
i=1

fi(θ),

where dπT
dπ0

(θ) : Θ→ R+ denotes the Radon-Nikodym derivative of πT with respect

to the prior measure π0.

Proof. See Appendix A.3. �

For conciseness, we abuse the notation and use π(θ), θ ∈ Θ, to indicate the

pdf associated to a probability measure π(dθ). The two objects are distinguished

clearly by the context (e.g., for an integral (ϕ, π), π is necessarily a measure) but

also by their arguments. The probability measure π(·) takes arguments dθ or

A ∈ B(Θ), while the pdf π(θ) is a function Θ→ [0,∞).

Remark 4.1. Notice that, when π0 is a uniform probability measure on Θ, we

simply have

πT (θ) ∝ exp

(
−

n∑
i=1

fi(θ)

)
, for θ ∈ Θ,

where πT (θ) denotes the pdf (w.r.t. Lebesgue measure) of the measure πT (dθ). �

Remark 4.2. Moreover, if we choose

π0(θ) ∝ exp (−f1(θ)) (4.4)

80

Chapter 4. Stochastic optimization as Bayesian inference

and then select subsets of indices such that
⋃T
t=1 It = {2, . . . , n} then it readily

follows that

πT (θ) ∝ exp

(
−

n∑
i=1

fi(θ)

)
, for θ ∈ Θ.

When a Monte Carlo is scheme used to realize recursion (4.2), the use of a prior

of the form (4.4) requires the ability to sample from it. �

Therefore, if we can construct the sequence described by (4.2), then we can

replace the minimization problem of f(θ) in (1.1) by the maximization of the pdf

πT (theta). This relationship was exploited in a Gaussian setting in [91], i.e., the

special case of a Gaussian prior π0 and log-quadratic potentials (Gt)t≥1 (corre-

sponding to Gaussian likelihoods in a Bayesian model), which makes it possible

to implement recursion (4.2) analytically. The solution of this special case can

be shown to match a well-known stochastic optimization algorithm, called the in-

cremental proximal method [84], with a variable-metric as we derive in the next

section.

4.3 Incremental proximal method as inference

The recursion (4.2) is general, however, it is not possible implement it exactly for

any π0 and (Gt)t≥1. In this section, we summarize a special case, where (4.2) can

be implemented exactly. We also show that this special case matches to a well-

known optimization scheme, called the incremental proximal method (IPM) [84].

We show that, in particular, the probabilistic interpretation of the IPM leads to

a development of a variable-metric IPM scheme. For a review of variable-metric

methods see, e.g., [154, 155]. We focus on the case where Θ = Rd within this

section.

4.3.1 Proximal operators as Bayes updates

Consider a generic, convex (for simplicity) function f . We recall the proximal

operator of f is given as in Definition (2.1)

proxγf,V (·) = argmin
θ∈Rd

f(θ) +
1

2γ
‖θ − ·‖22,V ,

where ‖θ‖2,V =
√
θ>V −1θ is the Mahalanobis norm. In this section, we first show

that, for certain f , the proximal operator can be interpreted as a Bayes update.

In particular, consider

f(θ) =
1

2
(y − x>θ)2,

81

Chapter 4. Stochastic optimization as Bayesian inference

where y ∈ R and x ∈ Rd. We first derive the proximal operator of f .

Proposition 4.2. Let f(θ) = 1
2(y − x>θ)2. Then the proximal operator of f ,

θ̃ = proxγf,V0(θ0) = argmin
θ∈Rd

f(θ) +
1

2γ
‖θ − θ0‖22,V0 ,

is realized by

θ̃ = θ0 +
V0x(y − x>θ0)

γ−1 + x>V x
. (4.5)

Proof. See Appendix A.3. �

Interestingly, it is possible to see (4.5) as a Bayes update for a Gaussian prob-

ability model, as made explicit by the following proposition.

Proposition 4.3. Consider a prior and a likelihood function, respectively,

π0(θ) = N (θ; θ0, V0),

G(θ) = N (y; x>θ, γ−1).

Then, the pdf

π(θ) =
G(θ)π0(θ)∫

Rd G(θ)π0(θ)dθ
,

is Gaussian, namely,

π(θ) = N (θ; θ̃, V),

where

θ̃ = θ0 +
V0x(y − x>θ0)

γ−1 + x>V x
, (4.6)

V = V0 −
V0xx>V0

γ−1 + x>V0x
. (4.7)

Proof. This proposition is a special case of Lemma 2.1. �

Remark 4.3. Note that eqs. (4.5) and (4.6) are identical. This means that the

realization of the proximal operator of f , defined with a symmetric positive definite

matrix V0 and parameter γ, is identical to the realization of the Bayes update. As

a byproduct of the Bayes update, one obtains V via (4.7), which then can be used

to quantify the uncertainty of the output of the proximal operator. We aim at

utilizing this idea to develop uncertainty-aware stochastic optimization schemes.

�

In the next section, we apply this interpretation to the family of incremental

proximal methods in order to get an online probabilistic optimizer. Perhaps not

surprisingly, this algorithm is related to the Kalman filter for the linear case. Then

we discuss its extension to nonlinear optimization problems.

82

Chapter 4. Stochastic optimization as Bayesian inference

4.3.2 The IPM as a Kalman filter

As introduced in Section 2.4.5, at iteration t the incremental proximal method

solves the problem

θt = proxγft(θt−1),

where ft is selected randomly from [T] = {1, . . . , T} without replacement1. In

this section, we first define a general, variable-metric IPM with a sequence of

(as yet unspecified) symmetric positive definite matrices (Vt)t≥0. We define the

variable-metric IPM as

θt = proxγft,Vt−1
(θt−1) = argmin

θ∈Rd
ft(θ) +

1

2γ
‖θ − θt−1‖22,Vt−1

, (4.8)

where ‖θ‖2,V =
√
θ>V −1θ and the sequence (Vt)t≥1 is specified by the user. Now,

assume that we are given a dataset (yt,xt)0≤t≤T and aim at minimizing a cost

function of the form (4.1) with ft(θ) = 1
2(yt − x>t θ)

2. The next proposition states

the explicit form of (4.8) for this case.

Proposition 4.4. Let ft(θ) = 1
2(yt − x>t θ)

2 for t = 1, . . . , T . Then, given a

sequence of symmetric, positive definite matrices (Vt)0≤t≤T−1, the recursion (4.8)

can be explicitly written as

θt = θt−1 +
Vt−1xt(yt − x>t θt−1)

γ−1 + x>t Vt−1xt
. (4.9)

Proof. This result follows straightforwardly from the proof of Proposition 4.2. �

Next, we aim at building up a probabilistic version of the problem. As we

summarized in Section 4.2, in order to minimize f we need to define a prior and a

sequence of potential functions for each t. In this section, we choose a prior of the

form

π0(θ) = N (θ; θ0, V0). (4.10)

and define the sequence of potentials (Gt)t≥1 such that

Gt(θ) = N (yt; x
>
t θ, γ

−1). (4.11)

1Throughout the chapter, we abuse the notation for randomly selected individual functions.

In particular, we sample it ∼ {1, . . . , T} without replacement and set ft := fit in our notation.

Since the dataset can be reshuffled and then processed sequentially, we always assume that we

process the dataset from 1 to T (unless otherwise specified) without any loss of generality. Note

also that T = n for this case, since we sample each individual function with K = 1.

83

Chapter 4. Stochastic optimization as Bayesian inference

Note, again, that this implies that we take a single component at each iteration, i.e.,

we select the mini-batch size K = 1. For the model (4.10) and (4.11), the recursion

(4.2) can be implemented exactly and is given by the following proposition.

Proposition 4.5. Assume that the prior is given by

π0(θ) = N (θ; θ0, V0)

and the potential functions Gt are specified as

Gt(θ) = N (yt; x
>
t θ, γ

−1)

for t = 1, . . . , T . Then the recursion (4.2) can be implemented exactly and yields

πt(θ) = N (θ; θt, Vt), (4.12)

where

θt = θt−1 +
Vt−1xt(yt − x>t θt−1)

γ−1 + x>t Vt−1xt
, (4.13)

Vt = Vt−1 −
Vt−1xtx

>
t Vt−1

γ−1 + x>t Vt−1xt
, (4.14)

for t ≥ 1.

Proof. This is a special case of Lemma 2.2. �

Remark 4.4. Note that recursions (4.9) and (4.13) are identical, similar to the

static case we presented in the last section. However, in this case there is a funda-

mental difference between the two methods. For the variable-metric IPM, (4.9) can

be only defined when the sequence of matrices (Vt)t≥1 are predefined by the user.

Otherwise, the variable-metric IPM does not yield an explicit method. The most

common implementation of the IPM simply assumes Vt = Id for t = 0, . . . , T − 1.

In contrast, the Kalman filter given in Proposition 4.5 produces mean estimates

in the same form of (4.9) and, in addition, it produces the sequence (Vt)t≥1 in the

form of a sequence of posterior covariance matrices. In other words, the Kalman

filter is identical to the variable-metric IPM, except that it automatically deter-

mines the metrics. In the next section, we develop a nonlinear extension of the

variable-metric IPM, which cannot be implemented from an IPM perspective since

the choice of general ft will not yield a computable proximal operator. But given

the probabilistic view, we can still develop an approximate probabilistic optimizer

from the filtering perspective via the use of the extended Kalman filter (EKF). �

84

Chapter 4. Stochastic optimization as Bayesian inference

Remark 4.5. Recall that in Proposition 4.1, we have shown that the maxima

of the Radon-Nikodym derivative dπT
dπ0

(θ) coincide with the minima of the cost

function. In particular, if the maximum is unique, i.e., we have unique θ? such

that

θ? = argmax
θ

dπT
dπ0

(θ), (4.15)

then θ? is also the global minimum of the cost function. In this section, however,

we take the maximum (i.e. the mean) of the posterior distribution πT (θ), namely

θT , as an estimate of the minimum instead of the maximum of the Radon-Nikodym

derivative dπT
dπ0

(θ) for the sake of computational simplicity. Note that the solution

of the problem (4.15) can also be exactly solved for this case. More precisely, the

exact solution can be straightforwardly derived using (4.10) and (4.12) and is given

by

θ? = (V −1
T − V −1

0)−1(V −1
T θT − V −1

0 θ0). (4.16)

Then one can show that when the entries of VT are close to zero and V0 is chosen

so that the initial uncertainty is large (e.g. V0 = v0Id with v0 > 0 large), the effect

of the prior vanishes and θ? ≈ θT . In order to see this, assume (for simplicity)

that we have obtained VT = εId with ε > 0 small and V0 = v0Id. Then,

θ? =
εv0

v0 − ε

(
1

ε
θT −

1

v0
θ0

)
,

which yields

θ? =
v0

v0 − ε
θT −

ε

v0 − ε
θ0

which justifies taking θ? ≈ θT for large v0 and small ε. �

4.3.3 EKF as an approximate IPM

In this section, we consider a nonlinear regression problem. Given observations

y, we would like to obtain yt ≈ h(xt, θ) where h(·, θ) is a nonlinear function of θ.

Since the xt’s are fixed, we set ht(θ) := h(xt, θ) for notational conciseness. Note

that ht : Rd → R. Then, we would like to solve a problem of the form (4.1). In

particular, we aim at solving

min
θ∈Rd

f(θ) = min
θ∈Rd

T∑
t=1

ft(θ), (4.17)

85

Chapter 4. Stochastic optimization as Bayesian inference

where ft(θ) = 1
2(yt − ht(θ))2. The incremental proximal step for this problem is

given by

θt = argmin
θ∈Rd

1

2
(yt − ht(θ))2 +

1

2γ
‖θ − θt−1‖22,Vt−1

(4.18)

for each iteration t. Because of the nonlinearity ht(·), this proximal step is in-

tractable in general. Therefore, the typical choice for problems like in Eq. (4.17)

is the SGD. In what follows, we propose the use of EKF recursions as one-step

approximations of the realization of the proximal operator.

To this end, let us consider the prior probability density

π0(θ) = N (θ; θ0, V0), (4.19)

and the sequence of potential functions

Gt(θ) = N (yt;ht(θ), γ
−1). (4.20)

Since the model defined by (4.19)–(4.20) contains a nonlinearity ht, using the EKF

is a natural way to solve the regression problem. Let us denote dt = ∇θht(θt−1).

For the model (4.19)–(4.20), the EKF recursions given in eqs. (2.40)–(2.41), for

t ≥ 1, can be written as2

θt = θt−1 +
Vt−1dt(yt − ht(θt−1))

γ−1 + d>t Vt−1dt
(4.21)

and

Vt = Vt−1 −
Vt−1dtd

>
t Vt−1

γ−1 + d>t Vt−1dt
.

Remark 4.6. Throughout our discussion, we have kept the prior π0(θ) static,

meaning that θ is assumed to be random but not changing over time. While

this assumption is convenient when the cost function is not changing, it does

not hold in most realistic settings. For this reason, the authors of [156] consider

what they call nonstationary losses, where the cost function is also changing with

time. Tackling such a scenario is trivial from our perspective, as one only needs to

modify the algorithm slightly in order to get a dynamic algorithm. In particular, in

addition to the update step, one needs to employ a prediction step, according to the

assumed dynamics of the parameter. One can model the degree of nonstationarity

by modifying the model over θt and filtering algorithms extend to such settings

very naturally. We leave the detailed investigation of this issue for future work. �

86

Chapter 4. Stochastic optimization as Bayesian inference

100 101 102 103

Iterations
(a)

30

35

40

45

50

55

60

C
os

t

EKF
Approx. Nonlinear IPM

Figure 4.1: Results on fitting a sigmoid function using EKF and approximate nonlinear

IPM. From (a), it can be seen that the approximate nonlinear IPM proceed towards

minimum but suffers from instability while the EKF proceeds in a stable way. From

(b)-(c), it can be seen that the entries of the diagonal and nondiagonal parts of the

covariance matrix Vt converge to zero, which is the reason why the EKF does not suffer

from instability.

4.3.4 Some numerical results

In this section, we investigate two algorithms on a simple problem of fitting a

sigmoid function. The first algorithm, which we refer to as approximate nonlinear

IPM, consists of applying a standard iterative solver for each subiteration, since the

nonlinear problem of Eq. (4.18) is not solvable in general. The second algorithm

is the EKF, as explained in Section 4.3.3. The model used in the experiment is of

the form of Eq. (4.19)–(4.20), with

ht(θ) =
1

1 + exp(−α− β>xt)
,

2Note that since this model does not have a dynamical component, the EKF consists only of

the update steps (2.40)–(2.41), i.e., without the prediction steps (2.38)–(2.39).

87

Chapter 4. Stochastic optimization as Bayesian inference

where xt ∈ Rd−1 denotes the inputs, and the parameter vector is θ = (α, β) (i.e.,

θ ∈ Rd with d = 21). Recall that, by choosing such a model, we aim at solving a

problem of form given in Eq. (4.17). We set the value of the parameter γ−1 = 0.2

while generating the data and we use the same value in the algorithms. Also, the

initial value θ0 of the approximate IPM is set randomly while the proximal matrix

is the d×d identity, denoted V = Id. Similarly, the prior for the EKF is initialized

with (θ0, V0) where V0 = Id.

Figure 4.1(a) shows that the approximate IPM suffers from numerical insta-

bility as the parameter estimate θt becomes close to the actual minimum. One

reason for this instability is that, in proximal-type algorithms, there is no natural

mechanism to reduce the size of the step taken by the algorithm. A natural remedy

would be to update the proximal matrix in a way that it dampens the updates

as the number of iterations increases, in a similar way to decreasing the step-size

of the SGD. The EKF exactly employs this strategy in a natural way. This fact

can be seen from Fig. 4.1(b)-(c) where the diagonal and nondiagonal entries of the

covariance matrix Vt are plotted, respectively. It is evident that the entries of this

matrix converge to zero, meaning that the update (4.21) eventually converges to

some point in the parameter space.

4.4 SMC for stochastic optimization

As we have demonstrated in the previous section, the recursion (4.2) can be im-

plemented exactly for some special cases. However, for general f , which consists

of general component functions ft, it is not possible to implement (4.2) exactly.

In this section, we develop a general sequential Monte Carlo method in order to

optimize cost functions of the form (4.1).

In this section we first describe a sampler to simulate from the distributions de-

fined by recursion (4.2). We then describe an algorithm which runs these samplers

in parallel. The parallelization here is not primarily motivated by the computa-

tional gain (although it can be substantial). We have found that non-interacting

parallel samplers are able to keep track of multiple minima better than a single

“big” sampler. For this reason, we will not focus on demonstrating computational

gains in the experimental section. Rather, we will discuss what parallelization

brings in terms of providing better estimates.

We consider M workers (corresponding to M samplers). Specifically, each

worker sees a different configuration of the dataset, i.e., the m-th worker constructs

a distinct sequence of index sets (I(m)
t)t≥1, which determine the mini-batches sam-

pled from the full set of individual components. Having obtained different mini-

88

Chapter 4. Stochastic optimization as Bayesian inference

Algorithm 4.1 Sampler on a local node m

1: Sample θ
(i,m)
0 ∼ π0 for i = 1, . . . , N .

2: for t ≥ 1 do

3: Jitter by generating samples

θ̂
(i,m)
t ∼ κ(dθ|θ(i,m)

t−1) for i = 1, . . . , N.

4: Compute weights,

w
(i,m)
t =

G
(m)
t (θ̂

(i,m)
t)∑N

i=1G
(m)
t (θ̂

(i,m)
t)

for i = 1, . . . , N.

5: Resample by drawing N i.i.d. samples,

θ
(i,m)
t ∼ π̂(m),N

t (dθ) :=
N∑
i=1

w
(i,m)
t δ

θ̂
(i,m)
t

(dθ), i = 1, . . . , N.

6: end for

batches which are randomly constructed, each worker then constructs different

potentials (G
(m)
t)t≥1, as described in the previous section.

Workers, therefore, aim at estimating their own sequence of probability mea-

sures π
(m)
t for m ∈ {1, . . . ,M}. We denote the particle approximation of the

posterior π
(m)
t at time t as

π
(m),N
t (dθ) =

1

N

N∑
i=1

δθ(i,m)(dθ).

Overall, the algorithm retains M probability distributions. Note that these dis-

tributions are different for each t < T as they depend on different potentials.

One iteration of the algorithm on a local worker m can be described as follows.

Assume we collect a probability measure π
(m),N
t−1 from worker m, with the particle

system {θ(m,i)
t−1 }Ni=1. First, we use a jittering kernel κ(dθ|θt−1), which is a Markov

kernel on Θ, to modify the particles [152] (see Subsection 4.4.1 for the precise

definition of κ(·|·)). The idea is to jitter a subset of the particles in order to modify

and propagate them into better regions of Θ with higher probability density and

lower cost. The particles are jittered by sampling,

θ̂
(i,m)
t ∼ κ(·|θ(i,m)

t−1) for i = 1, . . . , N.

Note that the jittering kernel may be designed so that it only modifies a subset of

particles (again, see Section 4.4.1 for details). Next, we compute weights for the

89

Chapter 4. Stochastic optimization as Bayesian inference

new set of particles {θ̂(i,m)
t }Ni=1 according to the t-th potential, namely

w
(i,m)
t =

G
(m)
t (θ̂

(i,m)
t)∑N

i=1G
(m)
t (θ̂

(i,m)
t)

for i = 1, . . . , N.

After obtaining weights, each worker performs a resampling step where for i =

1, . . . , N , we set θ
(i,m)
t = θ̂

(i,k)
t for k ∈ {1, . . . , N} with probability w

(i,m)
t . The

procedure just described corresponds to a simple multinomial resampling scheme,

but other standard methods can be applied as well [134]. We denote the resulting

probability measure constructed at the t-th iteration of the m-th worker as

π
(m),N
t (dθ) =

1

N

N∑
i=1

δ
θ
(i,m)
t

(dθ).

The full procedure for the m-th worker is outlined in Algorithm 4.1. In Sec-

tion 4.4.1, we elaborate on the selection of the jittering kernels to jitter particles

and in Section 4.4.2, we detail the scheme for estimating a global minimum of f(θ)

from the set of random measures {π(m),N
t }Mm=1.

4.4.1 Jittering kernel

The jittering kernel constitutes one of the key design choices of the proposed

algorithm. Following [152], we put the following assumption on the kernel κ.

Assumption 4.2. The Markov kernel κ satisfies

sup
θ′∈Θ

∫
Θ
|ϕ(θ)− ϕ(θ′)|κ(dθ|θ′) ≤ cκ‖ϕ‖∞√

N

for any ϕ ∈ B(Θ) and some constant cκ <∞ independent of N .

In this paper, we use kernels of form

κ(dθ|θ′) = (1− εN)δθ′(dθ) + εNτ(dθ|θ′), (4.22)

where εN ≤ 1√
N

, which satisfy Assumption 4.2 [152]. The kernel τ can be rather

simple, such as a multivariate Gaussian or multivariate-t distribution centered

around θ′ ∈ Θ. Other choices of τ are possible as well.

4.4.2 Estimating the global minima of f(θ)

In order to estimate the global minima of f(θ), we first assess the performance of

the samplers run by each worker. A typical performance measure is the marginal

likelihood estimate resulting from π
(m),N
t . After choosing the worker which has

90

Chapter 4. Stochastic optimization as Bayesian inference

attained the highest marginal likelihood (say the m0-th worker), we estimate a

minimum of f(θ) by selecting the particle θ
(i,m)
t that yields the highest density

π
(m0)
t (θ

(i,m0)
t).

To be precise, let us start by denoting the incremental marginal likelihood

associated to π
(m)
t and its estimate π

(m),N
t as Z

(m)
1:t and Z

(m),N
1:t , respectively. They

can be explicitly obtained by first computing

Z
(m)
t :=

∫
G

(m)
t (θ)π̂

(m)
t (dθ) ≈ 1

N

N∑
i=1

G
(m)
t (θ̂

(i,m)
t) =: Z

(m),N
t

and then updating the running products

Z
(m)
1:t = Z

(m)
t Z

(m)
1:t−1 =

t∏
k=1

Z
(m)
k

and

Z
(m),N
1:t = Z

(m),N
t Z

(m),N
1:t−1 =

t∏
k=1

Z
(m),N
k .

The quantity Z
(m)
1:t is a local performance index that keeps track of the “qual-

ity” of the m-th particle system {θ(i,m)
t }Ni=1 [157]. This means that we can use

{Z(m),N
1:t }Mm=1 to determine the best performing worker. Given the index of the

best performing sampler, which is given by

m?
t = argmax

m∈{1,...,M}
Z

(m),N
1:t ,

we obtain a maximum-a-posteriori (MAP) estimator,

θ?,Nt = argmax
i∈{1,...,N}

p
(m?t),N
t (θ(i,m?t)), (4.23)

where p
(m?t),N
t (θ) is the kernel density estimator [158, 159] described in Remark 4.7

below. Note that we do not construct the entire density estimator and maximize it.

Since this operation is performed locally on the particles from the best performing

sampler, it has O(N2) cost, where N is the number of particles on a single worker,

which is much smaller than the total number MN . The full procedure is outlined

in Algorithm 4.2.

Remark 4.7. Let k : Θ→ (0,∞) be a bounded pdf with zero mean and finite sec-

ond order moment,
∫

Θ ‖θ‖
2
2k(θ)dθ <∞. We can use the particle system {θ(i,m)

t }Ni=1

91

Chapter 4. Stochastic optimization as Bayesian inference

and the pdf k(·) to construct the kernel density estimator (KDE) of π
(m)
t (θ) as

p
(m),N
t (θ) =

1

N

N∑
i=1

k(θ − θ(i,m)
t)

= (kθ, π
(m),N
t), (4.24)

where kθ(θ′) = k(θ − θ′). Note that p
(m),N
t (θ) is not a standard KDE because

the particles {θ(i,m)
t }Ni=1 are not i.i.d. samples from π

(m)
t (θ). Eq. (4.24), however,

suggests that the estimator, p
(m),N
t (θ) converges when the approximate measure

π
(m),N
t does. See [160] for an analysis of particle KDE’s. �

4.4.3 Analysis

In this section, we provide some basic theoretical guarantees for Algorithm 4.2.

In particular, we prove results regarding a sampler on a single worker m, which

hold for any m ∈ {1, . . . ,M}. To ease the notation, we skip the superscript (m)

in the rest of this section and simply note that results presented below hold for

any m ∈ {1, . . . ,M}. All proofs are deferred to Appendix A.3.

When constrained to a single worker m, the approximation πNt is provably

convergent. In particular, we have the following result that holds for every worker

m = 1, . . . ,M .

Theorem 4.1. If the sequence (Gt)t≥1 satisfies Assumption 4.1 then, for any

ϕ ∈ B(Θ), we have ∥∥(ϕ, πt)−
(
ϕ, πNt

)∥∥
p
≤ ct,p‖ϕ‖∞√

N

for every t = 1, . . . , T and for any p ≥ 1, where ct,p > 0 is a finite constant

independent of N .

Proof. See Appendix A.3.�

Theorem 4.1 states that the samplers on local workers converge to their cor-

rect probability measures (for each m) with rate O(1/
√
N), which is standard for

Monte Carlo methods. This result is important since it enables us to analyze the

properties of the KDEs constructed using the samples at each sampler. In order

to be able to do so, we need to impose regularity conditions on the sequence of

densities πt(θ) and the kernels we use to approximate them.

Assumption 4.3. For every θ ∈ Θ, the derivatives Dαπt(θ) exist and they are

Lipschitz continuous, i.e., there is a finite constant Lα,t > 0 such that

|Dαπt(θ)− Dαπt(θ
′)| ≤ Lα,t‖θ − θ′‖

92

Chapter 4. Stochastic optimization as Bayesian inference

for all θ, θ′ ∈ Θ, t = 1, . . . , T and for all α = (α1, . . . , αd) such that αi ∈ {0, 1}.

Note that for α = (0, . . . , 0), it is not hard to relate Assumption 4.3 directly to

the cost function, as we do in the following proposition.

Proposition 4.6. Assume that we define the incremental cost functions

Ft(θ) =
∑

i∈I1∪···∪It

fi(θ)

and there exists some `t such that

|Ft(θ)− Ft(θ′)| ≤ `t‖θ − θ′‖,

i.e., Ft is Lipschitz. Assume there exists F ?t = minθ∈Θ Ft(θ) such that |F ?t | < ∞
and recall that πt(θ) ∝ exp(−Ft(θ)). Then we have the following inequality,

|πt(θ)− πt(θ′)| ≤
`t exp(−F ?t)

Zπt
‖θ − θ′‖

where Zπt =
∫

Θ exp(−Ft(θ))dθ.

Proof. See Appendix A.3. �

Next, we state some assumptions on the kernel k. We first note that the kernels

in practice are defined with a bandwidth parameter h ∈ R+. In particular, given

a kernel k, we can define scaled kernels kh as

kh(θ) = h−dk(h−1θ), h > 0.

Hence, given k we define a family of kernels {kh, h ∈ R+}.

Assumption 4.4. The kernel k : Θ → (0,∞) is a zero-mean bounded pdf, i.e.,

k(θ) ≥ 0 ∀θ ∈ Θ and
∫
k(θ)dθ = 1. The second moment of this density is bounded,

i.e.,
∫

Θ ‖θ‖
2k(θ)dθ < ∞. Finally, Dαk ∈ Cb(Θ), i.e., ‖Dαk‖∞ < ∞ for any

α ∈ {0, 1}d.

Remark 4.8. We note that Assumption 4.4 implies that Dαkh ∈ Cb(Θ) and we

have ‖Dαkh‖∞ = 1
hd+|α|

‖Dαk‖∞ for any h > 0 and α ∈ {0, 1}d. �

We denote the kernel density estimator defined using a scaled kernel kh and the

empirical measure πNt as ph,Nt (θ). In particular, given a normalized kernel (a pdf)

k : Θ → (0,∞), satisfying the assumptions in Assumption 4.4, we can construct

the KDE

ph,Nt (θ) = (kθh, π
N
t).

where kθh(θ′) = kh(θ − θ′) (see Remark 4.7). Now, we are ready to state our main

results about the KDEs, adapted from [160].

93

Chapter 4. Stochastic optimization as Bayesian inference

Theorem 4.2. Choose

h =
⌊
N

1
2(d+1)

⌋−1
(4.25)

and denote pNt (θ) = ph,Nt (θ) (since h = h(N)). If Assumptions 4.1, 4.3 and 4.4

hold then

sup
θ∈Θ
|pNt (θ)− πt(θ)| ≤

U ε⌊
N

1
2(d+1)

⌋1−ε (4.26)

where U ε ≥ 0 is an almost surely finite random variable and 0 < ε < 1 is a

constant, both of which are independent of N and θ. As a consequence

lim
N→∞

sup
θ∈Θ
|pNt (θ)− πt(θ)| = 0 a.s. (4.27)

Proof. See the proof of Theorem 4.2 and Corollary 4.1 in [160]. Recall that Θ ⊂ Rd

is compact. �

This theorem is a uniform convergence result, i.e., it holds uniformly in a

compact parameter space Θ. We note that Theorem 4.2 specifies a certain h, that

is the bandwidth, in order for the results to hold. Based on this result, we can

relate empirical maxima to the true maxima.

Theorem 4.3. Let θ?,Nt ∈ argmaxi∈{1,...,N} p
N
t (θ

(i)
t) be an estimate of a global

maximum of πt. Then, under the assumptions of Theorem 4.2,

lim
N→∞

pNt (θ?,Nt) = πt(θ
?
t) a.s.,

where θ?t ∈ argmaxθ∈Θ πt(θ).

Proof. See the proof of Theorem 5.2 in [160]. �

4.4.4 Experimental Results

In this section, we show numerical results for two optimization problems, which

are hard to solve with conventional methods. In the first example, we focus on

minimizing a function with multiple global minima. The aim of this experiment

is to show that the algorithm populates multiple global minima successfully. In

the second example, we minimize a challenging cost function for which standard

stochastic gradient optimizers struggle.

94

Chapter 4. Stochastic optimization as Bayesian inference

Figure 4.2: An illustration of the performance of the proposed algorithm for a cost function

with four global minima. (a) The plot of πT (θ) ∝ exp(−f(θ)). The blue regions indicate

low values. It can be seen that there are four global maxima. (b) Samples drawn by the

PSMCO at a single time instant. (c) The plot of the samples together with the actual

cost function f(θ).

Minimization of a function with multiple global minima

In this experiment, we tackle the problem

min
θ∈R2

f(θ),

where

f(θ) =

n∑
i=1

fi(θ) and fi(θ) = − 1

λ
log

(
4∑

k=1

N (θ;mi,k, R)

)
,

with λ = 10, R = rI with r = 0.2. We choose the means mi,k randomly, namely

mi,k ∼ N (mi,k;mk, σ
2) where,

m1 = [4, 4]>, m2 = [−4,−4]>, m3 = [−4, 4]>, m4 = [4,−4]>,

and σ2 = 0.5. This selection results in a cost function with four global minima.

This cost function is a good model for cost functions arising in many machine

learning problems where there are multiple global minima, see, e.g., [161]. In this

experiment, we have chosen n = 1, 000. Although a small number for stochastic

optimization problems, we note that each fi(θ) models a mini-batch in this scenario

and we choose K = 1 in our algorithm.

In order to run the algorithm, we choose a uniform prior measure π0(θ) =

U([−a, a]× [−a, a]) with a = 50. It follows from Proposition 4.1 that the pdf that

matches the cost function f(θ) can be written as

πT (θ) ∝ exp(−f(θ)),

95

Chapter 4. Stochastic optimization as Bayesian inference

and it has four global maxima. This pdf is displayed in Fig. 4.2(a). We run

M = 100 samplers, each with each N = 50 particles, yielding a total number of

particles MN = 5, 000. We choose a Gaussian jittering scheme; specifically, the

jittering kernel is defined as

κ(dθ|θ′) = (1− εN)δθ′(dθ) + εNN (θ; θ′, σ2
j)dθ, (4.28)

where εN ≤ 1/
√
N and σ2

j = 0.5.

Some illustrative results can be seen from Fig. 4.2. To be specific, we have

run independent samplers and plot all samples for this experiment (instead of es-

timating a minimum with the best performing sampler). From Fig. 4.2(b), one

can see that the algorithm populates all maxima with samples. Finally, Fig. 4.2(c)

shows the location of the samples relative to the actual cost function f(θ). This

plots illustrate how the algorithm populates multiple, distinct global maxima with

independent samplers. This implies that different independent samplers can re-

port different global maxima in practice. Note that this is in agreement with the

analysis provided in Section 4.4.3.

Minimization of the sigmoid function

In this experiment, we address the problem

min
θ∈R2

f(θ) :=

n∑
i=1

(yi − gi(θ))2, where gi(θ) =
1

1 + exp(−θ1 − θ2xi)
, (4.29)

with xi ∈ R, fi(θ) = (yi − gi(θ))2 and θ = [θ1, θ2]>. The function gi is known as

the sigmoid function. Cost functions of the form in eq. (4.29) are widely used in

nonlinear regression with neural networks in machine learning [125].

In this experiment, we have n = 100, 000. We choose M = 25 and MN =

1, 000, leading to N = 40 particles for every sampler. The mini-batch size is

K = 100. The jittering kernel κ is defined in the same way as in (4.28), where

the Gaussian pdf has a variance chosen as the ratio of the dataset size n to the

mini-batch size K, i.e., σ2
j = n/K, which yields a rather large variance3 σ2

j = 1000.

To compute the maximum as described in Eq. (4.23), we use a Gaussian kernel

with bandwidth h = bN
1
6 c−1, since d = 2, which yields h = 1.

The results can be seen from Fig. 4.3. We compare our method with a parallel

stochastic gradient descent (PSGD) scheme [162] using M optimizers. We note

3Note that this is for efficient exploration of the global minima, which is hard to find for this

example. A large jittering variance may not be adequate in practice when there are multiple

minima close to each other, see, e.g., Section 4.4.4.

96

Chapter 4. Stochastic optimization as Bayesian inference

Figure 4.3: (a) The cost function and a snapshot of samples from the 50th iteration of

PSMCO, PSGD with bad initialization (blue point) and PSGD with good initialization

(black points). (b) The minimization performance of each algorithm. It can be seen that

PSMCO first converges to the wide region with low values (blue triangle region) and then

jumps to the minimum. This is because the marginal likelihood estimate of the sampler

close to minimum dominates after a while. So there is effectively full communication only

to determine the minimizer although there is no exchange of information.

that given a particular realization of (xi)
n
i=1 (which is an iid sequence) with xk ∼

U([−2.5, 2.5])), the cost function landscape can be hard to optimize. One can

see from Fig. 4.3(a) that the cost function (for a particular realization of (xi)
n
i=1)

has broad flat regions which make it difficult to minimize even for gradient based

methods unless their initialization is sufficiently good. Accordingly, we have run

two instances of PSGD with “bad” and “good” initializations.

The bad initial point for PSGD can be seen from Fig 4.3(a), at [−190, 0]>

(the blue dot). We initialize M parallel SGD optimizers around [−190, 0]>, each

with a small zero-mean Gaussian perturbation with variance 10−8. This is a poor

initialization because gradients are nearly zero in this region (yellow triangle in

Fig. 4.3(a)). We refer to the PSGD algorithm starting from this point as PSGD

with B/I, which refers to bad initialization. We also initialize the PSMCO from

this region, with Gaussian perturbations around [−190, 0]>, with the same small

variance of σ2
init = 10−8.

The “good” initialization for the PSGD is selected from a better region, namely

around the point [0,−100]>, where gradient values actually contain useful infor-

mation about the minimum. We refer to the PSGD algorithm starting from this

point as PSGD with G/I.

The results and some comments can be seen from Fig. 4.3(b). It can be seen

97

Chapter 4. Stochastic optimization as Bayesian inference

that the PSGD with good initialization (G/I) moves towards a better region,

however, it gets stuck because gradients become zero. On the other hand, PSGD

with B/I is unable to move at all, since it is initialized in a region where all gradients

are zero (which is true even for the mini-batch observations). PSMCO, on the other

hand, is able to search the space effectively to find the global minimum, which is

clearly reflected in Fig. 4.3(b).

98

Chapter 4. Stochastic optimization as Bayesian inference

Algorithm 4.2 PSMCO

1: Sample θ
(i,m)
0 ∼ π0 for i = 1, . . . , N .

2: for t ≥ 1 do

3: for m = 1, . . . ,M do

4: Jitter by generating samples

θ̂
(i,m)
t ∼ κ(dθ|θ(i,m)

t−1) for i = 1, . . . , N.

5: Update the marginal likelihood,

Z
(m),N
1:t = Z

(m),N
1:t−1 × Z

(m),N
t where Z

(m),N
t =

1

N

N∑
i=1

G
(m)
t (θ̂

(i,m)
t).

6: Compute weights,

w
(i,m)
t =

G
(m)
t (θ̂

(i,m)
t)∑N

i=1G
(m)
t (θ̂

(i,m)
t)

for i = 1, . . . , N.

7: Resample N i.i.d. samples,

θ
(i,m)
t ∼ π̂(m),N

t (dθ) =
N∑
i=1

w
(i,m)
t δ

θ̂
(i,m)
t

(dθ) for i = 1, . . . , N.

8: end for

9: if an estimate of the solution of problem (1.1) is needed at time t then

10: Choose

m?
t = argmax

m∈{1,...,M}
Z

(m),N
1:t

11: Estimate

θ?,Nt = argmax
i∈{1,...,N}

p
(m?t),N
t (θ

(i,m?t)
t).

12: end if

13: end for

99

Chapter 4. Stochastic optimization as Bayesian inference

100

5
Dictionary filtering

In this chapter, by using the duality between optimization and inference we have

developed in Chapter 4, we investigate a link between matrix factorisation algo-

rithms and recursive linear filters. We describe a probabilistic model in which

sequential inference naturally leads to a matrix factorisation procedure. We refer

to the resulting algorithm as the dictionary filter.

5.1 Introduction

Matrix factorization (MF) algorithms are a cornerstone of modern signal process-

ing, machine learning, and, more generally, computational linear algebra. For-

mally, we are interested in solving the problem of factorizing a data matrix Y ∈
Rm×n as

Y ≈ CX (5.1)

where C ∈ Rm×r is the dictionary matrix, the columns ofX ∈ Rr×n are coefficients,

and r is the approximation rank. In this chapter, we assume all matrices are real-

valued. We are interested in computing both C and X recursively, or online, using

a single (column) data vector at each time to update the factors.

Matrix factorization methods became popular with the work on nonnegative

matrix factorization (NMF) of [163]. The authors considered the factorization of a

nonnegative data matrix Y ∈ Rm×n+ into nonnegative factors C ∈ Rm×r+ and X ∈

101

Chapter 5. Dictionary filtering

Rr×n+ using a multiplicative gradient descent method (see [164] for a convergence

proof). The algorithm has received significant attention due to its ability to learn

important and interpretable features in an unsupervised way. Following [163],

similar algorithms were also proposed for real-valued matrices and factors, as in

our formulation (5.1), especially when the primary interest is the prediction of

entries but not necessarily obtaining interpretable features. Optimization-based

approaches became popular in that avenue, i.e., taking a cost function of the form

d(Y,CX) and minimizing it with respect to C andX using optimization algorithms

such as projected gradient descent for NMF [165] or alternating least-squares for

real MF [166]. There has been a seemingly inexhaustible research activity in this

area and a full literature review is out of scope for this thesis.

Similar to the optimization-based ideas, probabilistic approaches to MF have

received considerable attention. Compared to the optimization-based methods

which try to obtain point estimates of the factors, probabilistic methods aim at

capturing the posterior distribution over the factors, hence quantifying the un-

certainty. The authors of [167] introduced a Gaussian model for real-valued MF

to estimate movie ratings where factors were assumed to have independent and

identically distributed (iid) entries. Similar ideas have been proposed for nonneg-

ative factorizations [168]. Also a probabilistic interpretation of batch NMF was

introduced in [169] deriving multiplicative update rules as a variational inference

scheme.

All these methods were batch techniques, meaning that they require the whole

dataset to update each factor at each iteration. With the rise of big datasets,

these ideas became infeasible to apply. On the optimization side, the research

focus increasingly shifted to stochastic optimization algorithms which enabled im-

plementations of MF for large datasets. In one of the early works, NMF has been

extended to the incremental setting [170]. A canonical stochastic gradient descent

(SGD) based approach for general MF can be found in [171] which can be applied

entry-wise or column-wise to solve the problem in (5.1). Similarly, one can apply

the same idea to any type of differentiable cost, such as regularized versions of the

cost function proposed in [171], and obtain a MF method. The idea is extended

in several ways, see e.g. [172, 173]. One of the fundamental limitations of these

algorithms are their step-size tuning problems, a problem which has received much

attention recently, see e.g. [65, 68, 174]. Every different dataset requires a differ-

ent step-size and decay rate of the step-size, usually set after conducting empirical

tests.

Compared to stochastic optimization based works, online versions of probabilis-

tic MF have received less attention. The work in [175] followed the probabilistic

102

Chapter 5. Dictionary filtering

interpretation of NMF given in [169] to propose a sequential Monte Carlo based

NMF algorithm. However, this algorithm was only applied to low dimensional

problems and its applicability to realistic settings remains unclear. In [176], the

same batch NMF model of [169] was implemented with stochastic variational in-

ference techniques in the online setting.

On the other hand, sequential inference for matrix-variate linear dynamic

models independently received some interest for different applications, see, e.g.

[177, 178]. A different perspective, closer to our approach in this chapter, was

introduced in [179], where matrix-variate update rules for Hessian matrices were

derived as analytic inference rules in probabilistic models. As a result, the authors

of [179] obtained quasi-Newton algorithms from a probabilistic perspective. How-

ever, [179] focuses on symmetric matrices whereas in this thesis, our focus is more

general, non-square matrices.

In this chapter, we highlight a connection between online matrix factorization

and sequential probabilistic inference. In doing so, we propose a matrix-variate

dynamic linear probabilistic model in which sequential approximate inference leads

to an online matrix factorization algorithm. More specifically, we derive a matrix-

variate recursive filtering method that can be readily interpreted as an online MF

technique. This probabilistic characterization brings several advantages. First,

since the proposed method is based on an explicit probabilistic model, it enables

the user to naturally incorporate further prior knowledge on factors (by extending

the model we put forward) or dealing with non-stationary data in a principled

way by putting dynamics on the dictionary matrix (see Section 5.3.3). Therefore,

the proposed framework makes it easier to develop application-specific models

and inference procedures. Secondly, from a practical perspective, compared to

other online methods, the inference method we propose removes the need of step-

size tuning and involves only easy-to-tune parameters. Specifically, the proposed

algorithm does not require any step-size parameter. Its role is played by an r ×
r covariance matrix that is updated automatically at each iteration. We note

that this is different (and computationally much cheaper) than a second-order

Hessian-based approach [51], where the Hessian matrices there would need to be

of the same dimension as the vectorized dictionary matrix, which is impractical

in this case. Finally, as opposed to the simulation-based probabilistic MFs such

as [175, 180], which only obtain samples from the posterior of the dictionary,

the proposed method obtains an analytical form of the posterior distribution in

terms of a Gaussian, which enables the user to quantify the uncertainty over the

dictionary or diagnose convergence.

The rest of the chapter is organised as follows. We introduce the probabilistic

103

Chapter 5. Dictionary filtering

model for the factorization problem in Section 5.2. Two online algorithms are

derived in Section 5.3. In Section 5.4, we compare our algorithm with some popu-

lar optimization based methods. Some illustrative experimental results on image

restoration and video modeling are presented in Section 5.5.

5.2 Probabilistic model

5.2.1 Model

Recall that Y ∈ Rm×n denotes the data matrix, C ∈ Rm×r is the dictionary

matrix, with approximation rank r, and X ∈ Rr×n is the coefficient matrix. The

i-th column of the data matrix is denoted Y (:, i) and we use {1, . . . , n} to denote

sets of consecutive indices.

Let us consider a random mechanism for the collection of data vectors. In

particular, assume that, at time k, we sample an index ik from the uniform proba-

bility distribution over the index set {1, . . . , n}, and use it to select the data vector

yk = Y (:, ik) (specifically note that yk denotes the observation at time k, not the

k-th column of Y). Similarly, the ik-th column of X is denoted xk = X(:, ik). We

use c = vec(C) to denote the vector form of the dictionary, while ck = vec(Ck)

denotes its estimate at time k. We assume a probabilistic model linking these

factors, namely,

p(c) = N (c; c0, V0 ⊗ Im), (5.2)

p(yk|c, xk) = N (yk;Cxk, λ⊗ Im), (5.3)

where p(c) is a prior pdf on the dictionary vector c, V0 is an r×r a priori covariance

matrix (identical for each column of C), c0 is an mr × 1 mean vector, λ > 0 is

a scale parameter and p(yk|c, xk) is the conditional pdf (assumed Gaussian) of

the data vector yk given the dictionary C and the coefficient vector xk. The

covariance matrix V0 encodes the prior knowledge of correlations between columns

of C and λ models how informative the observations are (similar to a regularisation

parameter in optimization based approaches). In this model, xk is a static unknown

parameter, while c and yk are random vectors.

Intuitively, model (5.2)–(5.3) implies that yk ≈ Cxk (and, hence, Y ≈ CX),

where λ controls the magnitude of the approximation error. Notice that, using the

identity (1.3) for Cxk, we can rewrite (5.3) as

p(yk|c, xk) = N (yk; (x>k ⊗ Im)c, λ⊗ Im) (5.4)

and we express the model in terms of the vector form of the dictionary. Treating

c as a latent vector with observation matrix x>k ⊗ Im enables us to use standard

104

Chapter 5. Dictionary filtering

linear filtering recursions in vector form. We will show, however, that working

with the matrix form of the dictionary is also possible and leads to a significant

reduction in computational complexity.

5.3 Algorithm

We assume the coefficient vectors xk are deterministic parameters for which we

aim at computing point-estimates, whereas the dictionary C is a latent random

matrix and we aim at computing its posterior probability distribution (given the

data in Y). The two problems are addressed in this section.

5.3.1 Parameter estimation

Let us assume that Ck−1 is an estimate of the dictionary matrix computed at time

k − 1 (by a procedure to be specified later). We propose to compute a maximum

likelihood estimator of the coefficient vector xk, given the dictionary Ck−1 and the

data yk, namely,

x∗k = argmax
xk

p(yk|ck−1, xk), (5.5)

where ck−1 = vec(Ck−1). Since the density in (5.5) is Gaussian, with mean Ck−1xk,

the estimator can be easily computed and yields

x∗k = (C>k−1Ck−1)−1C>k−1yk. (5.6)

We use this update rule for the coefficients in the experiments of Section 5.5.

5.3.2 Inference of the dictionary matrix

Let us assume that xk = x∗k is fixed via the rule in Eq. (5.6) and drop it from the

notation for simplicity. Model (5.2)–(5.4) can then be rewritten as

p(c) = N (c; c0, P0), (5.7)

p(yk|c) = N (yk;Hkc,R), (5.8)

where xk = x∗k is implicit, P0 = V0 ⊗ Im and R = λ⊗ Im. The observation matrix

for this model takes the form Hk = x∗,>k ⊗ Im and hence it is assumed known.

Given (5.7)–(5.8), the posterior distribution of c given the data sequence y1:k is

Gaussian and can be computed exactly [5]. To be specific, the posterior pdf is

Gaussian, p(c|y1:k) = N (c; ck, Pk), with mean ck and covariance matrix Pk, and

105

Chapter 5. Dictionary filtering

can be computed exactly using a Kalman filter, which can be described by the

recursive equations [5]

ck = ck−1 + Pk−1H
>
k (HkPk−1H

>
k +Rk)

−1(yk −Hkck−1), (5.9)

Pk = Pk−1 − Pk−1H
>
k (HkPk−1H

>
k +Rk)

−1HkPk−1. (5.10)

The algorithm is initialised with c0 and P0 in (5.7).

Implementing the update rules (5.9)–(5.10) is computationally inefficient, how-

ever, when c ∈ Rmr is large dimensional. They require the storage of a potentially

very large matrices (Hk is m× rm and Pk is rm× rm) which can easily make the

algorithm impractical. To circumvent this limitation, we propose an equivalent,

yet computationally more efficient, pair of equations for the update of the dictio-

nary matrix Ck = vec−1
m×r(ck) and the covariance matrix Vk (with dimensions r×r

and initialised with the matrix V0 in (5.2)). The following two propositions state

the form of the update rules.

Proposition 5.1. The posterior covariance matrix Pk in (5.10) can be written as

Pk = Vk ⊗ Im, for k ≥ 0, where

Vk =

(
Vk−1 −

Vk−1xkx
>
k Vk−1

x>k Vk−1xk + λ

)
, for k ≥ 1. (5.11)

and V0 is given by the prior pdf in (5.2).

Proof. See Appendix A.4. �

Proposition 5.2. The posterior mean ck in (5.9) can be rewritten, in matrix

form, as

Ck = Ck−1 +
(yk − Ck−1xk)x

>
k V
>
k−1

x>k Vk−1xk + λ
, (5.12)

where Ck = vec−1
m×r(ck) is the posterior expectation of the dictionary matrix C and

the sequence {Vk; k ≥ 0} is computed as in Proposition 5.1.

Proof. See Appendix A.4. �

The complete procedure is outlined in Algorithm 5.1. We hereafter refer to

this method as the dictionary filter (DF). Note that this procedure has iteration

complexity O(mr2 + r3). In high-dimensional scenarios where m � r, we have

O(mr2).

106

Chapter 5. Dictionary filtering

Algorithm 5.1 Dictionary Filter

1: Select C0 randomly, choose an initial covariance matrix V0 > 0, and set k = 1.

2: repeat

3: Pick yk = Y (:, ik) where ik is drawn from the uniform distribution over the

index set {1, . . . , n}.
4: Update the coefficient vector, the dictionary matrix and the covariance

matrix as

xk = (C>k−1Ck−1)−1C>k−1yk

Ck = Ck−1 +
(yk − Ck−1xk)x

>
k Vk−1

λ+ x>k Vk−1xk

Vk = Vk−1 −
Vk−1xkx

>
k Vk−1

x>k Vk−1xk + λ
,

respectively.

5: k ← k + 1

6: until convergence

5.3.3 Dynamic dictionary filter

When the dataset is a (possibly nonstationary) time series, such as in video mod-

eling problems, the prior (5.2) on the matrix C can be misleading since it assumes

that a single dictionary for all data points can be sufficient. In these cases, one

can allow C to be time-varying. Hence, we obtain a state-space model

p(c̃0) = N (c̃0; c0, V0 ⊗ Im), (5.13)

p(c̃k|c̃k−1) = N (c̃k; c̃k−1, Q⊗ Im), (5.14)

p(yk|c̃k, xk) = N (yk; C̃kxk, λ⊗ Im), (5.15)

where Q is a r × r covariance matrix. A simple modification of Algorithm 5.1 is

sufficient to conduct inference in this model. Given the mean-covariance estimate

(Ck−1, Vk−1) at time k−1, one needs to compute the predictive covariance matrix,

Ṽk = Vk−1 +Q,

and use Ṽk instead of Vk−1 in all substeps within the step 4 of the Algorithm 5.1.

We refer to this modified version as the dynamic dictionary filter. Intuitively, the

dynamic version allows the algorithm to adapt the dictionary when the contents

evolve quickly over time, such as in a sequence of video frames. We demonstrate

how this property of the dynamic dictionary filter is useful in highly nonstationary

problems.

107

Chapter 5. Dictionary filtering

5.4 Links with stochastic optimization

Our algorithm relates to the MF algorithms that use stochastic optimization based

approaches. In the literature, MF problems are often formulated as [171]

min
C,X
‖Y − CX‖2F :=

n∑
k=1

‖yk − Cxk‖22.

Let us assume that xk is set as in Algorithm 5.1 given each yk. Then, the SGD

implementation for estimating C becomes the update rule

Ck = Ck−1 + γk(yk − Ck−1xk)x
>
k , (5.16)

where the positive step-size γk must be tuned to achieve the best convergence

rate. In particular, it must satisfy,
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k < ∞ in order to

guarantee convergence [60]. In practice, it is usually chosen as γk = α/kβ, where

α > 0 and 0.5 < β < 1. The SGDMF method has iteration complexity O(mr+r3)

which reduces to O(mr) when m� r.

It can be seen that the update rule (5.16) is related to the filtering update rule

(5.12). In our algorithm, in contrast to SGD, we do not have a step-size parameter

γk, instead we have the gain matrix Vk−1/(λ + x>k Vk−1xk)) which is updated at

each iteration with the posterior column-covariance Vk. Note that, our approach

is not identical to the second-order SGD or the full filtering recursions, which are

equivalent under some assumptions [181]. Those approaches would be infeasible

for our problem because the full covariance or Hessian matrices are too big to store

and update compared to Vk, which captures only the posterior column covariance.

It is also possible to relate our algorithm to another class of stochastic optimiza-

tion methods, called incremental proximal methods [84]. A proximal approach to

the same cost function would give the update rule (see [182] for an explicit deriva-

tion)

Ck = Ck−1 +
(yk − Ck−1xk)x

>
k

λ+ x>k xk

which is a special case of our algorithm (specifically if one sets Vk−1 = Ir at each

iteration). This would be obviously unjustified from the probabilistic perspective.

We refer to Chapter 4 for the relationship between filters and proximal algorithms,

see also [91].

108

Chapter 5. Dictionary filtering

Original Images

(a)

Corrupted Images

(b)

Dictionary Filter

(c)

SGDMF

(d)

NMF

(e)

Figure 5.1: Comparison of the proposed algorithm (DF) with stochastic gradient descent

matrix factorization (SGDMF), and nonnegative matrix factorization (NMF). The NMF

method was iterated 1,000 times. (a) Four original images out of the 400-member dataset.

(b) Corrupted images. (c) Output of the DF algorithm. (d) Output of the SGDMF algo-

rithm. (e) Output of the NMF algorithm. The RMSE values attained by the algorithms

are 10.26 (DF), 10.13 (NMF) and 10.79 (SGDMF), starting from an initial RMSE value

70.54.

Original Images

(a)

Corrupted Images

(b)

Dictionary Filter

(c)

SGDMF

(d)

NMF

(e)

Figure 5.2: Results with non-uniform corruptions. The initial RMSE is given by 58.6536.

The algorithms attain RMSEs as (i) Dictionary Filter: 6.8684, (ii) SGDMF: 7.9709, (iii)

NMF RMSE: 6.9336. It can be seen that in this scenario the DF outperforms other

methods in terms of the RMSE performance.

5.5 Experiments

5.5.1 Image restoration

We tackle an image restoration problem on the Olivetti dataset [169]. This dataset

consists of 400 face images of size 64 × 64. We vectorize each face into a column

vector with dimension m = 4096. Since there are 400 faces, n = 400. We chose

an approximation rank r = 40 and λ = 2. The factors C0 and X0 are initialized

randomly, without imposing any structure. We choose V0 = Im for this particular

dataset (other choices do not seem to lead to better performance). It is up to

the user to encode any prior knowledge about the dictionary using the covariance

matrix V0.

We deal with missing data in the images by putting masks into the model and

extending the update rules for the missing data case. First, the inference step can

be extended easily. We define a mask M for the whole dataset Y and denote the

mask associated with yk as mk, more precisely mk = M(:, ik) as yk = Y (:, ik). Note

that M is known, i.e., we know the positions of missing entries. In Algorithm 5.1,

109

Chapter 5. Dictionary filtering

for the update of Ck (inference step), we simply replace the term (yk − Ck−1xk)

by mk � (yk − Ck−1xk) where � denotes the Hadamard (elementwise) product.

This corresponds to assuming having observations of the form mk � yk with mean

mk�(Cxk). Then, in accordance, we also have to compute the maximum likelihood

parameter estimator x∗k with missing data. This corresponds to solving the least

squares problem

min
xk
‖mk � (yk − Ck−1xk)‖22 (5.17)

For this purpose we construct a special mask, Mk = [mk, . . . ,mk]︸ ︷︷ ︸
r times

. The rationale

behind this mask can be made explicit by observing that

mk � (yk − Ck−1xk) = mk � yk − (Mk � Ck−1)xk.

Hence solving (5.17) is equivalent to solving the following least squares problem

min
xk
‖mk � yk − (Mk � Ck−1)xk‖22

which, in turn, reduces to the solution of a problem of the form b ≈ Ax with

b = mk � yk and A = Mk � Ck−1. Hence the solution can be found by applying

the update rule (pseudoinverse operation),

x∗k = ((Mk � Ck−1)>(Mk � Ck−1))−1(Mk � Ck−1)>(mk � yk),

in Algorithm 5.1 for xk.

We compare the performance of the DF, SGDMF [171] and NMF [163] algo-

rithms. NMF can be considered as a standard benchmark for image restoration,

yet we recall that it is a batch (non-recursive or offline) method. SGD is an online

procedure, the same as DF. The implementation of SGDMF is similar to ours –

the Ck SGD update followed by the same update rule (5.6).

The results of applying the three techniques can be seen in Fig. 5.1 and Fig. 5.2,

along with quantitative results (root-mean squared error (RMSE) values) in the

captions. In the former, in order to construct images with missing data, we ran-

domly removed a patch consisting of %25 of all columns (for all 400 faces)1. In

the latter, we randomly remove patches of the images in order to construct im-

ages with missing data. The SGDMF and DF algorithms were passed 10 times

over the dataset recursively (i.e., with k = 1, . . . , 10n). The sample images show

that the proposed algorithm works well perceptually, and achieves an RMSE very

1The relative performance of the three methods remains similar when we change the percentage

of missing data.

110

Chapter 5. Dictionary filtering

Figure 5.3: Values of diagonal and upper triangular entries of Vk−1/(λ + x>k Vk−1xk). As

our update rule can be decomposed as the “step-size” and the gradient, we can see these

values as step-sizes. From this perspective, it can be seen that our algorithm automatically

tunes the step-sizes.

close to the NMF algorithm (and better than SGDMF) with a significantly lesser

computational cost.

The behavior of the entries of the matrix Vk−1/(λ + x>k Vk−1xk) can be seen

from Fig. 5.3. As we initialized V0 = Ir, diagonal values can be seen in the upper

cluster in the plot which are decreasing from one to zero. Non-diagonal entries are

initialized as zero and took nonzero values before again converging to zero. The

figure hints that, as the entries go to zero, the algorithm converges empirically.

This provides a natural and automated step-size tuning procedure in the form of

posterior covariance matrix, which frees the user from the notorious task of step-

size tuning. Note that second-order optimization-based approaches, or the full

filtering approach, would require to store an mr×mr matrix where mr = 163, 840

in this case, which practically renders these approaches infeasible since a matrix

of dimension mr × mr is not possible to fit into the memory. In contrast, our

algorithm only requires to store r× r matrix where r = 40, which is a lightweight

computation, hence it reduces the computational burden significantly.

5.5.2 Video modeling

In this experiment, we test our algorithm on a video modeling task. The aim is

to track a sequence of low dimensional subspaces of the video frames and recon-

struct them successfully. The video is taken from Youtube 8M dataset [183] and

it has T = 450 frames with size 360× 640 after preprocessing. We vectorized the

111

Chapter 5. Dictionary filtering

Dynamic DF SGDMF INMF
Algorithms

10-4

10-2

100

N
M

SE
 x

 R
un

-ti
m

e

Figure 5.4: The boxplot of NMSEs×run-time for 450 frames of the video for each frame. It

can be seen that dynamic DF attains lower error levels compared to SGDMF and INMF.

The dynamic DF takes 26.7191 seconds to run while SGDMF and INMF take 23.8624 and

20.7956 seconds respectively. While our algorithm is slightly slower, it can be seen that it

is the most favorable when combined with the NMSEs.

video and obtained a dataset consisting of a 230400× 450 matrix. The task is to

sequentially process the video frames and obtain a sequence of dictionaries and

coefficients that result in low reconstruction errors for all frames of the video. In

this experiment, we have used the dynamic dictionary filter (dynamic DF) algo-

rithm as explained in Sec. 5.3.3 with Q = qIr where q = 0.05 and λ = 2. For

comparison, we have implemented SGDMF [171] and the incremental nonnegative

matrix factorization (INMF) [170]. We have chosen the rank r = 10 for all algo-

rithms. For SGDMF, we have chosen a constant step-size 0.1 and for INMF, we

have chosen α = 0.9. The results can be seen from Fig. 5.4 in terms of running

times and normalized mean squared errors (NMSE). From the results, it can be

concluded that dynamic DF arises as a favorable dictionary learning scheme.

112

6
Conclusions and future work

6.1 Conclusions

The contribution of this thesis is twofold. First, we have proposed novel methods

for stochastic filtering of high-dimensional and/or misspecified state-space models.

Second, we have developed probabilistic methods for stochastic optimization in

order to tackle inherent difficulties in mainstream stochastic optimization methods.

In particular, in Chapter 3, we have proposed a simple modification of the

particle filter which, according to our computer experiments, can improve the

performance of the algorithm (e.g., when tracking high-dimensional systems) or

enhance its robustness to model mismatches in the state equation of a SSM. The

modification of the standard particle filtering scheme consists of an additional

step, which we term nudging, in which a subset of particles are pushed towards

regions of the state space with a higher likelihood. In this way, the state space

can be explored more efficiently while keeping the computational effort at nearly

the same level as in a standard particle filter. We refer to the new algorithm as

the “nudged particle filter” (NuPF). While, for clarity and simplicity, we have

kept the discussion and the numerical comparisons restricted to the modification

(nudging) of the conventional BPF, the new step can be naturally incorporated to

most known particle filtering methods.

We have presented a basic analysis of the NuPF which indicates that the al-

113

Chapter 6. Conclusions and future work

gorithm converges (in Lp) with the same error rate as the standard particle filter.

In addition, we have also shown simple analytical arguments that illustrates why

the NuPF tends to outperform the BPF in computer simulations when there is

some mismatch in the state equation of the SSM. To be specific, we have shown

that, given a fixed sequence of observations, the NuPF amounts to a standard par-

ticle for a modified SSM with a higher model evidence (i.e., a higher likelihood)

compared to the original SSM.

The analytical results have been corroborated by a number of computer exper-

iments, both with synthetic and real data. In the latter case, we have tackled the

fitting of a stochastic volatility SSM using Bayesian methods for model inference

and a time-series dataset consisting of euro to US dollar exchange rates over a

period of two years. We have shown how different figures of merit (model evi-

dence, acceptance probabilities or autocorrelation functions) improve when using

the NuPF, instead of a standard BPF, in order to implement a nested particle

filter [141] and a particle Metropolis-Hastings [140] algorithm.

Although we have shown through numerical examples how the NuPF improves

the performance of conventional particle filters (e.g., with misspecified or high-

dimensional models), we do not claim that it can alone solve the degeneracy prob-

lem [131, 35]. While pushing particles into high likelihood regions makes it more

probable that nudged particles have even weights, degeneracy should still be ex-

pected for certain models.

Since the nudging step is fairly general, it can be used with a wide range of

differentiable or nondifferentiable likelihoods. Besides, the new operation does not

require any modification of the well-defined steps of the particle filter so it can be

plugged into a variety of common particle filtering methods. Therefore, it can be

adopted by a practitioner with hardly any additional effort. In particular, gradient

nudging steps (for differentiable log-likelihoods) can be implemented using auto-

matic differentiation tools, currently available in many software packages, hence

relieving the user from explicitly calculating the gradient of the likelihood.

Similar to the resampling step, which is routinely employed for numerical sta-

bility, we believe the nudging step can be systematically used for improving the

performance and robustness of particle filters.

Next, in Chapter 4, we have developed a probabilistic perspective for proximal

and incremental proximal methods. We have shown that a probabilistic setting

can provide a systematic way to derive algorithms when this is not possible from

the classical perspective. In particular, within an online setup, we have argued

that the use of filtering algorithms corresponds to employing an IPM-type scheme

for optimization. However, filtering algorithms have natural dampening mecha-

114

Chapter 6. Conclusions and future work

nisms for parameter updates, as they refine their uncertainty over the solution

iteratively. This line of work can be pushed forward in a number of different di-

rections. First, different Kalman filters can be used in a similar way to get more

advanced optimization schemes for more complicated problems. Among the candi-

dates, the unscented Kalman filter (UKF) [12–14] and the Ensemble Kalman filter

(EnKF) [15–19] can be useful to tackle high dimensional, possibly time-varying,

optimization problems. Second, this approach can be extended beyond quadratic

functions by exploiting the relationship between exponential families and Breg-

man divergences [184]. When the likelihood belongs to the exponential family,

the cost function can be expressed in general as a Bregman divergence. In that

case, since the Gaussianity assumption is violated, one needs to resort to more

complicated numerical algorithms, such as particle filters [25] or other advanced

filtering methods.

As our second main contribution in Chapter 4, we have proposed a parallel

sequential Monte Carlo optimizer to minimize challenging cost functions, e.g.,

with multiple global minima or with wide flat regions. The algorithm uses jittering

kernels to propagate samples [152] and particle kernel density estimators to find

the minima [160], within a stochastic optimization setup. We have shown that, on

a single (local) node, the algorithm is provably convergent. On the global level, we

argue that the parallel setting where each sampler uses a different configuration

of the same dataset can be useful to improve the practical convergence of the

algorithms. The numerical performance of our algorithm in difficult scenarios

shows that this is a promising direction.

Finally in Chapter 5, by exploiting the relationship between optimization and

inference, we have recast the matrix factorization problem Y ≈ CX as a linear fil-

tering problem and proposed efficient matrix-variate update rules for the posterior

mean and covariance of the dictionary matrix C. As a result, we have obtained

an online algorithm for matrix factorization that is flexible and computationally

efficient. In particular, we have noted that the proposed method has O(mr2) com-

plexity which is independent of the number of data points. We have empirically

demonstrated that the overhead of the DF compared to the SGDMF, which has

O(mr) complexity, is small. We have also shown that the algorithm is competi-

tive with the state-of-the-art methods in an image restoration example as well as

on a video processing example which demonstrates that the proposed algorithm

can successfully learn nonstationary and dynamic signals. Unlike the stochastic

gradient based approaches, our algorithm does not need any parameter tuning.

115

Chapter 6. Conclusions and future work

6.2 Future work

The stochastic filtering and optimization methods that we have devised within this

thesis can be extended in various ways.

In particular, the general nudging scheme we have proposed in Chapter 3 can

be used improve the performance of other SMC methods, such as auxiliary particle

filters [148]. Moreover, it can also be used within Kalman-type filters, such as in

an EnKF [17], or even in a regular Kalman filter (when the model is misspecified)

as we have demonstrated in Chapter 3. The method can also be used to improve

parameter estimation methods which rely on SMC-type algorithms, as we have

shown in Chapter 3 for the pMH and the NPF schemes. However, the method

can be plugged in to any other generic parameter estimation method which uses

SMC as well. From a practical perspective, the NuPF can be improved and be

made parameter-free. Particularly, when the gradient step is used as a nudging

step, one can incorporate line-search schemes in order to obtain a parameter-free

nudging scheme. On the theoretical side, the analysis of the NuPF in misspecified

case remains an open problem that we plan to tackle. In particular, we have

proved that the NuPF leads to state estimation with higher marginal likelihoods

compared to the true or misspecified model. However, quantifying this advantage

compared to the classical case can give important insight to develop novel methods

for tackling misspecified models in the real world.

The methods we have proposed in Chapter 4 can be extended in various ways.

The probabilistic interpretation we have developed for the stochastic optimization

methods is general. In other words, one can use the whole Bayesian machinery to

implement the general Bayes recursion (4.2). Moreover, one can also extend the

interpretation to tackle regularized cost functions. To be specific, the algorithms

we have provided tackle the minimization of the cost functions of form f :=
∑

i fi

where fi are component functions. One can also extend this probabilistic approach

to minimize cost functions of the form f+g where g is a regularizer. In particular,

the probabilistic interpretation of the IPM algorithm can be extended to tackle

this case. This approach will lead to the probabilistic extension of the incremental

proximal gradient methods. In this direction, we have done some initial work, see,

e.g., [185].

In order to test the PSMCO method, we have focused on challenging but low

dimensional cost functions. We leave the potential applications of the PSMCO

scheme to high-dimensional optimization problems as a future work. Also the de-

sign of an interacting extension of our method similar to particle islands [186] can

be potentially useful in more challenging settings. Note that as we have provided

116

Chapter 6. Conclusions and future work

a general recursion which leads to a probabilistic interpretation of the stochas-

tic optimization problem, one can use different approximate Bayesian techniques

other than SMC-type methods to solve the stochastic optimization problem. In

particular, variational Bayesian inference [125], optimal transport [187, 188], or

Stein variational gradient descent (SVGD) [189] based methods can be utilized in

order to obtain a probabilistic stochastic optimizer.

Finally, the dictionary filter we have presented in Chapter 5 can also be de-

veloped further in different ways. In particular, extending the model we have

proposed for the MF problems can lead to online and efficient algorithms to fac-

torize structured data, such as text, video, audio, or a spatio-temporal time series.

We believe that extensions and explorations of these dynamic settings could lead

to useful algorithms to deal with high-dimensional time-series data.

117

Chapter 6. Conclusions and future work

118

A
Proofs

A.1 Proofs of Chapter 2

A.1.1 Lemmata for Chapter 2

In order to prove theorems in this section, we need a preliminary lemma, which

can be found, e.g., in [31].

Lemma A.1. Let α, β, ᾱ, β̄ ∈ P(X) be probability measures and f, h ∈ B(X) be two

real bounded functions on X such that (h, ᾱ) > 0 and (h, β̄) > 0. If the identities,

(f, α) =
(fh, ᾱ)

(h, ᾱ)
and (f, β) =

(fh, β̄)

(h, β̄)

hold, then we have,

|(f, α)− (f, β)| ≤ 1

(h, ᾱ)

∣∣(fh, ᾱ)− (fh, β̄)
∣∣+
‖f‖∞
(h, ᾱ)

∣∣(h, ᾱ)− (h, β̄)
∣∣ . (A.1)

Proof. We write,

|(f, α)− (f, β)| =
∣∣∣∣(fh, ᾱ)

(h, ᾱ)
− (fh, β̄)

(h, β̄)

∣∣∣∣
≤ 1

(h, ᾱ)

∣∣(fh, ᾱ)− (fh, β̄)
∣∣+ |(fh, β̄)|

∣∣∣∣ 1

(f, ᾱ)
− 1

(f, β̄)

∣∣∣∣
≤ 1

(h, ᾱ)

∣∣(fh, ᾱ)− (fh, β̄)
∣∣+ ‖f‖∞����|(h, β̄)|

∣∣∣∣(h, ᾱ)− (h, β̄)

(h, ᾱ)���(h, β̄)

∣∣∣∣ ,
119

APPENDIX A. Proofs

which leads to (A.1). �

A.1.2 Proofs of Chapter 2

Proof of Theorem 2.1

We first provide the proof for p = 2 for simplicity. We rewrite the L2 norm using

its definition as,

∥∥(ϕ, π)− (ϕ, πN)
∥∥

2
=

∥∥∥∥∥(ϕ, π)− 1

N

N∑
k=1

ϕ
(
x(k)

)∥∥∥∥∥
2

= E

∣∣∣∣∣(ϕ, π)− 1

N

N∑
k=1

ϕ
(
x(k)

)∣∣∣∣∣
2
1/2

.

Writing explicitly, we have,

E

∣∣∣∣∣(ϕ, π)− 1

N

N∑
k=1

ϕ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

(
ϕ(x(i))− (ϕ, π)

)∣∣∣∣∣
2
 .

We define S(i) = ϕ(x(i))−(ϕ, π) and note that E[S(i)] = 0 and S(i) are independent

random variables. We therefore have,

E

∣∣∣∣∣(ϕ, π)− 1

N

N∑
k=1

ϕ
(
x(k)

)∣∣∣∣∣
2
 =

1

N2
E

∣∣∣∣∣
N∑
i=1

S(i)

∣∣∣∣∣
2
 ,

=
1

N2

N∑
i=1

E
[∣∣∣S(i)

∣∣∣2] ,
≤ N4‖ϕ‖2∞

N2
,

since
∣∣S(i)

∣∣ =
∣∣ϕ(x(i))− (ϕ, π)

∣∣ ≤ 2‖ϕ‖∞. Therefore, we have,

∥∥(ϕ, π)− (ϕ, πN)
∥∥

2
≤ 2‖ϕ‖∞√

N
,

where c2 = 2 for the simplest case.

We now proceed to general integer p ≥ 1. Assume we have x(i), i.i.d. from π

as before. We first write,

‖(ϕ, πN)− (ϕ, π)‖p = E

[∣∣∣∣∣ 1

N

N∑
i=1

(
ϕ(x(i))− (ϕ, π)

)∣∣∣∣∣
p]1/p

.

We define S(i) = ϕ(x(i)) − (ϕ, π) and note that S(i), i = 1, . . . , N are zero-mean

and independent random variables. Using the Marcinkiewicz-Zygmund inequality

120

APPENDIX A. Proofs

[129], we arrive at,

E

[∣∣∣∣∣ 1

N

N∑
i=1

S(i)

∣∣∣∣∣
p]
≤ B0,p

Np
E

(N∑
i=1

∣∣∣S(i)
∣∣∣2)

p
2


≤ B0,p

Np

(
N4‖ϕ‖2∞

) p
2 ,

where Bp is a constant independent of N and the last inequality follows from∣∣S(i)
∣∣ =

∣∣ϕ(x(i))− (ϕ, π)
∣∣ ≤ 2‖ϕ‖∞. Therefore, we have proved that

‖(ϕ, πN)− (ϕ, π)‖p ≤
cp‖ϕ‖∞√

N
,

where cp = 2B
1/p
p is a constant independent of N . �

Proof of Corollary 2.1

Take p ≥ 4. We recall that, by Theorem 2.1, for any p ≥ 1, we have,

‖(ϕ, πN)− (ϕ, π)‖p ≤
cp‖ϕ‖∞√

N
.

We start by defining a nonnegative random variable Up,ε,

Up,ε = lim
k→∞

k∑
N=1

N
p
2
−1−ε ∣∣(ϕ, π)− (ϕ, πN

∣∣p .
Using Fatou’s lemma and Theorem 2.1 together, we obtain,

E[Up,ε] ≤
∞∑
N=1

N
p
2
−1−εE

[∣∣(ϕ, π)− (ϕ, πN
∣∣p]

≤
∞∑
N=1

N
p
2
−1−ε c

p‖ϕ‖p∞
N

p
2

= cp‖ϕ‖p∞
∞∑
N=1

N−1−ε <∞.

Since a random variable with finite expectation implies that the r.v. is almost

surely finite, we conclude that Up,ε is a.s. finite. Next, we write,

N
p
2
−1−ε ∣∣(ϕ, π)− (ϕ, πN)

∣∣p ≤ Up,ε,
which yields, ∣∣(ϕ, π)− (ϕ, πN

∣∣ ≤ Uδ

N
1
2
−δ
,

where δ = 1+ε
p and Uδ = (Up,ε)

1
p . Since p ≥ 4 and 0 < ε < 1, we conclude

0 < δ < 1
2 . The almost sure convergence follows when we take N →∞. �

121

APPENDIX A. Proofs

Proof of Theorem 2.2

We recall the weighted measure,

π̃N (dx) =

N∑
i=1

w(i)δx(i)(dx) where w(i) =
W (i)∑N
i=1W

(i)
.

and the following relations,

(ϕ, π) =
(ϕW, q)

(W, q)
, and (ϕ, π̃N) =

(ϕW, qN)

(W, qN)
, (A.2)

for the true integral (ϕ, π) and its SNIS estimate (ϕ, π̃N). Using Lemma A.1

together with (A.2), we obtain,

∣∣(ϕ, π)− (ϕ, π̃N)
∣∣ ≤ 1

(W, q)

(
‖ϕ‖∞

∣∣(W, q)− (W, qN)
∣∣+
∣∣(ϕW, q)− (ϕW, qN)

∣∣) .
(A.3)

where (W, q) > 0 by assumption. Using Minskowski’s inequality, we can obtain

from (A.3) that,

∥∥(ϕ, π)− (ϕ, π̃N)
∥∥
p
≤ 1

(W, q)

(
‖ϕ‖∞

∥∥(W, q)− (W, qN)
∥∥
p

+
∥∥(ϕW, q)− (ϕW, qN)

∥∥
p

)
.

(A.4)

Now Theorem 2.1 and (A.4) together yield,

∥∥(ϕ, π)− (ϕ, π̃N)
∥∥
p
≤ 1

(W, q)

(
‖ϕ‖∞

Bp‖W‖∞√
N

+
Bp‖Wϕ‖∞√

N

)
,

Noting that we have ‖ϕW‖∞ ≤ ‖ϕ‖∞‖W‖∞, we obtain,

∥∥(ϕ, π)− (ϕ, π̃N)
∥∥
p
≤ cp‖ϕ‖∞√

N
,

where,

cp =
2‖W‖∞Bp

(W, q)
= 2‖w‖∞Bp,

is a constant independent of N .

Proof of Theorem 2.3

We follow the same kind of induction argument as in, e.g., [30] and [146].

122

APPENDIX A. Proofs

For the base case, i.e. t = 0, we draw x
(i)
0 , i = 1, ..., N , i.i.d. from π0 and

obtain,

‖(ϕ, πN0)− (ϕ, π0)‖p = E

[∣∣∣∣∣ 1

N

N∑
i=1

(
ϕ(x

(i)
0)− (ϕ, π0)

)∣∣∣∣∣
p]1/p

.

We define S
(i)
0 = ϕ(x

(i)
0) − (ϕ, π0) and note that S

(i)
0 , i = 1, . . . , N are zero-mean

and independent random variables. Using the Marcinkiewicz-Zygmund inequality

[129], we arrive at,

E

[∣∣∣∣∣ 1

N

N∑
i=1

S
(i)
0

∣∣∣∣∣
p]
≤ B0,p

Np
E

(N∑
i=1

∣∣∣S(i)
0

∣∣∣2)
p
2


≤ B0,p

Np

(
N4‖ϕ‖2∞

) p
2 ,

where B0,p is a constant independent of N and the last inequality follows from∣∣∣S(i)
0

∣∣∣ =
∣∣∣ϕ(x

(i)
0)− (ϕ, π0)

∣∣∣ ≤ 2‖ϕ‖∞. Therefore, we have proved that Eq. (2.42)

holds for the base case,

‖(ϕ, πN0)− (ϕ, π0)‖p ≤
c0,p‖ϕ‖∞√

N
,

where c0,p = 2B
1/p
0,p is a constant independent of N .

The induction hypothesis is that, at time t− 1,

∥∥(ϕ, πNt−1)− (ϕ, πt−1)
∥∥
p
≤ ct−1,p‖ϕ‖∞√

N

for some constant ct−1,p <∞ independent of N .

We start analyzing the predictive measure ξNt ,

ξNt (dx) =
1

N

N∑
i=1

δ
x̄
(i)
t

(dx),

where x̄
(i)
t , i = 1, . . . , N are the particles sampled from the transition kernels

τ
x
(i)
t−1

t (dxt) , τt(dxt|x(i)
t−1). Since we have ξt = τtπt−1 (see Sec. 1.4), a simple

triangle inequality yields,∥∥(ϕ, ξNt)− (ϕ, ξt)
∥∥
p

=
∥∥(ϕ, ξNt)− (ϕ, τtπt−1)

∥∥
p

≤
∥∥(ϕ, ξNt)− (ϕ, τtπ

N
t−1)

∥∥
p

(A.5)

+
∥∥(ϕ, τtπ

N
t−1)− (ϕ, τtπt−1)

∥∥
p
,

123

APPENDIX A. Proofs

where,

(ϕ, τtπ
N
t−1) =

1

N

N∑
i=1

(ϕ, τ
x
(i)
t−1

t). (A.6)

For the sampling step, we aim at bounding the two terms on the rhs of (A.5).

For the first term, we introduce the σ-algebra generated by the random vari-

ables x
(i)
0:t and x̄

(i)
1:t, i = 1, . . . , N , denoted Ft = σ(x

(i)
0:t, x̄

(i)
1:t, i = 1, . . . , N). Since

πNt−1 is measurable w.r.t. Ft−1, we can write

E[(ϕ, ξNt)|Ft−1] =
1

N

N∑
i=1

(ϕ, τ
x
(i)
t−1

t) = (ϕ, τtπ
N
t−1).

Next, we define the random variables S
(i)
t = ϕ(x̄

(i)
t) − (ϕ, τtπ

N
t−1) and note that,

conditional on Ft−1, S
(i)
t , i = 1, . . . , N are zero-mean and independent. Then, the

approximation error of ξNt can be written as,

E[
∣∣(ϕ, ξNt)− (ϕ, τtπ

N
t−1)

∣∣p |Ft−1] = E

[∣∣∣∣∣ 1

N

N∑
i=1

S
(i)
t

∣∣∣∣∣
p ∣∣∣∣∣Ft−1

]
.

Resorting again to the Marcinkiewicz-Zygmund inequality, we can write,

E

[∣∣∣∣∣ 1

N

N∑
i=1

S
(i)
t

∣∣∣∣∣
p ∣∣∣∣∣Ft−1

]
≤ Bt,p

Np
E

(N∑
i=1

∣∣∣S(i)
t

∣∣∣2)
p
2
∣∣∣∣∣Ft−1

 ,
where Bt,p < ∞ is a constant independent of N . Moreover, since

∣∣∣S(i)
t

∣∣∣ =∣∣∣ϕ(x̄
(i)
t)− (ϕ, τtπ

N
t−1)

∣∣∣ ≤ 2‖ϕ‖∞, we have,

E

[∣∣∣∣∣ 1

N

N∑
i=1

S
(i)
t

∣∣∣∣∣
p ∣∣∣∣∣Ft−1

]
≤ Bt,p

Np

(
N4‖ϕ‖2∞

) p
2 =

Bt,p

Np/2
2p‖ϕ‖p∞.

If we take unconditional expectations on both sides of the equation above, then

we arrive at

‖(ϕ, ξNt)− (ϕ, τtπ
N
t−1)‖p ≤

c1,p‖ϕ‖∞√
N

, (A.7)

where c1,p = 2B
1/p
t,p <∞ is a constant independent of N .

To handle the second term in the rhs of (A.5), we define (ϕ̄, πt−1) = (ϕ, τtπt−1)

where ϕ̄ ∈ B(X) and given by,

ϕ̄(x) = (ϕ, τxt).

124

APPENDIX A. Proofs

We also write (ϕ̄, πNt−1) = (ϕ, τtπ
N
t−1). Since ‖ϕ̄‖∞ ≤ ‖ϕ‖∞, the induction hypoth-

esis leads,

‖(ϕ, τtπNt−1)− (ϕ, τtπt−1)‖p = ‖(ϕ̄, πNt−1)− (ϕ̄, πt−1)‖p

≤ ct−1,p‖ϕ‖∞√
N

, (A.8)

where ct−1,p is a constant independent of N . Combining (A.5) and (A.8) yields,

∥∥(ϕ, ξNt)− (ϕ, ξt)
∥∥
p
≤ c1,t,p‖ϕ‖∞√

N
(A.9)

where c1,t,p = ct−1,p + c1,p <∞ is a constant independent of N .

Next, we aim at bounding ‖(ϕ, πt)−(ϕ, π̃Nt)‖p using (A.9). We note that, after

the computation of weights, we define the weighted random measure,

π̃Nt =

N∑
i=1

w
(i)
t δx̄(i)t

where w
(i)
t =

gt(x̄
(i)
t)∑N

i=1 gt(x̄
(i)
t)

.

The integrals computed with respect to the weighted measure π̃Nt takes the form,

(ϕ, π̃Nt) =
(ϕgt, ξ

N)

(gt, ξNt)
. (A.10)

On the other hand, using Bayes theorem, integrals with respect to the optimal

filter can also be written in a similar form as,

(ϕ, πt) =
(ϕgt, ξt)

(gt, ξt)
. (A.11)

Using Lemma A.1 together with (A.10) and (A.11), we can readily obtain,∣∣(ϕ, π̃Nt)− (ϕ, πt)
∣∣ ≤ 1

(gt, ξt)

(
‖ϕ‖∞

∣∣(gt, ξt)− (gt, ξ
N
t)
∣∣

+
∣∣(ϕgt, ξt)− (ϕgt, ξ

N
t)
∣∣) , (A.12)

where (gt, ξt) > 0 by assumption. Using Minkowski’s inequality, we can deduce

from (A.12) that∥∥(ϕ, π̃Nt)− (ϕ, πt)
∥∥
p
≤ 1

(gt, ξt)

(
‖ϕ‖∞

∥∥(gt, ξt)− (gt, ξ
N
t)
∥∥
p

+
∥∥(ϕgt, ξt)− (ϕgt, ξ

N
t)
∥∥
p

)
. (A.13)

Noting that we have ‖ϕgt‖∞ ≤ ‖ϕ‖∞‖gt‖∞, (A.9) and (A.13) together yield,∥∥(ϕ, πt)− (ϕ, π̃Nt)
∥∥
p
≤ c2,t,p‖ϕ‖∞√

N
, (A.14)

125

APPENDIX A. Proofs

where

c2,t,p =
2‖gt‖∞c1,t,p

(gt, ξt)
<∞

is a finite constant independent of N (the denominator is positive and the numer-

ator is finite as a consequence of Assumption 2.1).

Finally, the analysis of the multinomial resampling step is also standard. We

denote the resampled measure as πNt . Since the random variables which are used

to construct πNt are sampled i.i.d from π̃Nt , the argument for the base case can

also be applied here to yield,

∥∥(ϕ, π̃Nt)− (ϕ, πNt)
∥∥
p
≤ c3,t,p‖ϕ‖∞√

N
, (A.15)

where c3,t,p < ∞ is a constant independent of N . Combining bounds (A.14) and

(A.15) to obtain the inequality (2.42), with ct,p = c2,t,p + c3,t,p <∞, concludes the

proof. �

A.2 Proofs of Chapter 3

Proof of Theorem 3.1

We follow the same kind of induction argument as in the proof of Theorem 2.3.

For t = 0, Eq. (3.12) is satisfied trivially as we draw x
(i)
0 , i = 1, ..., N , i.i.d. from

π0 as we have proved in Theorem 2.1. Then the induction hypothesis is that, at

time t− 1, ∥∥(ϕ, πNt−1)− (ϕ, πt−1)
∥∥
p
≤ ct−1‖ϕ‖∞√

N

for some constant ct−1 <∞ independent of N .

The analysis of the approximate predictive measure ξNt is standard and it can

be easily shown that (see the proof of Theorem 2.3)

∥∥(ϕ, ξNt)− (ϕ, ξt)
∥∥
p
≤ c1,t‖ϕ‖∞√

N
(A.16)

where c1,t <∞ is a constant independent of N . After the nudging step we obtain

the random measure ξ̃Nt . The sets of samples {x̄(i)
t }Ni=1, used to construct ξNt , and

{x̃(i)
t }Ni=1, used to construct ξ̃Nt as shown in (3.9), differ exactly in M particles,

namely x̃
(j1)
t , . . . , x̃

(jM)
t , where {j1, . . . , jM} = It. Therefore, we readily obtain the

126

APPENDIX A. Proofs

relationship ∥∥∥(ϕ, ξNt)− (ϕ, ξ̃Nt)
∥∥∥
p

=

∥∥∥∥∥ 1

N

∑
i∈It

(
ϕ(x̄

(i)
t)− ϕ(x̃

(i)
t)
)∥∥∥∥∥

p

≤ 2‖ϕ‖∞M
N

≤ 2‖ϕ‖∞√
N

(A.17)

where the first inequality holds trivially (since |ϕ(x) − ϕ(x′)| ≤ 2‖ϕ‖∞ for every

(x, x′) ∈ X2) and the second inequality follows from the assumption M ≤
√
N .

Combining (A.16) and (A.17) we arrive at∥∥∥(ϕ, ξt)− (ϕ, ξ̃Nt)
∥∥∥
p
≤ c̃1,t‖ϕ‖∞√

N
, (A.18)

where the constant c̃1,t = 2 + c1,t <∞ is independent of N .

The rest of the proof is standard. Following the same steps as in the proof of

Theorem 2.3, we can prove that∥∥(ϕ, πt)− (ϕ, π̃Nt)
∥∥
p
≤ c2,t‖ϕ‖∞√

N
, (A.19)

where

c2,t =
2‖gt‖∞c̃1,t

(gt, ξt)
<∞

is finite a constant independent of N (the denominator is positive and the numera-

tor is finite as a consequence of Assumption 3.1). The analysis of the multinomial

resampling step is also standard (see, again, the proof of Theorem 2.3) and it yields∥∥(ϕ, π̃Nt)− (ϕ, πNt)
∥∥
p
≤ c3,t‖ϕ‖∞√

N
, (A.20)

where c3,t < ∞ is a constant independent of N . We can combine bounds (A.19)

and (A.20) to obtain the inequality (3.12), with ct = c2,t + c3,t <∞, and conclude

the proof. �

Proof of Lemma 3.1

Since x̃
(i)
t = x̄

(i)
t + γ∇xtgt(x̄

(i)
t), we readily obtain the relationships∣∣∣ϕ(x̃

(i)
t)− ϕ(x̄

(i)
t)
∣∣∣ ≤ L∥∥∥x̃(i)

t − x̄
(i)
t

∥∥∥
2

= Lγ
∥∥∥∇xtg(x

(i)
t)
∥∥∥

2

≤ γLGt (A.21)

127

APPENDIX A. Proofs

where the first inequality follows from the Lipschitz assumption, the identity is

due to the implementation of the gradient-nudging step and the second inequality

follows from Assumption 3.2. Then we bound the error ‖(ϕ, ξNt)− (ϕ, ξ̃Nt)‖p as∥∥∥(ϕ, ξNt)− (ϕ, ξ̃Nt)
∥∥∥
p

=

∥∥∥∥∥ 1

N

∑
i∈It

(
ϕ(x̄

(i)
t)− ϕ(x̃

(i)
t)
)∥∥∥∥∥

p

≤ 1

N

∑
i∈I

∥∥∥ϕ(x̄
(i)
t)− ϕ(x̃

(i)
t)
∥∥∥
p

≤ M

N
γLGt (A.22)

where the identity is a consequence of the construction of It and we apply Minkowski’s

inequality, (A.21) and the assumption |It = M | to obtain (A.22). However, we

have assumed that γM ≤
√
N , hence∥∥∥(ϕ, ξNt)− (ϕ, ξ̃Nt)

∥∥∥
p
≤ LGt√

N
.

�

Proof of Proposition 3.1

We note that

p(y1:T |M1) =

∫
· · ·
∫ T∏

t=1

gytt (xt)τ̃
yt
t (dxt|xt−1)τ0(dx0) (A.23)

= (1− εM)

∫
· · ·
∫ T∏

t=1

gytt (xt)τt(dxt|xt−1)τ0(dx0)

+ εM

∫
· · ·
∫ T∏

t=1

(gytt ◦ α
yt
t)(xt)τt(dxt|xt−1)τ0(dx0) (A.24)

where (A.23) follows from the structure of the SSM and (A.24) is readily obtained

from the definition of τ̃ytt in (3.15). Since (gytt ◦ α
yt
t)(x) > gytt (x) > 0 for every

x ∈ X (by the definition of nudging operator), it follows that

p(y1:T |M1) > (1− εM)

∫
· · ·
∫ T∏

t=1

gytt (xt)τt(dxt|xt−1)τ0(dx0)

+εM

∫
· · ·
∫ T∏

t=1

gytt (xt)τt(dxt|xt−1)τ0(dx0)

=

∫
· · ·
∫ T∏

t=1

gytt (xt)τt(dxt|xt−1)τ0(dx0)

= p(y1:T |M0).

�

128

APPENDIX A. Proofs

A.3 Proofs of Chapter 4

Proof of Proposition 4.1

We prove this result by induction. For t = 1, let

π1(dθ) = π0(dθ)
G1(θ)∫

ΘG1(θ)π0(dθ)
.

Since G1 ∈ B(Θ) it follows that

sup
θ∈Θ

∣∣∣∣ G1(θ)

(G1, π0)

∣∣∣∣ =
supθ∈ΘG1(θ)

(G1, π0)
<∞

because of Assumption 4.1. Hence π1 � π0 is a proper measure. Assume next, as

an induction hypothesis, that πT−1 � π0. Then

πT (dθ) = πT−1(dθ)
GT (θ)

(GT , πT−1)

and Assumption 4.1 implies (again) that

supθ∈ΘGT (θ)

(GT , πT−1)
<∞,

hence πT is proper and πT � πT−1 � π0. Moreover, the Radon-Nikodym deriva-

tive of the final measure πT with respect to the prior π0 is

dπT
dπ0

(θ) ∝
T∏
t=1

Gt(θ) = exp

(
−

n∑
i=1

fi(θ)

)
.

From here, it easily follows that maximizing this Radon-Nikodym derivative is

equivalent to solving problem (1.1). �

Proof of Proposition 4.2

We aim at minimizing

s(θ) =
1

2
(y − x>θ)2 +

1

2γ
‖θ − θ0‖22,V0 .

Computing the gradient ∇s(θ) and setting it to zero yields

∇θs(θ) = −x(y − x>θ) + γ−1V −1
0 (θ − θ0) = 0.

By rearranging terms, we obtain

xy − xx>θ = γ−1V −1
0 (θ − θ0),

129

APPENDIX A. Proofs

which implies

(γ−1V −1
0 + xx>)θ = γ−1V −1

0 θ0 + xy.

Finally, solving for θ leaves us with

θ = (γ−1V −1
0 + xx>)−1(γ−1V −1

0 θ0 + xy).

Applying the Sherman-Morrison lemma1 (see, e. g., [190]), we can construct the

sequence of identities

θ =

(
γV0 −

γV0xx>γV0

1 + γx>V0x

)
(γ−1V −1

0 θ0 + xy)

=

(
γV0 −

γV0xx>V

γ−1 + x>V0x

)
(γ−1V −1

0 θ0 + xy)

= θ0 + γV0xy −
V0xx>θ0

γ−1 + x>V0x
− γV0xx>V0xy

γ−1 + x>V0x

= θ0 +
V0xy(γ−1 + x>V0x)

γ−1(γ−1 + x>V0x)
− γ−1V0xx>θ0

γ−1(γ−1 + x>V0x)
− V0xx>V0xy

γ−1(γ−1 + x>V0x)

= θ0 +
����������V0xx>V0xy

γ−1(γ−1 + x>V0x)
+

γ−1V0xy

γ−1(γ−1 + x>V0x)
− γ−1V0xx>θ0

γ−1(γ−1 + x>V0x)
−

����������V0xx>V0xy

γ−1(γ−1 + x>V0x)

= θ0 +
V0xy

γ−1 + x>V0x
− V0xx>θ0

γ−1 + x>V0x

= θ0 +
V0x(y − x>θ0)

γ−1 + x>V0x
,

which is the desired result. �

Proof of Theorem 4.1

We proceed by an induction argument. At time t = 0, the bound

‖(ϕ, πN0)− (ϕ, π0)‖p ≤
c0,p‖ϕ‖∞√

N

is a straightforward consequence of the Marcinkiewicz–Zygmund inequality [129]

because the particles {θ(i)
0 }Ni=1 are i.i.d samples from π0.

Assume now that, after iteration t − 1, we have a particle set {θ(i)
t−1}Ni=1 and

the empirical measure πNt−1(dθt−1) = 1
N

∑N
i=1 δθ(i)t−1

(dθt−1), which satisfies

∥∥(ϕ, πt−1)− (ϕ, πNt−1)
∥∥
p
≤ ct−1,p‖ϕ‖∞√

N
. (A.25)

1If A is a square invertible matrix and u, v are column vectors such that A + uv> is also

invertible,

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

130

APPENDIX A. Proofs

We first analyze the error in the jittering step. To this end, we construct the

jittered random measure

π̂Nt (dθ) =
1

N

N∑
i=1

δ
θ̂
(i)
t

(dθ)

and iterate the triangle inequality to obtain

‖(ϕ, πt−1)− (ϕ, π̂Nt)‖p ≤‖(ϕ, πt−1)− (ϕ, πNt−1)‖p + ‖(ϕ, πNt−1)− (ϕ, κπNt−1)‖p
+ ‖(ϕ, κπNt−1)− (ϕ, π̂Nt)‖p, (A.26)

where

κπNt−1 =

∫
κ(dθ|θt−1)πNt−1(dθt−1) =

1

N

N∑
i=1

κ(dθ|θ(i)
t−1).

The first term on the right hand side (rhs) of (A.26) is bounded by the induction

hypothesis (A.25). For the second term, we note that,

∣∣(ϕ, πNt−1)− (ϕ, κπNt−1)
∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

ϕ(θ
(i)
t−1)− 1

N

N∑
i=1

∫
ϕ(θ)κ(dθ|θ(i)

t−1)

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
i=1

∫ (
ϕ(θ

(i)
t−1)− ϕ(θ)

)
κ(dθ|θ(i)

t−1)

∣∣∣∣∣
≤ 1

N

N∑
i=1

∫ ∣∣∣ϕ(θ
(i)
t−1)− ϕ(θ)

∣∣∣κ(dθ|θ(i)
t−1)

≤ cκ‖ϕ‖∞√
N

, (A.27)

where the last inequality follows from Assumption 4.2. The upper bound in (A.27)

is deterministic, so the inequality readily implies that

‖(ϕ, πNt−1)− (ϕ, κπNt−1‖p ≤
cκ‖ϕ‖∞√

N
. (A.28)

For the last term in (A.26), we let Ft−1 be the σ-algebra generated by the

random sequence {θ(i)
0:t−1, θ̂

(i)
1:t−1}Ni=1. Let us first note that

E [(ϕ, π̂t)|Ft−1] =
1

N

N∑
i=1

E
[
ϕ(θ̂

(i)
t)
]

=
1

N

N∑
i=1

∫
ϕ(θ)κ(dθ|θ(i)

t−1) = (ϕ, κπNt−1).

Therefore, the difference (ϕ, π̂Nt)− (ϕ, κπNt−1) takes the form

(ϕ, π̂Nt)− (ϕ, κπNt−1) =
1

N

N∑
i=1

S(i),

131

APPENDIX A. Proofs

where S(i) = ϕ(θ̂
(i)
t)−E[ϕ(θ̂

(i)
t)|Ft−1], i = 1, . . . , N , are zero-mean and independent

(conditionally on Ft−1) random variables, with |S(i)| ≤ 2‖ϕ‖∞. Then we readily

obtain the bound

E
[∣∣(ϕ, π̂Nt)− (ϕ, κπNt−1)

∣∣p∣∣∣Ft−1

]
=

1

Np
E

[∣∣∣∣∣
N∑
i=1

S(i)

∣∣∣∣∣
p∣∣∣∣∣Ft−1

]

≤ Bt,pN
p
2 ‖ϕ‖p∞
Np

. (A.29)

where the relation (A.29) follows from the Marcinkiewicz–Zygmund inequality

[129] and Bt,p < ∞ is some constant independent of N . Taking unconditional

expectation on both sides of (A.29) and then computing (·)
1
p yields

‖(ϕ, π̂Nt)− (ϕ, κπNt−1)‖p ≤
ĉt,p‖ϕ‖∞√

N
. (A.30)

where ĉt,p = B
1
p

t,p is a finite constant independent of N . Therefore, taking together

(A.25), (A.28) and (A.30) we have established that

‖(ϕ, πt−1)− (ϕ, π̂Nt)‖p ≤
c1,t,p‖ϕ‖∞√

N
, (A.31)

where c1,t,p = ct−1,p + cκ + ĉt,p <∞ is a finite constant independent of N .

Next, we have to bound the error after the weighting step. We recall

πt(dθ) = πt−1(dθ)
Gt(θ)

(Gt, πt−1)
and define π̃Nt (dθ) = π̂Nt (dθ)

Gt(θ)

(Gt, π̂Nt)

where π̃Nt denotes the weighted measure. We first note that

|(ϕ, πt)− (ϕ, π̃Nt)| =
∣∣∣∣(ϕGt, πt−1)

(Gt, πt−1)
− (ϕGt, π̂

N
t)

(Gt, π̂Nt)
+

(ϕGt, π̂
N
t)

(Gt, πt−1)
− (ϕGt, π̂

N
t)

(Gt, πt−1)

∣∣∣∣
≤
∣∣(ϕGt, πt−1)− (ϕGt, π̂

N
t)
∣∣+ ‖ϕ‖∞|(Gt, π̂Nt)− (Gt, πt−1)|

(Gt, πt−1)
.

(A.32)

Then, using Minkowski’s inequality together with (A.31), the inequality (A.32)

readily yields

‖(ϕ, πt)− (ϕ, π̃Nt)‖p ≤
c1,t,p‖ϕGt‖∞ + c1,t,p‖ϕ‖∞‖Gt‖∞

(Gt, πt−1)
√
N

,

≤ 2c1,t,p‖ϕ‖∞‖Gt‖∞
(Gt, πt−1)

√
N

132

APPENDIX A. Proofs

where the second inequality follows from ‖ϕGt‖∞ ≤ ‖ϕ‖∞‖Gt‖∞. More concisely,

we have

‖(ϕ, πt)− (ϕ, π̃Nt)‖p ≤
c2,t,p‖ϕ‖∞√

N
(A.33)

where the constant

c2,t,p =
2c1,t,p‖Gt‖∞

(Gt, πt−1)
<∞

is independent of N . Note that the assumptions on (Gt)t≥1 imply that (Gt, πt−1) >

0.

Finally, we bound the resampling step. Note that the resampling step consists

of drawing N i.i.d samples from π̃Nt , i.e. θ
(i)
t ∼ π̃Nt i.i.d for i = 1, . . . , N , and then

constructing

πNt (dθ) =
1

N

N∑
i=1

δ
θ
(i)
t

(dθ).

Since samples are i.i.d, as in the base case, we have,

‖(ϕ, π̃Nt)− (ϕ, πNt)‖p ≤
c̃p‖ϕ‖∞√

N
, (A.34)

for some constant c̃p < ∞ independent of N . Now combining (A.33) and (A.34),

we have the desired result,

‖(ϕ, πt)− (ϕ, πNt)‖p ≤
ct‖ϕ‖∞√

N

where ct = c2,t,p + c̃p is a finite constant independent of N . �

Proof of Proposition 4.6

Recall the assumption

|Ft(θ)− Ft(θ′)| ≤ `t‖θ − θ′‖.

We write F ?t = minθ∈Θ Ft(θ), which is assumed to be finite, but not necessarily

nonnegative. We first prove that exp(−Ft(θ)) is also Lipschitz continuous. Note

that we trivially have exp(−Ft(θ)) ≤ exp(−F ?t) for all θ since Ft(θ) ≥ F ?t for all θ.

Now consider any (θ, θ′) ∈ Θ×Θ. We first consider the case where Ft(θ) ≤ Ft(θ′).
We obtain

0 < e−Ft(θ) − e−Ft(θ′) = e−Ft(θ)
(

1− eFt(θ)−Ft(θ′)
)
,

≤ e−Ft(θ)
(
1− (1 + Ft(θ)− Ft(θ′))

)
, (A.35)

133

APPENDIX A. Proofs

where we have used the inequality ea ≥ 1 + a. Therefore, we readily obtain from

(A.35)

0 < e−Ft(θ) − e−Ft(θ′) ≤ e−Ft(θ)
(
Ft(θ

′)− Ft(θ)
)
,

≤ e−F ?t
(
Ft(θ

′)− Ft(θ)
)

= e−F
?
t |Ft(θ′)− Ft(θ)|, (A.36)

since Ft(θ) ≤ Ft(θ′). Next, assume otherwise, i.e., Ft(θ) ≥ Ft(θ′). In this case, we

can also show using the same line of reasoning that

e−Ft(θ
′) − e−Ft(θ) ≤ e−F ?t

(
Ft(θ)− Ft(θ′)

)
= e−F

?
t |Ft(θ′)− Ft(θ)|, (A.37)

since Ft(θ) ≥ Ft(θ
′). Therefore, we can conclude (combining (A.36) and (A.37))

that

|e−Ft(θ) − e−Ft(θ′)| ≤ e−F ?t |Ft(θ′)− Ft(θ)| ≤ e−F
?
t `t‖θ − θ′‖,

where the last inequality holds because Ft is Lipschitz. Finally recall that

πt(θ) =
exp(−Ft(θ))

Zπt
,

where Zπt =
∫

Θ exp(−Ft(θ))dθ. We straightforwardly obtain

|πt(θ)− πt(θ′)| ≤
1

Zπt
e−F

?
t `t‖θ − θ′‖.

�

A.4 Proofs of Chapter 5

Proof of Proposition 5.1

We prove this result by induction. The model is constructed in such a way that

P0 = V0 ⊗ Im and we assume that Pk−1 = Vk−1 ⊗ Im, with the sequence {Vl; 1 ≤
l ≤ k − 1} computed as in (5.11). To obtain an expression for Vk at time k, we

start substituting Hk = x>k ⊗ Im, R = λ⊗ Im and Pk−1 = Vk−1 ⊗ Im into (5.10),

which yields

Pk = (Vk−1 ⊗ Im)− (Vk−1 ⊗ Im)(xk ⊗ Im)((x>k ⊗ Im)(Vk−1 ⊗ Im)(xk ⊗ Im) + λ⊗ Im)−1

× (x>k ⊗ Im)(Vk−1 ⊗ Im).

Applying the mixed product property (1.4) repeatedly in the equation above we

arrive at

Pk = (Vk−1 ⊗ Im)− (Vk−1xk ⊗ Im)((x>k Vk−1xk + λ)−1 ⊗ Im)(x>k Vk−1 ⊗ Im),

134

APPENDIX A. Proofs

where we also resorted to property (1.5). Applying the mixed product property

(1.4) again leads to

Pk =

(
Vk−1 −

Vk−1xkx
>
k Vk−1

x>k Vk−1xk + λ

)
⊗ Im, (A.38)

where the expression between brackets matches the right-hand side of (5.11), hence

Pk = Vk ⊗ Im and the proof is complete. �

Proposition 5.2

Substituting Pk−1 = Vk−1 ⊗ Im (given by Proposition 5.1) Hk = x>k ⊗ Im and

Rk = λ⊗ Im into (5.9) we obtain

ck = ck−1 + (Vk−1 ⊗ Im)(xk ⊗ Im)
(

(x>k ⊗ Im)(Vk−1 ⊗ Im)(xk ⊗ Im) + λ⊗ Im
)−1

× (yk − (x>k ⊗ Im)ck−1).

Repeatedly using the mixed product property (1.4) in the equation above we arrive

at

ck = ck−1 + (Vk−1xk ⊗ Im)
(

(x>k Vk−1xk + λ)⊗ Im
)−1

(yk − (x>k ⊗ Im)ck−1)

and applying (1.5), together with the mixed product property again, yields

ck = ck−1+

[
Vk−1xk

x>k Vk−1xk + λ
⊗ Im

]
× (yk − (x>k ⊗ Im)ck−1). (A.39)

If we now use (1.3) on the last term of the right-hand side of (A.39) we obtain

ck = ck−1 +

[
Vk−1xk

x>k Vk−1xk + λ
⊗ Im

]
(yk − Ck−1xk),

Since (yk−Ck−1xk) and
Vk−1xk

x>k Vk−1xk+λ
are vectors, we can rewrite this expression as,

ck = ck−1 +

[
vec

(
Vk−1xk

x>k Vk−1xk + λ

)
⊗ Im

]
vec(yk − Ck−1xk). (A.40)

Finally, applying (1.3) to the second term of the sum in the right-hand side of Eq.

(A.40) yields

ck = ck−1 + vec

(
(yk − Ck−1xk)x

>
k V
>
k−1

x>k Vk−1xk + λ

)
, (A.41)

Now using inverse vectorisation vec−1
m×r(·), we recover the update rule (5.12) and

conclude the proof. �

135

APPENDIX A. Proofs

136

References

[1] Christian Robert. The Bayesian choice: from decision-theoretic foundations

to computational implementation. Springer Science & Business Media, 2007.

[2] Alan Bain and Dan Crisan. Fundamentals of stochastic filtering. Springer,

2009.

[3] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer,

New York, NY, USA, second edition, 2006.

[4] Andrew H Jazwinski. Stochastic processes and filtering theory. Academic

Press Inc., New York, 1970.

[5] Brian DO Anderson and John B Moore. Optimal filtering. Englewood Cliffs,

NJ: Pren, 1979.

[6] Rudolph Emil Kalman. A new approach to linear filtering and prediction

problems. Journal of Fluids Engineering, 82(1):35–45, 1960.

[7] Rudolf Emil Kalman. Contributions to the theory of optimal control. Bol.

Soc. Mat. Mexicana, 5(2):102–119, 1960.

[8] Rudolph E Kalman and Richard S Bucy. New results in linear filtering and

prediction theory. Journal of basic engineering, 83(1):95–108, 1961.

[9] Harold Wayne Sorenson. Kalman filtering: theory and application. IEEE,

1985.

[10] Mohinder S Grewal and Angus P Andrews. Applications of Kalman filtering

in aerospace 1960 to the present [historical perspectives]. IEEE Control

Systems, 30(3):69–78, 2010.

[11] Arthur Gelb. Applied optimal estimation. MIT press, 1974.

137

[12] Simon J Julier and Jeffrey K Uhlmann. New extension of the Kalman filter

to nonlinear systems. In Signal processing, sensor fusion, and target recog-

nition VI, volume 3068, pages 182–194. International Society for Optics and

Photonics, 1997.

[13] Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for

nonlinear estimation. In Adaptive Systems for Signal Processing, Commu-

nications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, pages

153–158. IEEE, 2000.

[14] Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter.

Kalman filtering and neural networks, pages 221–280, 2001.

[15] Geir Evensen. Using the extended Kalman filter with a multilayer quasi-

geostrophic ocean model. Journal of Geophysical Research: Oceans,

97(C11):17905–17924, 1992.

[16] Gerrit Burgers, Peter Jan van Leeuwen, and Geir Evensen. Analysis scheme

in the ensemble Kalman filter. Monthly weather review, 126(6):1719–1724,

1998.

[17] Geir Evensen. The ensemble Kalman filter: Theoretical formulation and

practical implementation. Ocean dynamics, 53(4):343–367, 2003.

[18] Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer

Science & Business Media, 2009.

[19] Michael Roth, Carsten Fritsche, Gustaf Hendeby, and Fredrik Gustafison.

The ensemble Kalman filter and its relations to other nonlinear filters. In

Signal Processing Conference (EUSIPCO), 2015 23rd European, pages 1236–

1240. IEEE, 2015.

[20] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach

to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F

(Radar and Signal Processing), volume 140, pages 107–113. IET, 1993.

[21] Peter Müller. Monte Carlo integration in general dynamic models. Contem-

porary Mathematics, 115:145–163, 1991.

[22] Adrian FM Smith and Alan E Gelfand. Bayesian statistics without tears: A

sampling–resampling perspective. The American Statistician, 46(2):84–88,

1992.

138

[23] Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo method. Journal

of the American statistical association, 44(247):335–341, 1949.

[24] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A

tutorial on particle filters for online nonlinear/non-Gaussian Bayesian track-

ing. IEEE Transactions on signal processing, 50(2):174–188, 2002.

[25] Petar M Djuric, Jayesh H Kotecha, Jianqui Zhang, Yufei Huang, Tadesse

Ghirmai, Mónica F Bugallo, and Joaquin Miguez. Particle filtering. IEEE

signal processing magazine, 20(5):19–38, 2003.

[26] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and

smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-

704):3, 2009.

[27] Dan Crisan, Pierre Del Moral, and Terry Lyons. Discrete filtering using

branching and interacting particle systems. Université de Toulouse. Labora-

toire de Statistique et Probabilités [LSP], 1998.

[28] Pierre Del Moral and Alice Guionnet. Central limit theorem for nonlinear

filtering and interacting particle systems. Annals of Applied Probability,

9(2):275–297, 1999.

[29] P. Del Moral and L. Miclo. Branching and interacting particle systems.

Approximations of Feynman-Kac formulae with applications to non-linear

filtering. In Azéma J., Ledoux M., Émery M., Yor M. (eds) Séminaire de

Probabilités XXXIV. Lecture Notes in Mathematics, volume 1729, pages 1–

145. Springer, Berlin, Heidelberg, 2000.

[30] Pierre Del Moral and Alice Guionnet. On the stability of interacting pro-

cesses with applications to filtering and genetic algorithms. Annales de

l’Institut Henri Poincare (B) Probability and Statistics, 37(2):155–194, 2001.

[31] Dan Crisan. Particle filters–a theoretical perspective. In Doucet A., de

Freitas N., Gordon N. (eds) Sequential Monte Carlo Methods in Practice.

Statistics for Engineering and Information Science, pages 17–41. Springer,

New York, NY, 2001.

[32] Dan Crisan and Arnaud Doucet. A survey of convergence results on particle

filtering methods for practitioners. IEEE Transactions on signal processing,

50(3):736–746, 2002.

139

[33] Pierre Del Moral. Feynman-Kac Formulae: Genealogical and Interacting

Particle Systems with Applications. Springer, 2004.

[34] Nicolas Chopin. Central limit theorem for sequential Monte Carlo meth-

ods and its application to Bayesian inference. The Annals of Statistics,

32(6):2385–2411, 2004.

[35] Thomas Bengtsson, Peter Bickel, and Bo Li. Curse-of-dimensionality revis-

ited: Collapse of the particle filter in very large scale systems. In Probability

and statistics: Essays in honor of David A. Freedman, pages 316–334. Insti-

tute of Mathematical Statistics, 2008.

[36] Chris Snyder, Thomas Bengtsson, Peter Bickel, and Jeff Anderson. Ob-

stacles to high-dimensional particle filtering. Monthly Weather Review,

136(12):4629–4640, 2008.

[37] Peter Bickel, Bo Li, and Thomas Bengtsson. Sharp failure rates for the

bootstrap particle filter in high dimensions. In Pushing the limits of con-

temporary statistics: Contributions in honor of Jayanta K. Ghosh, pages

318–329. Institute of Mathematical Statistics, 2008.

[38] Patrick Rebeschini and Ramon Van Handel. Can local particle filters beat

the curse of dimensionality? The Annals of Applied Probability, 25(5):2809–

2866, 2015.

[39] Alexandros Beskos, Dan Crisan, Ajay Jasra, Kengo Kamatani, and Yan

Zhou. A stable particle filter for a class of high-dimensional state-space

models. Advances in Applied Probability, 49(1):24–48, 2017.

[40] James E Hoke and Richard A Anthes. The initialization of numerical

models by a dynamic-initialization technique. Monthly Weather Review,

104(12):1551–1556, 1976.

[41] Paola Malanotte-Rizzoli and William R Holland. Data constraints applied

to models of the ocean general circulation. Part I: The steady case. Journal

of Physical Oceanography, 16(10):1665–1682, 1986.

[42] Paola Malanotte-Rizzoli and William R Holland. Data constraints applied to

models of the ocean general circulation. Part II: the transient, eddy-resolving

case. Journal of Physical Oceanography, 18(8):1093–1107, 1988.

140

[43] X Zou, IM Navon, and FX LeDimet. An optimal nudging data assimila-

tion scheme using parameter estimation. Quarterly Journal of the Royal

Meteorological Society, 118(508):1163–1186, 1992.

[44] Peter Jan van Leeuwen. Particle filtering in geophysical systems. Monthly

Weather Review, 137(12):4089–4114, 2009.

[45] Peter Jan van Leeuwen. Nonlinear data assimilation in geosciences: an ex-

tremely efficient particle filter. Quarterly Journal of the Royal Meteorological

Society, 136(653):1991–1999, 2010.

[46] Melanie Ades and Peter Jan van Leeuwen. An exploration of the equivalent

weights particle filter. Quarterly Journal of the Royal Meteorological Society,

139(672):820–840, 2013.

[47] Melanie Ades and Peter J van Leeuwen. The equivalent-weights particle filter

in a high-dimensional system. Quarterly Journal of the Royal Meteorological

Society, 141(687):484–503, 2015.

[48] Alexandre J Chorin and Xuemin Tu. Implicit sampling for particle fil-

ters. Proceedings of the National Academy of Sciences, 106(41):17249–17254,

2009.

[49] Alexandre Chorin, Matthias Morzfeld, and Xuemin Tu. Implicit particle

filters for data assimilation. Communications in Applied Mathematics and

Computational Science, 5(2):221–240, 2010.

[50] Ethan Atkins, Matthias Morzfeld, and Alexandre J Chorin. Implicit particle

methods and their connection with variational data assimilation. Monthly

Weather Review, 141(6):1786–1803, 2013.

[51] Dimitri P Bertsekas. Nonlinear programming. Athena scientific, 1999.

[52] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[53] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2013.

[54] Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and ap-

plications. Cambridge University Press, 2012.

141

[55] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via

convex optimization. Foundations of Computational mathematics, 9(6):717,

2009.

[56] Ahron Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimiza-

tion: analysis, algorithms, and engineering applications, volume 2. SIAM,

2001.

[57] Herbert Robbins and Sutton Monro. A stochastic approximation method.

Ann. Math. Statist., 22(3):400–407, 09 1951.

[58] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms.

IEEE transactions on automatic control, 31(9):803–812, 1986.

[59] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic ap-

proximation by averaging. SIAM Journal on Control and Optimization,

30(4):838–855, 1992.

[60] Léon Bottou. Online algorithms and stochastic approximations. In David

Saad, editor, Online Learning and Neural Networks. Cambridge University

Press, Cambridge, UK, 1998.

[61] Harold Kushner and G George Yin. Stochastic approximation and recursive

algorithms and applications, volume 35. Springer Science & Business Media,

2003.

[62] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.

Robust stochastic approximation approach to stochastic programming.

SIAM Journal on optimization, 19(4):1574–1609, 2009.

[63] Léon Bottou. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[64] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[65] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research, 12(Jul):2121–2159, 2011.

142

[66] Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow,

and Andrew Y Ng. On optimization methods for deep learning. In Pro-

ceedings of the 28th International Conference on International Conference

on Machine Learning, pages 265–272. Omnipress, 2011.

[67] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic

approximation algorithms for machine learning. In Advances in Neural In-

formation Processing Systems, pages 451–459, 2011.

[68] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. In International Conference on Learning Representations (ICLR),

2015.

[69] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for

large-scale machine learning. SIAM Review, 60(2):223–311, 2018.

[70] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. Why random reshuf-

fling beats stochastic gradient descent. arXiv preprint arXiv:1510.08560,

2015.

[71] Ohad Shamir. Without-replacement sampling for stochastic gradient meth-

ods. In Advances in Neural Information Processing Systems, pages 46–54,

2016.

[72] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton

method for online convex optimization. In Artificial Intelligence and Statis-

tics, pages 436–443, 2007.

[73] Antoine Bordes, Léon Bottou, and Patrick Gallinari. SGD-QN: Careful

quasi-newton stochastic gradient descent. Journal of Machine Learning Re-

search, 10:1737–1754, 2009.

[74] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A

stochastic quasi-newton method for large-scale optimization. SIAM Journal

on Optimization, 26(2):1008–1031, 2016.

[75] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-

newton methods for nonconvex stochastic optimization. SIAM Journal on

Optimization, 27(2):927–956, 2017.

[76] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and

Trends R© in Optimization, 1(3):127–239, 2014.

143

[77] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting meth-

ods in signal processing. In Fixed-point algorithms for inverse problems in

science and engineering, pages 185–212. Springer, 2011.

[78] Bernard Lemaire. The proximal algorithm. International series of numerical

mathematics, 87:73–87, 1989.

[79] Alfredo N Iusem. Augmented lagrangian methods and proximal point meth-

ods for convex optimization. Investigación Operativa, 8(11-49):7, 1999.

[80] Lieven Vandenberghe. Optimization methods for large-scale systems. Lecture

Notes, 2009.

[81] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal

forward-backward splitting. Multiscale Modeling & Simulation, 4(4):1168–

1200, 2005.

[82] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski.

Optimization with sparsity-inducing penalties. Foundations and Trends R©
in Machine Learning, 4(1):1–106, 2012.

[83] Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and Francis Bach.

Proximal methods for hierarchical sparse coding. Journal of Machine Learn-

ing Research, 12(Jul):2297–2334, 2011.

[84] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal meth-

ods for convex optimization: A survey. Optimization for Machine Learning,

2010:1–38, 2011.

[85] Dimitri P Bertsekas. Incremental proximal methods for large scale convex

optimization. Mathematical programming, 129(2):163–195, 2011.

[86] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration

techniques. In Advances in Neural Information Processing Systems, pages

1574–1582, 2014.

[87] Pascal Bianchi. Ergodic convergence of a stochastic proximal point algo-

rithm. SIAM Journal on Optimization, 26(4):2235–2260, 2016.

[88] Yves F Atchadé, Gersende Fort, and Eric Moulines. On perturbed proximal

gradient algorithms. J. Mach. Learn. Res, 18(1):310–342, 2017.

144

[89] Hilal Asi and John C Duchi. Stochastic (approximate) proximal point

methods: Convergence, optimality, and adaptivity. arXiv preprint

arXiv:1810.05633, 2018.

[90] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA: Neural

networks for machine learning, 4(2):26–31, 2012.

[91] Omer Deniz Akyildiz, Victor Elvira, and Joaquin Miguez. The Incremental

Proximal Method: A Probabilistic Perspective. In Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary,

Canada, April 2018.

[92] James Vuckovic. Kalman gradient descent: Adaptive variance reduction in

stochastic optimization. arXiv preprint arXiv:1810.12273, 2018.

[93] Laurence Aitchison. A unified theory of adaptive stochastic gradient descent

as Bayesian filtering. arXiv preprint arXiv:1807.07540, 2018.

[94] Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic nu-

merics and uncertainty in computations. In Proc. R. Soc. A, volume 471,

page 20150142. The Royal Society, 2015.

[95] Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. Bayesian

probabilistic numerical methods. arXiv preprint arXiv:1702.03673, 2017.

[96] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization

of convex functions. Technical report, Université catholique de Louvain,

Center for Operations Research and Econometrics (CORE), 2011.

[97] James C Spall. Introduction to stochastic search and optimization: Estima-

tion, simulation, and control, volume 65. John Wiley & Sons, 2005.

[98] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to

derivative-free optimization, volume 8 of MPS-SIAM Series on Optimization.

SIAM, 2009.

[99] Andre Wibisono, Martin J Wainwright, Michael I Jordan, and John C Duchi.

Finite sample convergence rates of zero-order stochastic optimization meth-

ods. In Advances in Neural Information Processing Systems, pages 1439–

1447, 2012.

145

[100] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order meth-

ods for nonconvex stochastic programming. SIAM Journal on Optimization,

23(4):2341–2368, 2013.

[101] Ruobing Chen and Stefan Wild. Randomized derivative-free optimization of

noisy convex functions. arXiv preprint arXiv:1507.03332, 2015.

[102] Francis Bach and Vianney Perchet. Highly-smooth zero-th order online op-

timization. In Conference on Learning Theory, pages 257–283, 2016.

[103] Joaqúın Mı́guez, Dan Crisan, and Petar M Djurić. On the convergence of

two sequential Monte Carlo methods for maximum a posteriori sequence

estimation and stochastic global optimization. Statistics and Computing,

23(1):91–107, 2013.

[104] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.

[105] Christian P Robert and George Casella. Monte Carlo statistical methods.

John Wiley & Sons, 2004.

[106] Luca Martino, Vı́ctor Elvira, David Luengo, Jukka Corander, and Francisco

Louzada. Orthogonal parallel MCMC methods for sampling and optimiza-

tion. Digital Signal Processing, 58:64–84, 2016.

[107] Joaquin Miguez, Cristina S Maiz, Petar M Djuric, and Dan Crisan. Sequen-

tial Monte Carlo optimization using artificial state-space models. In IEEE

13th Digital Signal Processing Workshop and 5th IEEE Signal Processing

Education Workshop, pages 268–273. IEEE, 2009.

[108] Joaquin Miguez. Analysis of a sequential monte carlo method for optimiza-

tion in dynamical systems. Signal Processing, 90(5):1609–1622, 2010.

[109] Tito Homem-de Mello and Güzin Bayraksan. Monte Carlo sampling-based

methods for stochastic optimization. Surveys in Operations Research and

Management Science, 19(1):56–85, 2014.

[110] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient

Langevin dynamics. In Proceedings of the 28th international conference on

machine learning (ICML-11), pages 681–688, 2011.

[111] Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, and Lawrence

Carin. Bridging the gap between stochastic gradient MCMC and stochastic

optimization. In Artificial Intelligence and Statistics, pages 1051–1060, 2016.

146

[112] Pierre Alquier, Nial Friel, Richard Everitt, and Aidan Boland. Noisy Monte

Carlo: Convergence of Markov chains with approximate transition kernels.

Statistics and Computing, 26(1-2):29–47, 2016.

[113] Omer Deniz Akyildiz, Ines P Mariño, and Joaqúın Mı́guez. Adaptive noisy

importance sampling for stochastic optimization. In Computational Ad-

vances in Multi-Sensor Adaptive Processing (CAMSAP), 2017 IEEE 7th

International Workshop on, pages 1–5. IEEE, 2017.

[114] Ömer Deniz Akyıldız, Vı́ctor Elvira, Jesus Fernandez-Bes, and Joaqúın

Miguez. On the relationship between online optimizers and stochastic fil-

ters. NIPS 2016 Workshop on Optimizing the Optimizers, 2016.

[115] Ömer Deniz Akyıldız and Joaqúın Mı́guez. Nudging the particle filter.

arXiv:1708.07801, 2017.

[116] Ömer Deniz Akyildiz, Dan Crisan, and Joaqúın Mı́guez. Parallel sequential

monte carlo for stochastic optimization. arXiv:1811.09469, 2018.

[117] Ömer Deniz Akyildiz and Joaqúın Mı́guez. Dictionary filtering: a proba-

bilistic approach to online matrix factorisation. Signal, Image and Video

Processing, Dec 2018.

[118] David A Harville. Matrix algebra from a statistician’s perspective, volume 1.

Springer, 1997.

[119] Thomas Bayes, Richard Price, and John Canton. An essay towards solving

a problem in the doctrine of chances. 1763.

[120] Pierre Simon Laplace. Théorie analytique des probabilités. Courcier, 1820.

[121] Pierre Del Moral. Mean field simulation for Monte Carlo integration. CRC

Press, 2013.

[122] Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in Hidden

Markov Models. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[123] Randal Douc, Éric Moulines, and David Stoffer. Nonlinear Time Series:

Theory, Methods and Applications with R Examples. Chapman & Hall, 2013.

[124] Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson, Aki Vehtari,

and Donald B Rubin. Bayesian data analysis. Chapman and Hall/CRC,

2013.

147

[125] Christopher M. Bishop. Pattern Recognition and Machine Learning.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[126] Simo Särkkä. Bayesian filtering and smoothing. Number 3. Cambridge Uni-

versity Press, 2013.

[127] Luc Devroye. Non-uniform random variate generation. Springer-Verlag, New

York, 1986.

[128] Luca Martino, David Luengo, and Joaqúın Mı́guez. Independent random

sampling methods. Springer, 2018.

[129] Albert N Shiryaev. Probability. Springer, 1996.

[130] John M Hammersley and David C Handscomb. Monte Carlo methods.

Methuen & Co., London, 1965.

[131] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential

Monte Carlo sampling methods for Bayesian filtering. Statistics and Com-

puting, 10(3):197–208, 2000.

[132] Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte Carlo

methods in Practice. Springer, New York, NY, 2001.

[133] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to

sequential Monte Carlo methods. In Doucet A., de Freitas N., Gordon N.

(eds) Sequential Monte Carlo Methods in Practice. Statistics for Engineering

and Information Science, pages 3–14. Springer, New York, NY, 2001.

[134] Randal Douc and Olivier Cappé. Comparison of resampling schemes for

particle filtering. In Image and Signal Processing and Analysis, 2005. ISPA

2005. Proceedings of the 4th International Symposium on, pages 64–69.

IEEE, 2005.

[135] Isambi S Mbalawata and Simo Sarkka. On the L4 convergence of particle

filters with general importance distributions. In Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on, pages 8048–

8052. IEEE, 2014.

[136] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-

dations and Trends R© in Machine Learning, 8(3-4):231–357, 2015.

148

[137] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums

with the stochastic average gradient. Mathematical Programming, 162(1-

2):83–112, 2017.

[138] Ernest K Ryu and Stephen Boyd. Stochastic proximal iteration: A non-

asymptotic improvement upon stochastic gradient descent. Author website,

early draft, 2014.

[139] Andrei Patrascu and Ion Necoara. Nonasymptotic convergence of stochastic

proximal point methods for constrained convex optimization. The Journal

of Machine Learning Research, 18(1):7204–7245, 2017.

[140] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle

Markov chain Monte Carlo methods. Journal of the Royal Statistical So-

ciety: Series B (Statistical Methodology), 72(3):269–342, 2010.

[141] D. Crisan and J. Miguez. Uniform convergence over time of a nested particle

filtering scheme for recursive parameter estimation in state–space Markov

models. Advances in Applied Probability, 49(4):1170–1200, 2017.

[142] Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary parti-

cle filters. Journal of the American Statistical Association, 94(446):590–599,

1999.

[143] D. Crisan and A. Doucet. A survey of convergence results on particle filtering.

IEEE Transactions on Signal Processing, 50(3):736–746, March 2002.

[144] B. N. Oreshkin and M. J. Coates. Analysis of error propagation in particle

filters with approximation. The Annals of Applied Probability, 21(6):2343–

2378, 2011.

[145] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley & Sons, 1994.

[146] Dan Crisan and Joaquin Miguez. Nested particle filters for online pa-

rameter estimation in discrete-time state-space Markov models. Bernoulli,

24(4A):3039–3086, 2018.

[147] Dimitri P Bertsekas. Dynamic Programming and Optimal Control, Vol. I.

Athena Scientific, Belmont, MA, 2001.

[148] Adam M Johansen and Arnaud Doucet. A note on auxiliary particle filters.

Statistics & Probability Letters, 78(12):1498–1504, 2008.

149

[149] Randal Douc, Eric Moulines, and Jimmy Olsson. Optimality of the auxiliary

particle filter. Probability and Mathematical Statistics, 29(1):1–28, 2009.

[150] Ruey S Tsay. Analysis of Financial Time Series. John Wiley & Sons, 2005.

[151] Johan Dahlin and Thomas B Schön. Getting started with particle

Metropolis-Hastings for inference in nonlinear dynamical models. arXiv,

1511.01707, 2015.

[152] Dan Crisan and Joaquin Miguez. Nested particle filters for online pa-

rameter estimation in discrete-time state-space markov models. Bernoulli,

24(4A):3039–3086, 2018.

[153] M Montaz Ali, Charoenchai Khompatraporn, and Zelda B Zabinsky. A

numerical evaluation of several stochastic algorithms on selected continuous

global optimization test problems. Journal of global optimization, 31(4):635–

672, 2005.

[154] Emilie Chouzenoux, Jean-Christophe Pesquet, and Audrey Repetti. Vari-

able metric forward–backward algorithm for minimizing the sum of a dif-

ferentiable function and a convex function. Journal of Optimization Theory

and Applications, 162(1):107–132, 2014.

[155] Emilie Chouzenoux, Jean-Christophe Pesquet, and Audrey Repetti. A block

coordinate variable metric forward–backward algorithm. Journal of Global

Optimization, 66(3):457–485, 2016.

[156] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates.

ICML (3), 28:343–351, 2013.

[157] Vı́ctor Elvira, Joaqúın Mı́guez, and Petar M Djurić. Adapting the number of

particles in sequential monte carlo methods through an online scheme for con-

vergence assessment. IEEE Transactions on Signal Processing, 65(7):1781–

1794, 2017.

[158] Bernard W Silverman. Density estimation for statistics and data analysis.

Routledge, 1998.

[159] Matt P Wand and M Chris Jones. Kernel smoothing. Chapman and

Hall/CRC, 1994.

[160] Dan Crisan and Joaqúın Mı́guez. Particle-kernel estimation of the filter

density in state-space models. Bernoulli, 20(4):1879–1929, 2014.

150

[161] Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk

for nonconvex losses. The Annals of Statistics, 46(6A):2747–2774, 2018.

[162] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized

stochastic gradient descent. In Advances in neural information processing

systems, pages 2595–2603, 2010.

[163] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401(6755):788–791, October 1999.

[164] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix

factorization. In NIPS, pages 556–562, 2001.

[165] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factoriza-

tion. Neural computation, 19(10):2756–2779, 2007.

[166] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-

niques for recommender systems. Computer, 42(8), 2009.

[167] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization.

In Neural Information Processing Systems (NIPS) Conference, volume 1,

pages 2–1, 2007.

[168] Mikkel N Schmidt, Ole Winther, and Lars Kai Hansen. Bayesian non-

negative matrix factorization. In International Conference on Independent

Component Analysis and Signal Separation, pages 540–547. Springer, 2009.

[169] Ali Taylan Cemgil. Bayesian inference for nonnegative matrix factorisation

models. Computational Intelligence and Neuroscience, pages 4:1–4:17, Jan-

uary 2009.

[170] Serhat S Bucak and Bilge Gunsel. Incremental subspace learning via non-

negative matrix factorization. Pattern recognition, 42(5):788–797, 2009.

[171] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. Large-

scale matrix factorization with distributed stochastic gradient descent. In

Proceedings of the 17th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 69–77. ACM, 2011.

[172] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online

learning for matrix factorization and sparse coding. The Journal of Machine

Learning Research, 11:19–60, 2010.

151

[173] Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Online non-

negative matrix factorization with robust stochastic approximation. IEEE

Transactions on Neural Networks and Learning Systems, 23(7):1087–1099,

2012.

[174] Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochas-

tic optimization. In Advances In Neural Information Processing Systems,

pages 181–189, 2015.

[175] S. Yildirim, A. T. Cemgil, and S. S. Singh. An online expectation-

maximisation algorithm for nonnegative matrix factorisation models. In 16th

IFAC Symposium on System Identification (SYSID 2012), 2012.

[176] John Paisley, D Blei, and Michael I Jordan. Bayesian nonnegative matrix

factorization with stochastic variational inference. In volume Handbook of

Mixed Membership Models and Their Applications, chapter 11. Chapman

and Hall/CRC, 2015.

[177] Carlos M Carvalho and Mike West. Dynamic matrix-variate graphical mod-

els. Bayesian analysis, 2(1):69–97, 2007.

[178] K Triantafyllopoulos. Reference priors for matrix-variate dynamic linear

models. Communications in Statistics—Theory and Methods, 37(6):947–958,

2008.

[179] Philipp Hennig and Martin Kiefel. Quasi-newton methods: A new direction.

The Journal of Machine Learning Research, 14(1):843–865, 2013.

[180] Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, and Max Welling.

Large-scale distributed Bayesian matrix factorization using stochastic gradi-

ent MCMC. In Proceedings of the 21th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 9–18. ACM, 2015.

[181] Yann Ollivier. Online natural gradient as a Kalman filter. arXiv:1703.00209,

2017.

[182] Ömer Deniz Akyıldız. Online matrix factorization via Broyden updates.

arXiv preprint, arXiv:1506.04389, 2015.

[183] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev,

George Toderici, Balakrishnan Varadarajan, and Sudheendra Vijaya-

narasimhan. Youtube-8m: A large-scale video classification benchmark.

arXiv:1609.08675, 2016.

152

[184] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh.

Clustering with Bregman divergences. Journal of Machine Learning Re-

search, 6(Oct):1705–1749, 2005.

[185] Ömer Deniz Akyildiz, Emilie Chouzenoux, Vı́ctor Elvira, and Joaqúın

Mı́guez. A probabilistic incremental proximal gradient method. arXiv

preprint arXiv:1812.01655, 2018.

[186] Christelle Vergé, Cyrille Dubarry, Pierre Del Moral, and Eric Moulines. On

parallel implementation of sequential Monte Carlo methods: the island par-

ticle model. Statistics and Computing, 25(2):243–260, 2015.

[187] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science

& Business Media, 2008.

[188] Tarek A El Moselhy and Youssef M Marzouk. Bayesian inference with opti-

mal maps. Journal of Computational Physics, 231(23):7815–7850, 2012.

[189] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general

purpose bayesian inference algorithm. In Advances In Neural Information

Processing Systems, pages 2378–2386, 2016.

[190] Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cook-

book. Technical University of Denmark, 7:15, 2008.

153

	List of Acronyms
	Introduction
	Introduction
	Stochastic filtering
	Stochastic optimization

	Organization and contributions
	Notation and preliminaries
	Notation
	Preliminary definitions

	Fundamentals of inference and optimization
	Introduction
	Bayesian update
	Sequential Bayesian update for static models
	State-space models and the filtering problem

	Static inference
	Exact inference for Gaussian distributions
	Perfect Monte Carlo
	Importance sampling
	Markov chain Monte Carlo methods

	Sequential inference
	Kalman update
	Kalman filters
	Extended Kalman filters
	Other Kalman-type filters
	Particle filters

	Numerical optimization
	Introduction
	Gradient descent
	Stochastic gradient descent
	Proximal point iteration
	The incremental proximal method

	Nudging the particle filter
	Introduction
	Background
	State space models
	Bootstrap particle filter

	Nudged particle filter
	General algorithm
	Selection of particles to be nudged
	How to nudge
	Nudging general particle filters

	Analysis
	Convergence in Lp
	Uniform convergence
	Nudging and model evidence

	Computer simulations
	A high-dimensional, inhomogeneous Linear-Gaussian state-space model
	Stochastic Lorenz 63 model with misspecified parameters
	Object tracking with a misspecified model
	High-dimensional stochastic Lorenz 96 model
	Assessment of bias

	Experimental results on model inference
	Nudging the nested particle filter
	Nudging the particle Metropolis-Hastings

	Stochastic optimization as Bayesian inference
	Introduction
	Stochastic optimization as Bayesian inference
	Incremental proximal method as inference
	Proximal operators as Bayes updates
	The IPM as a Kalman filter
	EKF as an approximate IPM
	Some numerical results

	SMC for stochastic optimization
	Jittering kernel
	Estimating the global minima of f()
	Analysis
	Experimental Results

	Dictionary filtering
	Introduction
	Probabilistic model
	Model

	Algorithm
	Parameter estimation
	Inference of the dictionary matrix
	Dynamic dictionary filter

	Links with stochastic optimization
	Experiments
	Image restoration
	Video modeling

	Conclusions and future work
	Conclusions
	Future work

	Proofs
	Proofs of Chapter 2
	Lemmata for Chapter 2
	Proofs of Chapter 2

	Proofs of Chapter 3
	Proofs of Chapter 4
	Proofs of Chapter 5

	References

