
Noname manuscript No.
(will be inserted by the editor)

Parallel Implementation of Empirical Mode Decomposition for
Nearly Bandlimited Signals via Polyphase Representation

Qiuliang Ye · Bingo Wing-Kuen Ling · Daniel P.K. Lun · Weichao Kuang

Received: date / Accepted: date

Abstract Nearly bandlimited signals play an impor-
tant role in the biomedical signal processing commu-
nity. The common method to analyze these signals is
via the empirical mode decomposition approach which
decomposes the nonstationary signals into the sums of
the intrinsic mode functions. However, this method is
computational demanding. A natural idea to reduce the
computational cost is via the block processing. How-
ever, the severe boundary effect would happen due to
the discontinuities between two consecutive blocks. In
order to solve this problem, this paper proposes to re-
alize the parallel implementation via polyphase repre-
sentation. That is, the empirical mode decomposition is
implemented on each polyphase components of the orig-
inal signal. Then each sub-signals are combined after
upsampling. The simulation results show that our pro-
posed method achieves the approximate intrinsic mode
functions both qualitatively and quantitatively very close
to the true intrinsic mode functions. Besides, compared
with the conventional block processing method which
significantly suffered from the boundary effect problem,
our proposed method does not have this issue.
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1 Introduction

Many human body signals such as PPG, ECG and EEG
signals are localized in very narrow frequency bands.
They are nearly bandlimited. Besides, they are non-
stationary. In order to analyze these signals, an adap-
tive approach called the empirical mode decomposi-
tion approach is employed [1, 2, 3, 4]. As a powerful
time-frequency analysis tool, the empirical mode de-
composition have been applied in the estimation of in-
stantaneous frequency, pre-processing and feature pre-
selection applications [5, 6, 7]. Besides, some improve-
ments of empirical mode decomposition with masking
signals or Gaussian white noise can be found in [8,
9].However, the empirical mode decomposition is an it-
erative process which requires to find the extrema of the
signal, perform the interpolation among the extrema
and subtract the original signal from the interpolated
signal in each iteration. Hence, the required computa-
tional power for performing the empirical mode decom-
position is large. Therefore, there is a great demand to
have a parallel implementation of the empirical mode
decomposition for the nearly bandlimited signals.

The common method for the parallel processing is
via the block processing approach [10, 11, 12]. That is,
the signal is divided into a finite number of blocks of
sub-signals with each block of the sub-signal is local-
ized in a particular time support.However, in general,
the numbers of the intrinsic mode functions of differ-
ent blocks of the sub-signals are different. Hence, it is
difficult to obtain the intrinsic mode functions of the
original signal based on the intrinsic mode functions of
the blocks of the sub-signals. Besides, the final value
of the intrinsic mode function of a previous block of
the sub-signal may not be equal to the initial value of
the intrinsic mode function of the next block of the
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sub-signal. This leads to the occurrence of the discon-
tinuities at the boundaries of two consecutive blocks of
the sub-signals. This is known as the boundary effect.

To address the above problem, this paper proposes
to break down the signal into the polyphase components
via the downsampling approach. Then, each polyphase
component is represented as the sum of the intrinsic
mode functions. Next, the intrinsic mode functions of
the polyphase components are upsampled. Finally, the
upsampled intrinsic mode functions are combined to
obtain the approximated intrinsic mode functions of the
original signal. Since the nearly bandlimited signals are
oversampled, the values of the original signal within a
local neighborhood are almost the same. Hence, differ-
ent polyphase components are very similar. This im-
plies that the numbers of the intrinsic mode functions
of different polyphase components are almost the same.
Therefore, the intrinsic mode functions of the original
signal can be approximated by the intrinsic mode func-
tions of the polyphase components. However, there are
still differences among different polyphase components
even though these differences are very small. These dif-
ferences may result to the occurrences of the oscillations
in the approximated intrinsic mode functions. To sup-
press these oscillations, a simple lowpass filtering ap-
proach is applied. The computer numerical simulation
results show that the errors between the true intrinsic
mode functions and the approximated intrinsic mode
functions of the original signal are very low.

The outline of this paper is as follows. Section 2

presents the proposed parallel implementation of the
empirical mode decomposition. The computer numer-
ical simulations are presented in Section 3. Finally, a
conclusion is drawn in Section 4.

2 Proposed Parallel Implementation of
Empirical Mode Decomposition

A signal x[n] is called nearly bandlimited with the over-
sampling factor L ∈ Q if nearly all energy of the sig-
nal is localized within the frequency band [−π/L, π/L].
The polyphase representation of x[n] with M polyphase
components is defined as [13, 14]:

X(z) =

M−1∑
i=0

z−iXi(z
M ), (1)

where X(z) is the z-transform of x[n] and Xi(z
M ) is

the ith polyphase component of X(z). It is worth not-
ing that if L > M , then Xi(z

M ) is also nearly bandlim-
ited with the oversampling ratio M . Hence, if Xi(z

M )

is downsampled by M , then the aliasing effect is small.
As a result, different polyphase components are very

similar to each others. Therefore, the numbers of the
intrinsic mode functions of different polyphase compo-
nents are almost the same.

Now, the empirical mode decomposition is applied
to x[Mn+ i] and we have

x[Mn+i] =

Ni−1∑
j=1

ci,j [n]+ri[n] ∀i ∈ {0, · · · ,M−1}, (2)

where ci,j [n] and ri[n] is the jth intrinsic mode function
and the residue of x[Mn+ i], respectively.

It is worth noting that the sifting process of the
traditional empirical mode decomposition acts as the
iterative highpass filtering [15, 3]. That is, finding the
mean envelope of a signal in each iteration and per-
forming the adaptive interpolation act as the lowpass
filtering. Therefore, subtracting the mean envelope in
each iteration is equivalent to perform the highpass fil-
tering. Fig. 1 plots the magnitude responses of the first
four intrinsic mode functions of a PPG signal. Although
these frequency bands are overlapped each others, it can
be seen from Fig. 1 that the widths and the peak fre-
quencies of these bands decrease as the sifting process
proceeds.
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Fig. 1 The magnitude responses of the first four intrinsic mode
functions of a PPG signal.

As explained in the above, x[Mn+ i] is also nearly
bandlimited. Hence, the aliasing effect is small and the
polyphase components preserve the shape of the origi-
nal signal. Fig. 2 shows the magnitude responses of the
first intrinsic mode function of the first four polyphase
components of the PPG signal. It can be seen from Fig.
2 that the amplitudes and the frequency bands of these
polyphase components are very similar to each others.

Suppose that cj [n] and r[n] is the jth intrinsic mode
function and the residue of x[n], respectively. That is

x[n] =

N−1∑
j=1

cj [n] + r[n]. (3)
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Fig. 2 The magnitude responses of the first intrinsic mode
function of the first four polyphase components of the PPG
signal.

Then, we have
N−1∑
j=1

Cj(z) +R(z) =

M−1∑
i=0

z−i(

Ni−1∑
j=1

Ci,j(z
M ) +Ri(z

M )).

(4)

Here, Cj(z), R(z), Ci,j(z) and Ri(z) are the z-transforms
of cj [n], r[n], ci,j [n] and ri[n], respectively.

If Ni = N ∀i, then we have
N−1∑
j=1

Cj(z) +R(z) =

N−1∑
j=1

(

M−1∑
i=0

z−iCi,j(z
M ))

+

M−1∑
i=0

z−iRi(z
M ).

(5)

Hence, we have

Cj(z) ≈
M−1∑
i=0

z−iCi,j(z
M ) ∀j ∈ {1, · · · , N − 1} (6)

and

R(z) ≈
M−1∑
i=0

z−iRi(z
M ). (7)

Now, consider the case where ∃i such that Ni < N .
For these values of i, define ci,j [n] = 0 for Ni ≤ j ≤
N −1 and reset Ni = N . Then, (6) and (7) are applied.
On the other hand, consider the case where ∃i such
that Ni > N . Define an index set S that contains these
values of i. Then, we have
N−1∑
j=1

Cj(z) +R(z) =

N−1∑
j=1

(

M−1∑
i=0

z−iCi,j(z
M ))

+

M−1∑
i=0

z−iRi(z
M )+

∑
i∈S

z−i
Ni−1∑
j=N

Ci,j(z
M ).

(8)

Now, we have

Cj(z) ≈
M−1∑
i=0

z−iCi,j(z
M ) ∀j ∈ {1, · · · , N − 1} (9)

and

R(z) ≈
M−1∑
i=0

z−iRi(z
M ) +

∑
i∈S

z−i
Ni−1∑
j=N

Ci,j(z
M ). (10)

From the above, it can be seen that the intrinsic mode
functions of the original signal can be approximated
by the intrinsic mode functions of its polyphase com-
ponents. As the lengths of the polyphase components
are shorter than the length of the original signal, the
required computational powers for computing the ap-
proximated intrinsic mode functions are much reduced.

However, there are time delays among different polyphase
components. In fact, the approximated intrinsic mode
functions are the sums of the delayed version of the up-
sampled intrinsic mode functions of the polyphase com-
ponents. Hence, this may lead to the occurrences of the
oscillations in the approximated intrinsic mode func-
tions. To suppress the oscillations in the approximated
intrinsic mode functions, a simple lowpass filtering is
applied to smoothen these oscillations.

3 Computer Numerical Simulation Results

To evaluate the performance of our proposed method,
the ratio of the error energy between the ith true intrin-
sic mode function and the ith approximated intrinsic
mode function to the energy of the ith intrinsic mode
function of the original signal is employed as the metric.
That is

Errj =

∑N
n=1 |cj [n]− c̄j [n]|2∑N

n=1 |cj [n]|2
, (11)

where c̄j [n] =
∑M−1

i=0 ci,j [n+ i] is the jth approximated
intrinsic mode function of x[n].

To demonstrate the effectiveness of our proposed
method, all simulations are conducted using MATLAB
run on a workstation with Windows OS and Intel Core
i7 CPU.

3.1 Example: Ideal sinusoidal signal

Consider a toy example of an oversampling sinusoidal
signal with four tones as follows:

x[n] = 0.15 sin(2π ∗ 0.035n) + 0.35 sin(2π ∗ 0.025n)
+0.25 sin(2π ∗ 0.015n) + 0.25 sin(2π ∗ 0.005n).
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(12)

It is worth noting that different tones have different
amplitudes and frequencies. These amplitudes and fre-
quencies are chosen in such a way that the mode fix-
ing phenomenon does not occur [16]. Besides, the total
number of the polyphase components M is chosen as 5

and the length of the original signal is chosen as 20000.
Here, the conventional block processing method is

employed to compare with our proposed method. For
the block processing method, the original signal is di-
vided into 5 non-overlapping blocks with each block
having the length 4000. After performing the empiri-
cal mode decomposition on each block of the signal,
those 2nd intrinsic mode functions of these 5 blocks of
the signal are combined to form a 20000 point approx-
imated 2nd intrinsic mode function. It is worth noting
that the envelop of the signal in each block is very dif-
ferent from that of the original signal. Therefore, only
the intrinsic mode functions with their indices smaller
than or equal to the total number of the intrinsic mode
functions of the original signal are considered in the
block processing method. Fig. 3 shows the 2nd true in-
trinsic mode function as well as that obtained by our
proposed method and the block processing method. It
can be seen that our proposed method can achieve the
approximated intrinsic mode function very close to the
true intrinsic mode function without suffering from the
boundary effect. On the other hand, the approximated
intrinsic mode function obtained by the block process-
ing method is severely suffered from the boundary ef-
fect. That is, there are very large discontinuities along
the boundaries of the blocks. This implies that our pro-
posed method qualitatively outperforms the block pro-
cessing method for this demonstrated signal. In this
example, the total number of the intrinsic mode func-
tions of the original signal is 4. Hence, the errors of
these four intrinsic mode functions are evaluated. Ta-
ble 1 shows these errors obtained by both our proposed
method and the block processing method. It can be
seen that the errors obtained by our proposed method
are much smaller than that obtained by the block pro-
cessing method. Hence, our proposed method quanti-
tatively outperforms the block processing method. Be-
sides, Table 2 lists the required computational time for
performing the empirical mode decomposition directly
on the original signal as well as that via the block pro-
cessing method and our proposed method. Compared
with the required computational time for performing
the empirical mode decomposition directly on the orig-
inal signal, the required computational time of our pro-
posed method is much smaller. Though our proposed
method requires a more computational time than the
block processing method, our proposed method both

Table 1 Errors of the approximated intrinsic mode functions
(IMF) obtained by both our proposed method and the block
processing method.

Methods Proposed method Block processing method

1st IMF 2.7x10−5 1.04x10−2

2nd IMF 7.48x10−5 3.46x10−2

3rd IMF 11.1x10−5 29.35x10−2

4th IMF 11.8x10−5 60.01x10−2

Table 2 Required computational time (in seconds) for per-
forming the empirical mode decomposition (EMD) directly on
the original signal as well as that via the block processing
method and our proposed method.

Direct EMD Block processing Proposed method

0.042762 0.015510 0.024935

qualitatively and quantitatively outperforms the block
procesing method.

Fig. 4 plots the 4th intrinsic mode functions of all
the polyphase components of the original signal. It can
be seen that there are differences among different polyphase
components even though these differences are very small.
As the approximated intrinsic mode functions are the
sums of the delayed version of the upsampled intrin-
sic mode functions of the polyphase components, this
may result to the occurrences of the oscillations in the
approximated intrinsic mode functions.
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Fig. 3 The 2nd approximated intrinsic mode functions ob-
tained by both our proposed method and the block processing
method.

3.2 Example: PPG signal

Now, consider a second example downloaded from the
PhysioBank ATM database which is a practical wrist
PPG signal acquired during an exercise [17]. The signal
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Fig. 4 The 4th intrinsic mode functions of all the polyphase
components of the original signal.

is shown in Fig. 5. Fig. 6 shows the 4th true intrin-
sic mode function of the original signal as well as the
4th approximated intrinsic mode functions obtained by
both our proposed method and the block processing
method. It can be seen that the 4th approximated in-
trinsic mode function obtained by the block process-
ing method is completely different from that of the 4th
true intrinsic mode function of the original signal. On
the other hand, the 4th approximated intrinsic mode
function obtained by our proposed method preserves
the shape of the 4th true intrinsic mode function of the
original signal. This implies that our proposed method
qualitatively outperforms the block processing method
for this practical nearly bandlimited signal. In this ex-
ample, the total number of the intrinsic mode func-
tions is 5. Table 3 lists that the errors of these intrinsic
mode functions obtained by both our proposed method
and the block processing method. It can be seen that
the errors obtained by our proposed method are lower
than those by the block processing method. Hence, our
proposed method quantitatively outperforms the block
processing method. Besides, Table 4 lists the required
computational time for performing the empirical mode
decomposition directly on the original signal as well
as that via the block processing method and our pro-
posed method. Compared with the computational time
for performing the empirical mode decomposition di-
rectly on the original signal, the required computational
time of our proposed method is much smaller. Similarly,
although the required computational time of our pro-
posed method is a bit higher than that of the block
processing method, our proposed method both quali-
tatively and quantitatively outperforms the block pro-
cessing method.
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Fig. 5 Original wrist PPG signal.
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Fig. 6 The 4th approximated intrinsic mode functions obtained
by both our proposed method and the block processing method.

Table 3 Errors of the approximated intrinsic mode functions
(IMF) obtained by both our proposed method and the block
processing method.

Methods Proposed method Block processing method

1st IMF 0.466x10−2 1.115x10−2

2nd IMF 1.501x10−2 3.324x10−2

3rd IMF 4.515x10−2 10.125x10−2

4th IMF 13.067x10−2 30.843x10−2

5th IMF 15.232x10−2 59.149x10−2

Table 4 Required computational time (in seconds) for per-
forming the empirical mode decomposition (EMD) directly on
the original signal as well as that via the block processing
method and our proposed method.

Direct EMD Block processing Proposed method

0.333001 0.053585 0.114016

3.3 Example: Musical signal

In this example, a practical long musical signal is em-
ployed to demonstrate the effectiveness of our proposed
method. The length of the original signal is 900000. The
signal is represented by 20 polyphase components and
the total number of the intrinsic mode functions are 8.
Table 5 lists the errors of the intrinsic mode functions
obtained by both our proposed method and the block
processing method. In this example, it can be seen that
the errors obtained by our proposed method in the first
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Table 5 Errors of the approximated intrinsic mode functions
(IMF) obtained by both our proposed method and the block
processing method.

Methods Proposed method Block processing method

1th IMF 1.585x10−2 0.576x10−2

2th IMF 2.175x10−2 1.058x10−2

3th IMF 3.387x10−2 1.673x10−2

4th IMF 2.591x10−2 2.687x10−2

5th IMF 2.342x10−2 3.441x10−2

6th IMF 3.331x10−2 5.350x10−2

7th IMF 4.388x10−2 8.651x10−2

8th IMF 6.352x10−2 13.722x10−2

Table 6 Required computational time (in seconds) for per-
forming the empirical mode decomposition (EMD) directly on
the original signal as well as that via the block processing
method and our proposed method.

Direct EMD Block processing Proposed method

1.4785 0.31485 0.51688

3 intrinsic mode functions are higher than those by the
block processing method. This is because the errors due
to the inconsistency between the consecutive blocks in
the first three intrinsic mode functions are negligible.
However, the errors from the 5th intrinsic mode func-
tion obtained by our proposed method are smaller than
those obtained by the block processing method. Over-
all, our proposed method quantitatively outperforms
the block processing method. Besides, Table 6 lists the
required computational time for performing the empiri-
cal mode decomposition on the original signal as well as
that via the block processing method and our proposed
method. It can be seen that the required computational
time of our proposed method is much lower than that
for performing the empirical mode decomposition di-
rectly on the original signal. Similarly, although the re-
quired computational time of our proposed method is a
bit higher than that of the block processing method, our
proposed method both qualitatively and quantitatively
outperforms the block processing method.

3.4 Example: Length of the day signal

In the last example, the signal on the length of the
day covering the period from 1978 to 1988 studied by
Huang et al [18] is employed for the illustration. The
signal is shown in Fig. 7. Here, the length of the sig-
nal is 4000. It is represented by 4 polyphase compo-
nents. The comparison is performed on the 6th intrin-

sic mode functions obtained by various methods. It can
be clearly seen that the approximated intrinsic mode
functions obtained via the block processing method is
completely different from the true intrinsic mode func-
tion. On the other hand, the approximated intrinsic
mode functions obtained by our proposed method is
similar to the true intrinsic mode functions of the origi-
nal signal. This implies that our proposed method qual-
itatively outperforms the block processing method for
this real world signal. Table 7 lists the errors of the in-
trinsic mode functions obtained by both our proposed
method and the block processing method. In this ex-
ample, the total number of the intrinsic mode func-
tions is 6. It can be shown that the errors obtained
by our proposed method are lower than those obtained
by the block processing method. Hence, our proposed
method quantitatively outperforms the block process-
ing method. Table 8 presents the required computa-
tional time for performing the empirical mode decom-
position on the original signal for these three methods.
The table shows that the required computational time
of our proposed method is much lower than that for
performing the empirical mode decomposition directly
on the original signal. Similarly, although the required
computational time of our proposed method is a bit
higher than that of the block processing method, our
proposed method both qualitatively and quantitatively
outperforms the block processing method.
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Fig. 7 The 6th approximated intrinsic mode functions obtained
by both our proposed method and the block processing method.

Finally, our proposed method is compared with a
fast empirical mode composition algorithm namely the
UOAEMD [19]. For the UOAEMD, an unconstrained
convex optimization approach is employed to obtain the
intrinsic mode functions. Since it does not involve the
interpolation and the iteration, this method greatly re-
duces the required computational time. In this example,
the total number of the intrinsic mode functions is 7.
Table 9 lists the errors of the first five intrinsic mode
functions obtained by both the UOAEMD and our pro-
posed method. It is clearly seen that the errors obtained
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Table 7 Errors of the approximated intrinsic mode functions
(IMF) obtained by both our proposed method and the block
processing method.

Methods Proposed method Block processing method

1th IMF 1.050x10−2 2.263x10−2

2th IMF 0.272x10−2 0.857x10−2

3th IMF 2.302x10−2 4.004x10−2

4th IMF 0.991x10−2 7.334x10−2

5th IMF 1.601x10−2 13.606x10−2

6th IMF 8.545x10−2 90.530x10−2

Table 8 Required computational time (in seconds) for per-
forming the empirical mode decomposition (EMD) directly on
the original signal as well as that via the block processing
method and our proposed method.

Direct EMD Block processing Proposed method

0.042101 0.017967 0.032493

Table 9 Errors of the intrinsic mode functions (IMF) obtained
by both our proposed method and the UOAEMD.

Methods Proposed method UOAEMD

1th IMF 1.050x10−2 0.547x10−2

2th IMF 0.272x10−2 1.137x10−2

3th IMF 2.302x10−2 7.877x10−2

4th IMF 0.991x10−2 6.304x10−2

5th IMF 1.601x10−2 7.772x10−2

Table 10 Required computational time (in seconds) for both
the UOAEMD and our proposed method.

UOAEMD Proposed method

2.317578 0.032493

by the UOAEMD are larger than that obtained by our
proposed method. Besides, Table 10 lists the required
computational time of these two methods. It is worth
noting that the UOAEMD is slower than the original
empirical mode decomposition method. This is because
it involves the matrix computation. Therefore, our pro-
posed method outperforms the existing fast methods in
terms of the required computational time and the errors
of the intrinsic mode functions.

4 Conclusion

This paper proposes a parallel implementation of the
empirical mode decomposition for nearly bandlimited

signals via the polyphase representation. Compared with
the block processing method, our proposed method out-
performs both qualitatively and quantitatively. This
is because our proposed method greatly reduces the
boundary effect caused by the discontinuities between
two consecutive blocks in the block processing method.

For the practical applications, the human signals
such as the PPG, the ECG and the EEG signals are
often acquired using the oversampling strategy. The
polyphase components almost preserve the shape of
the original signal. Also, as the energies of the nearly
bandlimited signals are localized in the low frequency
band, the lowpass filtering method would successfully
suppress the oscillations generated by the differences
among the intrinsic mode functions of the polyphase
components. Hence, our proposed method achieves an
excellent performance.
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