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Abstract One of the most significant indicator of heart
disease is arrhythmia showing heartbeat patterns. Thus,

early and accurate detection of arrythmia types by cat-

egorization of heartbeats is important.

In this paper, we introduce an ECG beat classi-
fier system integrating two main parts: Feature extrac-

tion and classification. For the first part, we consider

the features observed in the time frequency (t, f) plane

where the ECG is projected using a variant of Stock-

well transform. For the second part, the framework of
semi supervised SVM with asymmetric costs (AS3VM)

has been applied for assessment of the obtained feature

sets performance. Notice that four heartbeat types have

been considered: normal beats (N), left and right bun-
dle branch blocks (L and R) and premature ventricular

contractions (V).

The proposed method has been evaluated on Phy-

sionNet’s MIT-BIT arrythmia database. The obtained
results show that the suggested approach achieves sig-

nificant separability of the classes and thus, able to

make prediction accuracies of 99.35%, 98.73%, 98.57%

and 99.44% for respectively N, L, R and V beats.
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1 Introduction

The Electrocardiogram (ECG) is the electrical manifes-

tation of the contractile activity of the heart. The ECG

waveform is characterized by the waves: P, QRS and

T. The analysis of the electrocardiogram is one of the
most important problems in modern biomedical signal

analysis. By segmenting the ECG signal, it is possible

to derive a number of informative measurements from

the characteristic ECG waveforms. These can then be

used to detect any potential abnormalities in the car-
diac rhythm.

Long-term recordings of the ECG signal are often

required and usually obtained using the popular ambu-
latory Holter recorders. The analysis is performed off-

line by cardiologists. Due to the high number of beats

to evaluate, this task is very expensive and time con-

suming. Computer-aided classification of pathological

beats is therefore of great importance. However, this is
a difficult task in real situations not only because of the

physiological variability of the signal, but also because

of the various types of noises often present in the ECG

signal.

Many algorithms dealing with heartbeat classifica-

tion have been addressed previously in the literature.

The accuracy of this automatic classification depends

considerably on the derived heartbeat features. The
most popular time beat descriptors are based on the

QRS complex morphology [1] [2] [3] [4] [5]. Beat de-

scriptors rely also on its frequency components [6] [7]
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[8]. Wavelet transform at appropriate scale has been

exploited for feature beats extraction in [4] [5] [9]. Re-

cently, a time-frequency domain obtained with the S-

transform has been explored to obtain a 2D morphology

descriptor combined with principal component analysis
(PCA) [9] [10].

All studies demonstrated that the applied classifi-
cation method also influences the achieved accuracy.

Thus, several discriminative techniques have been de-

veloped. Such that Artificial Neural Networks [1] [2]

[11] [12] with deep learning in [11] and hybrid model
based on neural networks in [12]. Other work used the

Kth nearest-neighbor rule [2] and genetic algorithms

[6]. Among all these methods, Support Vector Machines

(SVMs) known to be an excellent tool for classification

and regression problems has shown success in this ap-
plication field e.g. [6] [8] [10].

In this paper, beat descriptors are computed in the
time-frequency plane because of its ability to highlight

many time varying characteristics. Such information

cannot be obtained directly from signals representa-

tions in time or in frequency domains only. To project
the ECG signal in a time-frequency domain, a vari-

ant of stockwell transform (ST) [13] namely, the ST

with a compact support kernel (ST-CSK) introduced

in [14] has been used. Without any filtering, this time-

frequency representation allows us to detect R peaks, to
segment the heartbeats and thus, to obtain optimized

ventricular activity features. After the feature extrac-

tion step, an AS3VM classifier is used to classify heart-

beats. This classifier tasks has the advantage of using
few labeled data. It also integrates distinct weights for

the classes depending on their priors.

The rest of this paper is organized as follows. Sec-

tion 2 presents the methodology namely, the projec-

tion of the signal on the time-frequency domain, fea-

ture extraction in such domain and then classification.

Experimental results are shown in section 3. Section 4
concludes the paper.

2 Methods

2.1 Database

It is necessary to use a standard database to evaluate
and compare the obtained result with other published

studies. Thus data for the evaluation of our proposal

are obtained from standard datasets [15] in Physionet.

This database contains 48 records. Each record is of
length 30 min with 360 Hz sampling frequency. They

were recorded in two channels (modified limb lead II

and modified limb lead VI) of surface ECG from Holter

recorders. They present a variety of waveforms, arti-

facts, complex ventricular, junctional and supraventric-

ular arrhythmias and conduction abnormalities. Each

record is accompanied by an annotation file in which

each ECG beat has been identified by expert cardiolo-
gists. These labels referred to as ’truth’ annotation and

are used to develop the classifier and to evaluate its

performance in the testing phase.

In this study, we considered four heartbeat classes

which are representative for the predominant types:

normal beats (N), left bundle branch block beats (L),

right bundle branch block beats (R) and Ectopic beats
(V). There shapes are displayed on Figure 1 (left). In

agreement with the AAMI [16] recommended practice,

records containing paced beats (102, 104, 107, and 217)

were excluded.

2.2 Signal processing

In this paper, beat segmentation and feature extraction
are done in the time-frequency plane. Thus, the first

step is the time-frequency representation of the signal

using ST-CSK, a variant of the ST. This latter orig-

inates from two advanced signal processing tools, the
short time Fourier transform (STFT) and the continu-

ous wavelet transform (CWT). Derived from the STFT,

the standard ST of a signal x(t) is given by:

S(τ, f) =

∫ +∞

−∞
x(t)w(t − τ)e−i2πftdt. (1)

where the window function w(t) = 1
σ
√
2π

e
−t2

2σ2 is a nor-

malized gaussian known to be compact in both time

and frequency axis. The window width σ = 1
|f | vary-

ing inversely with frequency makes the ST performing
a progressive resolution. The ST-CSK proposed in [14]

overcomes practical drawbacks of the ST while preserv-

ing a large number of its useful properties.

Derived from the gaussian one, the proposed kernel

φ(t) used in the ST-CSK has a polynomial form. In this

case, a shifted and scaled kernel has been expressed as:

φλ(t−τ) =

{

1
Dγ

(λ2 − (t− τ)2)γ , if (t− τ)2 < λ2 ,

0, elsewhere .
(2)

where Dγ is a normalization parameter. The kernel

width is controlled through λ and its peak is adjusted
through the parameter γ allowing a tradeoff between

a good autoterm resolution and a sufficient cross-term

suppression. The scale parameter λ has been assumed

to be a function of frequency λ(f) = 1
p+fr . This param-

eter aims to make the kernel more flexible and more

adaptive to the analysed signal. Hence, the resolution

in time and in frequency axis will be turned depending
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Fig. 1: Different forms of ECG beats (Left); Relation between frequencies and power levels of different beats(Right). These
power levels have been presented with the same colors as those indicating (N,L,R and V) beats in the left panel of this figure.

on these parameters. To maximize the energy concen-

tration, an optimization problem has been formulated

under some constraints related to the width λ(f). More
details about this problem and its resolution can be

found in [14]. For a time series x(kT ) corresponding to

x(t) with k = 0, .., N − 1 and T , the time sampling in-

terval, the output of the discrete CSK S-Transform is

an N by M matrix called ST-matrix where rows rep-
resent the time and columns, the frequencies. In this

paper, a frequency range [0Hz− fs
2 Hz] is used to cover

the composite ECG signal.

2.3 Beat detection

In order to obtain an automatic measurement of the

ventricular activity, beat segmentation is required. Thus,
R peak detection is unavoidable. This step is crucial be-

cause of different noises present in the signal and the

variability of QRS shapes and their frequency content.

Accordingly, a wide diversity of R peak detection algo-
rithms have been proposed in the literature [17][18][19].

In this study, R peak detection is done in the time-

frequency domain without recourse to any filtering step.

The algorithm proposed in [19] has been used. However,

the ST-CSK [14] has been considered since it showed
better time frequency resolution and better energy con-

centration. After R peaks detection, a time-frequency

window is defined for each beat. The Q-S segment as

shown in [18] [19] is in a frequency range of [5-22.5 Hz]
with at most 150 ms of width in the time axis(50 ms

for the Q-R segment and 100 ms for R-S segment. Thus

the beat features are computed.

2.4 Feature quantification

The QRS complex morphology and duration in ECG

signal vary with origination and conduction path of the

activation pulse in the heart. Thus, one can see in Fig-

ure 1 that the considered heartbeat types can be dis-
criminated in both time domain and frequency domain.

Therefore, heartbeat detection and classification meth-

ods found in literature include the use of time only fea-

tures, spectral only features [6] [7] or combination of

time only with frequency only features [8] [26]. ECG
segments containing respectively N, L, R and V beats

are projected in the time-frequency plane as shown in

Figure 2. One can see that we can compute beat dis-

criminative features in this plane. These features will
successfully represent joint TF structure of the signal.

Investigating this approach is the aim of the first part

of this paper.

Even TFDs are rich in information, all the (t,f) con-

sidered window or matrix cannot be used as features for

the classification. This would significantly increase the
problem dimensionality. To avoid this, a representative

set of features describing the relevant information of

the ventricular activity are to be extracted from the

CSK-ST matrix. Some frequency features such as the
spectral flux, spectral entropy and spectral flatness are

often employed for detecting abnormalities in biomed-

ical signals [22]. Here, these spectral features extended

to the joint time-frequency domain [23][24] are consid-

ered.

1. Time-frequency flatness: spectral flatness also
known as Wiener entropy measures the width and

uniformity of the power spectrum. In [24], this fea-

ture has been extended to the (t, f) domain. It is
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Fig. 2: ECG segments projection in the time-frequency plane using ST-CSK.

defined as the geometric mean of the S(n, k) nor-

malized by its arithmetic mean.

SF(t,f) = MN

∏N
n=1

∏M
k=1 S(n, k)

∑N
n=1

∑M
k=1 S(n, k)

(3)

where M and N are respectively the time and fre-

quency dimensions of the considered ventricular ac-
tivity window. To avoid zero products in (3), all

zeros of the ST are replaced by very small values

(i.e. epsilon in MATLAB).

2. Time-frequency flux: this parameter measures the
variation of the signal energy both along time and

along frequency axes.

FL(t,f) =

N−1
∑

n=1

M−1
∑

k=1

|S(n+ 1, k + 1)− S(n, k)| (4)

3. Energy concentration: Many results of the liter-

ature review [21] indicate that using energy concen-

tration CM as a feature, is a very powerful tool in
a classification process. This parameter also used in

[14] is defined as:

CM =
1

∑N
1

∑M
1 |S(τ, f)|

(5)

Where the module of the used version of the S-
transform is normalized as:

S(τ, f) =
S(τ, f)

√

∑N
1

∑M
1 |S(τ, f)|2dτdf

. (6)

2.5 Classification

To classify the patterns, the framework of semi super-

vised learning approach addresses this problem by tak-
ing advantage of using few limited labeled data in order

to train precise classifier while requiring less human ef-

fort and time.

For this purpose, SVM classifier has been consid-

ered. This classifier with a good generalization capa-

bility is derived from the structural risk minimization

principle [25]. The supervised SVM needs a large set
of labelled data to build a good model deducting the

label of each new point. However, the labelled data are

costly and time consuming. The aim of semi-supervised

learning is to use the information contained in the unla-
belled data as a distribution of the data to improve the

classifier performance. The problem of semi-supervised

SVM consists to find the labels y∗1 , y
∗
2 , ...y

∗
m of the un-

labelled data by looking for an hyperplane maximizing

the margin and minimizing the cost error for both la-
belled data (x1, y1), (x2, y2), ...(xn, yn) and unlabelled

data x∗
1, ...x

∗
m. Notice that the training error of each

class are penalized differently. This is often recommended

in biomedical applications. For an optimal generaliza-
tion performance, the unlabelled data must be less pe-

nalized than the labelled ones. The optimization prob-

lem of the AS3VM is set as:















































min
w,b,ξi,ξ∗j ,y

∗

j

1

2
‖w‖2 + C+

∑

i/yi=+1

ξi + C−
∑

i/yi=−1

ξi+

C∗
+

∑

j/y∗

j
=+1

ξ∗j + C∗
−

∑

j/y∗

j
=−1

ξ∗j ,

yi(w, φ(xi) + b) ≥ 1− ξi i = 1, . . . , n ,

y∗j (w, φ(x
∗
j ) + b) ≥ 1− ξ∗j j = 1, . . . ,m ,

ξi ≥ 0 , ξ∗j ≥ 0, y∗j ∈ {1,−1} .

(7)

Where ξi and ξ∗j are the slack variables that relax the

constraints and define a loss function penalizing the
training and testing errors respectively. C and C∗ are

trade-off constants for training and testing examples re-

spectively. φ denotes a nonlinear transformation that
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maps data to a higher dimensional space. The dual

problem to maximize can be expressed as:














































































max
α,α∗

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

r=1

αiαryiyrK(xi, xr)+

m
∑

j=1

α∗
j −

1

2

m
∑

j=1

m
∑

l=1

α∗
jα

∗
l y

∗
j y

∗
l K(xj , xl)−

n
∑

i=1

m
∑

j=1

αiα
∗
jyiy

∗
jK(xi, x

∗
j )

n
∑

i=1

αiyi +
m
∑

j=1

α∗
jy

∗
j = 0 ,

C+ ≥ αi/yi=+1 ≥ 0 , C− ≥ αi/yi=−1 ≥ 0
C∗

+ ≥ α∗
j/y∗

j
=+1 ≥ 0 , C∗

− ≥ α∗
j/y∗

j
=−1 ≥ 0

(8)

where αi and α∗
j are the Lagrange multipliers re-

spectively for learning and testing set.

K(xi, xj) =< φ(xi), φ(xj) > is the kernel. An algo-

rithm for resolving this problem with a combinatorial

optimization approach is given in [27]. The idea is to fix

y∗1 , y
∗
2 , ...y

∗
m with the supervised SVM and to increment

gradually C∗
+ and C∗

− starting with small variations to

target C∗ by respecting the balancing constraint de-

fined as :

R =
1

2
[1 +

1

m

m
∑

j=1

y∗j ] (9)

Where R represents the ratio estimated from a priori
knowledge or from the set of labeled data. The con-

straints (9) is added to avoid the degeneration of the

solution by attributing all the unlabeled data to the

same class when the size of unlabeled data is very large
compared to the labeled one. After resolving the dual

problem (8) and thus, computing the lagrangian multi-

plier, the classifier output is given by equation (10)

f(x) =

n
∑

i=1

αiyiK(xi, x) +

m
∑

j=1

α∗
jy

∗
jK(x∗

j , x) + b (10)

and the decision is the sign of f(x). Thus, y(x) =

sign(f(x)). Notice that the multi-class classification task
using one against all method consist to consider one

class as positive and the rest of classes as negative.

3 Experimental results and discussion

In a classification task, extracting characteristics is a
very decisive step. In this work, we proceeded to heart-

beat feature extraction in the time-frequency plane.

This method allowed us to quantify each beat by only

a three-element vector. In Figure 3, the patterns are
mapped in a two dimensional space. Thus, it can be

seen that the extracted features separate successfully

all the classes.

For heartbeat recognition, a two-step approach based

on the SVM (one-vs-all approach) has been used for the

multi-class classification. The input of the classifier is a

set of three element vectors xi.

To fine tune a global classifier, a general learning
set is randomly selected in the records. For semi su-

pervised classification, small labeled learning sets have

been used to perform many tests. These sets contain

about 5 to 50 samples from each class taken from the
first 5 minutes of the corresponding record. Notice that

a balance in the number of beats in each category is

taken into consideration. from each class taken from

the first 5 minutes of the corresponding record. Notice

that a balance in the number of beats in each category
is taken into consideration..

In order to illustrate the effectiveness of the classifi-

cation methodology, we simply apply standard statisti-

cal data visualization technique by its projection onto a
2D space as shown in Figure 2. In this Figure, a compar-

ison can also done between standard SVM (left) and the

AS3VM (right). One can see how the hyperplane and

the SVM margin have been readjusted by the AS3VM

to improve the classification results. This, despite the
fact that in some cases, ambiguous regions are observed

particularly between N and R and between R and L.

Moreover, it should be noted that these classes (N, L

and R) are often considered in the same class (Normal)
in agreement with the AAMI recommended practice.

In addition to illustrative results, correct classifica-

tion and misclassification are quantified with four met-

rics such that True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN). Thus, sta-

tistical parameters are evaluated using these metrics to

compare detection algorithms. The sensitivity Se and

the accuracy Ac of the classifier are respectively defined

as:

Se =
TP

TP + FN
and Ac =

TP + TN

TP + FP + TN + FN

Table 1 summarizes the classification results achieved
by the AS3VM classifier compared to those obtained

with a standard SVM classifier. The classification per-

formance on each heartbeat class was measured.

Many studies dealing with heartbeat classification

using the same database are found in the literature.
The S-transform has already been used to heartbeat

description in [9][10]. It should be noted that in both

studies, the use of filtering and R peak detection stages

are optional since the S-Transform allows us to access
to the frequency content of the QRS complexes without

recourse to any preprocessing stage. Thus, this detec-

tion can be done using local spectra as proposed in [19].
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Fig. 3: Scatter plots showing the separability of the classes when characterized in the time-frequency plane.

Table 1: Performances comparison between SVM and AS3VM classifiers.

Se(%) Sp(%) Ac (%)
Classifier N L R V N L R V N L R V
SVM 91.94 79.67 93.48 90.07 98.45 98.19 94.12 99.37 97.15 93.96 94.02 97.40

AS3VM 98.42 85.97 98.65 96.18 99.61 99.20 95.57 99.88 99.38 96.28 96.06 99.13

Table 2: Performances comparison between the proposed approach and other published methods.

Method Features Train ratio (%) Se(%) Ac(%)
N L R V N L R V N L R V

[4] 14 13 40 40 40 99.85 100 99.79 99.29 99.77 99.99 99.98 99.91
[5] 30 50 50 50 50 99.72 99.43 99.12 96.03 98.75 99.92 99.92 99.46
[8] 15 30 98.2 98.2 98.8 98.8
[10] −− 30 −− 89.10
[11] −− 90 90 90 90 98.17 95.78 94.37 90.43 97.27 98.36 99.29 99.07
[12] 140 90 90 90 90 95.09 87.15 97.00 98.82 97.89 98.1 99.4 98.3

Proposed 3 4.7 6.7 6.3 7.9 98.42 96.84 97.72 97.53 99.35 98.73 98.57 99.44

Table 2 provides a quantitative comparison between
the proposed method and earlier published approaches.

In terms of training set size, our method displays the

best percentage, namely an average of 6.4% of the en-

tire database. However the other studies used between

30% and 90% of the considered data. This, thanks to
the time-frequency features leading to a good separa-

bility between classes. In addition, the feature size is

minimal compared to other methods. this is important

when considering algorithmic complexity.

In the same table, we can observe that the proposed

method yielded to butter or comparable performances
in terms of average sensitivity and accuracy respectively

of 97.63% and 99.02%. In [4], the authors used morpho-

logical and dynamic features and obtained an overall

accuracy performance of 99.3% but with 2.4% of rejec-

tion. In [8], a set of 15 temporal only and frequency
only features have been used. With no rejection, the

achieved accuracy was 97.2%. It should be noted that

in that work, N, R, L beats have been considered in the

same class. In the most recent reference [11], deep learn-
ing approach has been used. Its benefits are to minimize

the number of preprocessing techniques but the train-
ing phase is computationally intensive and slow since it

uses 90% of the data.

4 Conclusion

This paper investigates a new approach for heartbeat

classification based on time-frequency features and semi

supervised learning.

The ECG signal is projected in the time-frequency

domain using the S-Transform with a compact sup-

port kernel. Notice that the ST matrix allows us access

to any frequency range. Therefore, the preprocessing
phase is unnecessary. In this plane, each beat is de-

tected and segmented as a 2D window where a feature

vector is extracted.

It should be noted that the novelty of this study is

the use of optimized QRS time-frequency features in-

stead of morphological or time only and frequency only

features. The illustrative results have shown that with
only three features, all classes have been successfully
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Fig. 4: Scatter plots showing the detection of different classes via one-versus-all. One can distinguish between one of the labels
(corresponding color) and the rest (pink). Using SVM (left) and S3VM (right).
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separated. This number of features will positively influ-

ence the complexity of our algorithm.

The AS3VM gives good performance using labelled

and unlabelled data with respecting the unbalancing

trade-off between classes. This classifier can be used
when the labelled data size are limited. The guaranteed

result (accuracy between 96.06% and 99.38%;sensitivity

between 85.97% and 98.65%) can reasonably improved

when including patient-specific local learning set. Fur-
thermore, it may be possible to improve detection re-

sults by using the optimized parameters of the kernel

used in the S-Transform, directly for classification in-

stead of focusing on energy concentration.
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