
 1 

 

Abstract—This paper presents a generative model method for 

multispectral image fusion in remote sensing which is trained 

without supervision. This method eases the supervision of learning 

and it also considers a multi-objective loss function to achieve 

image fusion. The loss function incorporates both spectral and 

spatial distortions. Two discriminators are designed to minimize 

the spectral and spatial distortions of the generative output. 

Extensive experimentations are conducted using three public 

domain datasets. The comparison results across four reduced-

resolution and three full-resolution objective metrics show the 

superiority of the developed method over several recently 

developed methods.  

 
Index Terms—Generative model in remote sensing, image 

fusion in remote sensing, deep learning in remote sensing. 

 

I. INTRODUCTION 

HE Earth observation satellites capture the earth’s surface 

information in different modalities including spectral, 

spatial and temporal. In the spectral modality, MultiSpectral 

(MS) data or images are captured at different wavelengths with 

low spatial resolutions. In the spatial modality, PANchromatic 

(PAN) data or images are captured over a long range of 

wavelengths with high spatial resolutions. The fusion of MS 

and PAN data or multispectral image fusion, named 

pansharpening in the remote sensing literature [1-8], involves 

combining the spatial and spectral modalities. In multispectral 

image fusion, the objective is to recover higher spatial 

resolutions for multispectral images by reducing the 

degradation processes that occur during data collection. This 

recovery can be viewed as an inverse image processing 

problem. This inverse problem is ill-posed, meaning that there 

exists a large number of high-resolution images that can get 

mapped to low-resolution input images. Image fusion 

techniques attempt to narrow down the search towards 

obtaining proper high-resolution images.  

 A number of review articles [9, 10] have categorized 

pansharpening or multispectral image fusion methods into three 

main groups consisting of (1) Component Substitution (CS) 

methods, e.g. [11-13], (2) Multi-Resolution Analysis (MRA) 

methods, e.g. [14-16], and (3) Model-Based (MB) methods, e.g. 

[17-19]. The main difference between the first two groups is in 

the way detail map computation is done. In CS methods, a detail  
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map is acquired by subtracting a PAN image from a 

linear/nonlinear combination of Low Resolution MS (LRMS) 

images, whereas in MRA methods, this map is obtained by 

subtracting a Low Resolution PAN (LRPAN) image from the 

PAN image. A LRPAN can be computed by applying 

decomposition methods such as wavelet transform of the PAN 

image. The third group of pansharpening methods involve using 

a Bayesian model and posing the fusion as an optimization 

problem.  

 In the last few years, deep learning models have been applied 

to multispectral image fusion generating better outcomes than 

conventional methods. An initial attempt was made in [20] by 

solving the pansharpening problem via a deep neural network 

framework where the nonlinear relationship between the low-

resolution and high-resolution images was formulated as a 

denoising autoencoder. In [21], a three-layer convolutional 

neural network was designed to turn the MS image fusion 

problem into a super-resolution problem. The concept of 

residual learning in MS image fusion was first introduced in 

[22], where a deep convolutional neural network was used. In 

[23], a deep denoising auto-encoder approach was utilized to 

model the relationship between a lowpass version of the PAN 

image and its high-resolution version. In [24], a deep 

convolutional neural network was developed for image super-

resolution (known as SRCNN), which showed superior 

performance compared to several other methods. In [25], a 

pansharpening method was introduced by using the SRCNN as 

a pre-processing step. In [26], a network structure (known as 

PanNet) was developed by incorporating the prior knowledge 

of pansharpening towards enhancing the generalization 

capability and performance of the network. A Generative 

Adversarial Networks (GANs) method (known as PSGAN) was 

discussed in [27] by minimizing the loss between the generative 

and discriminator parts. One of the advantages of GANs is that 

it reduces the blurriness on the fused image. Not only it attempts 

to decrease the 𝐿1 loss associated with each pixel, but it also 

attempts to minimize the loss across the entire fused image.  

     As far as the loss function in deep neural networks is 

concerned, a new perceptual loss was presented in [28] to better 

preserve the spectral information in fused images. In [29], a 

number of objective functions were examined. In the recently 

 

 

A Generative Model Method for Unsupervised 

Multispectral Image Fusion in Remote Sensing 

Arian Azarang, Student Member, IEEE, Nasser Kehtarnavaz, Fellow, IEEE 

T 



 2 

developed deep learning-based methods, the focus is placed on 

the preservation of spatial details. For example, the CNN model 

in [30] was designed for preserving details via a cross-scale 

learning algorithm. To address the effect of gradient vanishing, 

the concept of dense connection to pansharpening was extended 

in [31]. Most of the recently developed deep learning-based 

methods simply train and regularize the parameters of a 

network by minimizing a spectral loss between the network 

output and a pseudo Ground Truth (GT) image. The methods 

mentioned above primarily use a single objective learning to 

optimize network parameters and generalize its capability. 

However, other metrics that can represent both modalities 

(spatial and spectral) have recently gained more attention. For 

instance, in [32], based on the correlation maps between MS 

target images and PAN input images, a loss function was 

designed to minimize the artifacts of fused images. Also, in 

[33], it was shown that although a linear combination of MS 

bands could be estimated from the PAN image, a rather large 

difference in luminance was resulted. Thus, certain objects 

could not be differentiated properly. To address this issue, a 

color-aware perceptual (CAP) loss was designed to obtain the 

features of a pre-trained VGG network that were more sensitive 

to spatial details and less sensitive to color differences. The 

aforementioned methods rely on the availability of GT data for 

regularizing the network parameters. However, in practice, 

such data are not available [27].  

   The objective in this paper is to ease the above two 

limitations of the existing deep learning models for remote 

sensing image fusion. The first limitation involves dependency 

of GT data towards training a network and the second limitation 

involves the use of a generic loss function. The first limitation 

is eased by an unsupervised learning strategy based on 

generative adversarial networks. What is meant by 

unsupervised learning here is that the label/reference target is 

not available for training the deep model. A key point for 

unsupervised learning is that while the data passed through the 

deep model are abundant, the targets and labels are quite sparse 

or even non-existent. The second limitation is eased by 

designing a multi-objective loss function to reflect both spatial 

and spectral attributes at the same time.  

Section II presents the formulation of the developed 

generative model method as well as its architecture. Section III 

covers the datasets and objective metrics used in this paper. The 

experimental results covering both objective metrics and visual 

comparisons are then provided in Section VI. Finally, the paper 

is concluded in Section V. 

II. GENERATIVE MODEL METHOD 

This section provides a description of the developed 

generative model method. To set the stage, let us begin with the 

general framework of CS methods. The CS framework can be 

mathematically expressed by the following equation:  

 

𝐌̂𝑘 = 𝐌̃𝑘 + 𝑔𝑘(𝐏 − 𝐈𝑘) 

where 𝐌̂𝑘 and 𝐌̃𝑘 denote the high-resolution and upsampled 

low-resolution MS images, respectively, 𝑔𝑘’s are injection 

gains for spectral bands, 𝐏 denotes the PAN image, and 𝐈𝑘 is 

the k-th intensity component defined as 

 

𝐈𝑘 = 𝐹(𝐌̃𝑘) 

 

where 𝐹(. ) is a linear/nonlinear combination of spectral bands 

[1-5]. 

 

A) Generative Adversarial Networks  

The use of Generative Adversarial Networks (GANs) has been 

steadily growing. Furthermore, these networks have facilitated 

the recognition of new categories of learning schemes yielding 

to the synthesizing of realistic data [34]. In the setting of the 

GAN structure, rather than a single deep neural network 

(DNN), training encompasses two DNNs, a “generator” and a 

“discriminator” architecture, where the former synthesizes 

realistic data given an input, and the latter classifies inputs as 

real or synthetic. 

In the original form of the GAN architecture [34], the 

generator is initialized with randomized input noise yielding to 

several realizations depending on the noise statistics. For image 

enhancement problems, a specific type of GANs, called 

conditional GANs (cGANs), is developed since the input to the 

generator is the image itself, while it could be dissimilar from 

the output such as an edge map [35]. A noteworthy paper that 

shows the abilities of GAN in inverse image processing 

problems is the super-resolution GAN (SRGAN) architecture. 

The GAN architecture for the inverse image processing 

problem here involves an iterative training learning process that 

alternates between synthesizing of a high-quality 

image 𝐌S given a low-quality input image 𝐌IN, performed by 

the generator G, and the classification of the high-quality image 

as real 𝐌R or synthetic 𝐌S, performed by the discriminator D. 

Thus, training a GAN translates into optimizing a min-max 

problem where the aim is to estimate the network parameters 

(weights and biases) of the generator 𝜃𝐺 and the 

discriminator 𝜃𝐷 based on the following equation 

 

min
𝜃𝐺

max
𝜃𝐷

𝔼[log 𝐷𝜃𝐷
(𝐌R)] + 𝔼 [log (1 − 𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐌IN)))] 
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Figure 1. Flowchart of the developed deep generative model for pansharpening.

 

 

B) Fusion Framework 

A main contribution of this paper is to formulate the fusion 

problem as a multi-objective loss function represented by a 

deep generative network, in which both the spectral and spatial 

distortions are minimized simultaneously.  

Spectral Preservation Learning Process: For minimizing the 

spectral distortion in the fused image, a spectral metric is used 

to deal with spectral consistency. For this purpose, a 

discriminator for the learning process is considered, named 

spectral discriminator here. The MS image data at the original 

resolution are used as the input of this discriminator. Initially, 

the output of the generator is inputted to the spectral 

discriminator. The following objective function is then used to 

minimize the spectral distortion of the fused image:  

 

ℒ1 = ℚ(𝐌̂𝑘
E, 𝐌𝑘) 

 

where ℚ(. , . ) is the Universal Image Quality Index as described 

in [36], and 𝐌̂𝑘
E and 𝐌𝑘 are the estimated high-resolution MS 

image at the output of the generator and the MS input image at 

the original resolution, respectively.  

Spatial Preservation Learning Process: Another discriminator 

is considered for the minimization of spatial distortion, named 

spatial discriminator here. To inject spatial details into the fused 

image and by noting that the PAN image denotes the reference 

spatial information, the PAN image at the original resolution is 

used as the input to the discriminator. The following loss 

function is then used during the training phase of the generative 

model:  

ℒ2 = ℚ(𝐈̂𝑘
E, 𝐏𝑘) 

 

where 𝐈̂𝑘
E is the linear combination of estimated high-resolution 

MS images at the output of the generator and 𝐏𝑘 is the 

histogram matched PAN image with respect to the k-th spectral 

band. The learning process of the developed method is 

illustrated in Fig. 1.  

 

 

III. DATASETS AND OBJECTIVE METRICS 

For our experimental studies, the following three public 

domain datasets are used: Pleiades-1A, WorldView-2, and 

GeoEye-1. The corresponding geographical areas for each 

dataset are listed in Table I. The MS data for each dataset has 

four different bands including Blue (B), Green (G), Red (R), 

and Near InfraRed (NIR). Since the original datasets are quite 

large, they are divided into 1024×1024 and 256×256 subimages 

for PAN and MS, respectively. Sample images of each dataset 

are shown in Figure 2. Note that the regions are selected from 

different surface indices, e.g. coastal, urban, and jungle areas.  

A) Reduced Resolution Metrics: One of the widely used 

metrics at full-reference mode is Spectral Angle Mapper (SAM) 

[9]. The color differences between the fused and MS images are 

characterized by this metric. There are local and global SAM 

values. Local values are computed as a map via the angle 

difference between each pixel of the fused image and its 

corresponding pixel in the MS image. Then, the difference map 

values are linearized between 0 and 255. The following 

equation is used to compute local SAM values: 

 

SAM(𝑥, 𝑦) =
〈𝐅, 𝐌〉

‖𝐅‖2‖𝐌‖2
 

 

where 𝐅 and 𝐌 are the pixels of the fused image and the original 

MS image, respectively. The global value of SAM is computed 

by taking the average of all the pixels in the SAM map. It is 

represented in degree (°) or radian. The optimal value for global 

SAM is zero which means no color distortion in the fused 

image. Note that SAM is regarded as a spectral distortion 

metric. 

Another objective metric that is widely used is Correlation 

Coefficient (CC). This metric reflects the cross correlation 

between the fused and reference images. The range for CC is [-

1, 1], where 1 means the highest correlation between images. 

This metric is computed as follows: 
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CC =
∑ ∑ (𝐅(x, y) − 𝜇𝐅)𝑁

𝑦=1 (𝐌(x, y) − 𝜇𝐌)𝑁
𝑥=1

√∑ ∑ (𝐅(x, y) − 𝜇𝐅)2𝑁
𝑦=1 (𝐌(x, y) − 𝜇𝐌)2𝑁

𝑥=1

 

 

    Universal Image Quality Index (UIQI) in [36] is also a 

widely used metric. This metric denotes a similarity index 

which characterizes spectral and spatial distortions, and it is 

computed using the following equation: 

 

UIQI =
𝜎𝐅,𝐌

𝜎𝐅𝜎𝐌

2𝜇𝐅𝜇𝐌

𝜇𝐅
2 + 𝜇𝐌

2

2𝜎𝐅𝜎𝐌

𝜎𝐅
2 + 𝜎𝐌

2  

 

in which the term 𝜎(. ) represents the standard deviation and 

𝜇(. ) denotes the average. The Q4 metric is a vectorized version 

of UIQI metric. 

The last metric used here in the reduced-resolution mode is 

Erreur Relative Globale Adimensionnelle de Synthése 

(ERGAS), which is an improvement of the Mean Squared Error 

(MSE) by taking into consideration the scale ratio of the PAN 

and MS images. It reflects the global distortion in the fused 

image according to the following equation:  

 

ERGAS = 100
dh

dl

√
1

N
∑

RMSE(𝐅, 𝐌)

μ(i)

N

i=1

 

 

where 
𝑑ℎ

𝑑𝑙
 denotes the ratio between pixel sizes of PAN and MS, 

e.g. 
1

4
 for Pleiades-1A, WorldView-2, and GeoEye-1.  

 

B) Full Resolution Metrics: Two widely used metrics that 

quantify the spectral and spatial distortions in the full-resolution 

mode are 𝐷𝜆 and 𝐷𝑠. The metric 𝐷𝜆 is computed between the 

low-resolution MS image and the fused image at the PAN scale. 

The UIQI metric between the MS bands, e.g. 𝐌1 and 𝐌2, is first 

computed and then subtracted from the corresponding 

multiplication at high-resolution (fused image, i.e. 𝐅1 and 𝐅2). 

This metric is computed using the following equation: 

 

𝐷𝜆 = √
1

N(N − 1)
∑ ∑ |UIQI(𝐌i, 𝐌j) − UIQI(𝐅i, 𝐅j)|

𝑝
N

j=1,j≠i

N

i=1

𝑝

 

 

The exponent 𝑝 is set to one by default but can be chosen to 

show larger differences between the two terms. Low 𝐷𝜆 metric 

values indicate less spectral distortion and the ideal value is 

zero.  

    The metric 𝐷𝑠 represents spatial distortion consisting of two 

terms. The first term is computed at low resolution between the 

UIQI of the original MS image and the degraded PAN image at 

the MS resolution and the second term is computed at the PAN 

resolution between the UIQI of the fused image and the original 

PAN image. This metric is computed by the following equation: 

𝐷𝑠 = √
1

N
∑|UIQI(𝐌i, 𝐏L) − UIQI(𝐅i, 𝐏)|𝑞

N

i=1

𝑞

 

The exponent 𝑞 is set to one by default. The ideal value for 𝐷𝑠 

is zero which denotes no spatial distortion. 

 

 
Figure 2. Sample PAN-MS image pairs for three datasets: Pleiades-1A; (a) 

MS, (b) PAN, WorldView-2; (c) MS, (d) PAN, and GeoEye-1; (e) MS, (f) PAN.  

 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the results of the extensive experimentations 

carried out to examine the developed generative model are 

reported. Two commonly used protocols of reduced-resolution 

and high-resolution were considered. The results of the 

developed method are compared with seven recently developed 

methods including  Band Dependent Spatial Detail (BDSD) [9], 

Adaptive Intensity-Hue-Saturation (AIHS) [10], CS-based deep 

learning model (abbreviated as DNN) [20], Convolutional 
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AutoEncoder-based pansharpening (abbreviated as CAE) [6], 

Modulation Transfer Function Generalized Laplacian Pyramids 

(MTF-GLP) [9], Fractional-order Differentiation in Image 

Fusion (FDIF) [1], our previously developed (Multi-Objective) 

method  [37]. All the experiments were done in both reduced 

and full-scale modes.  

Tables II through VII exhibit the results for the developed 

method as well as the above representative existing methods. 

As can be seen from these tables, the developed method 

provided better metric values. In particular, the SAM and 

ERGAS metric values were considerably better. These metrics 

denote the spectral and overall distortions of the fused image, 

respectively. For the other metrics, the developed method also 

provided better values in comparison with the other methods. 

Sample fused images for the three datasets examined are shown 

in Figs. 3 through 6.  

Form a visual inspection perspective, one can see that the 

developed method performed better in terms of both the spatial 

and spectral contextual information. For example, as can be 

seen from Fig. 3, the color information of the green area was 

better preserved. Moreover, as seen from Fig. 5, the spatial 

details of the PAN image was more effectively injected into the 

fused image. To make the visual inspection easier, the harbor 

area in the center of Fig. 5 is magnified. It can be seen that the 

AIHS method generated color distortion especially in the green 

area. The MTF-GLP method generated a blurry outcome at the 

harbour edges. The green area in the FDIF image turned into 

dark green in comparison to the green color of the LRMS 

image. The BDSD, DNN, and CAE methods oversharpened the 

fused image with a slight color distortion. The Multi-Objective 

method visually produced similar outcomes but the developed 

method preserved the spectral information better. In order to 

make the spatial distortion comparison easier, the combination 

of the NIR-R-G channels of Pleiades-1A is shown in Fig. 4. 

Visually, in the fused image in this figure, one can see the 

yellow region on the left side better in terms of spatial details 

when using the developed generative model. Another example 

is shown in Fig. 6. In this figure, one can see that the method 

AIHS suffered from the spectral distortion in some regions. The 

building edges when using the DNN, CAE, and FDIF methods 

appeared blurred. The color information in the MTF-GLP and 

BDSD methods were lost in some regions. The GLP-HRI 

method suffered from oversharpening. The colors associated 

with the developed generative model appeared better preserved 

across different datasets in comparison to our previous (Multi-

Objective) method. 

 

 

 

 

 

 

 

TABLE II 

Average Performance of Reduced-Resolution Mode of 

Pleiades-1A Dataset  

 SAM ERGAS CC Q4 

BDSD 3.66 4.12 0.96 0.86 

AIHS 3.24 3.86 0.96 0.87 

DNN 3.15 3.82 0.96 0.92 

CAE 3.05 3.75 0.96 0.92 

MTF-GLP 3.63 3.95 0.95 0.87 

FDIF 3.43 4.01 0.95 0.86 

Multi-

Objective 
3.03 2.79 0.97 0.93 

Developed 2.53 2.36 0.97 0.94 

Ideal 0 0 1 1 

 
TABLE III 

Average Performance of Reduced-Resolution Mode of 

WorldView-2 Dataset  

 SAM ERGAS CC Q4 

BDSD 4.32 2.12 0.95 0.87 

AIHS 4.14 1.86 0.95 0.88 

DNN 3.83 1.73 0.97 0.90 

CAE 3.55 1.70 0.97 0.91 

MTF-GLP 4.60 2.34 0.94 0.86 

FDIF 4.43 2.30 0.93 0.85 

Multi-

Objective 
3.30 1.64 0.97 0.92 

Developed 3.16 1.41 0.97 0.92 

Ideal 0 0 1 1 

 
TABLE IV 

Average Performance of Reduced-Resolution Mode of 

GeoEye-1 Dataset  

 SAM ERGAS CC Q4 

BDSD 2.76 1.88 0.93 0.86 

AIHS 2.34 1.78 0.93 0.88 

DNN 2.25 1.64 0.94 0.90 

CAE 2.15 1.55 0.94 0.90 

MTF-GLP 2.60 2.02 0.93 0.86 

FDIF 2.43 2.12 0.93 0.88 

Multi-

Objective 
2.03 1.55 0.97 0.93 

Developed 1.84 1.30 0.97 0.95 

Ideal 0 0 1 1 
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TABLE V 

Average Performance of Full-Resolution Mode of        

Pleiades-1A Dataset 

 Ds Dλ  QNR 

BDSD 0.10 0.10 0.81 

AIHS 0.11 0.12 0.78 

DNN 0.08 0.07 0.86 

CAE 0.06 0.06 0.88 

MTF-GLP 0.10 0.12 0.78 

FDIF 0.09 0.10 0.82 

Multi-objective 0.06 0.05 0.89 

Developed 0.04 0.04 0.92 

Ideal 0 0 1 

 
TABLE VI 

Average Performance of Full-Resolution Mode of 

WorldView-2 Dataset 

 Ds Dλ  QNR 

BDSD 0.11 0.06 0.84 

AIHS 0.12 0.06 0.83 

DNN 0.07 0.05 0.88 

CAE 0.06 0.05 0.89 

MTF-GLP 0.09 0.12 0.80 

FDIF 0.10 0.09 0.82 

Multi-objective 0.05 0.05 0.90 

Developed 0.03 0.04 0.93 

Ideal 0 0 1 

 
TABLE VII 

Average Performance of Full-Resolution Mode of   

GeoEye-1 Dataset 

 Ds Dλ  QNR 

BDSD 0.08 0.03 0.89 

AIHS 0.12 0.08 0.81 

DNN 0.05 0.02 0.93 

CAE 0.04 0.02 0.94 

MTF-GLP 0.09 0.14 0.78 

FDIF 0.12 0.10 0.79 

Multi-objective 0.03 0.02 0.95 

Developed 0.02 0.01 0.97 

Ideal 0 0 1 

V. CONCLUSION 

In this paper, a new generative model method for 

unsupervised learning process of multispectral image fusion has 

been developed. The developed method addresses the ill-posed 

pansharpening problem in a more comprehensive manner. The 

model consists of two separate discriminators for learning the 

spectral and spatial information. The former uses the MS data 

at the original scale as the input of the spectral discriminator. 

The latter uses the PAN image as the input. A comprehensive 

comparison has been conducted with seven recent 

pansharpening methods and the results obtained show fused 

images are generated with less distortion compared to these 

methods.  
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Figure 3. True color representation of sample fusion results for Pleiades-1A dataset: (a) MS, (b) PAN, (c) BDSD, (d) AIHS, (e) 
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