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Abstract The quaternion offset linear canonical trans-
form(QOLCT) has gained much popularity in recent

years because of its applications in many areas, includ-

ing color image and signal processing. At the same time

the applications of Wigner-Ville distribution (WVD)

in signal analysis and image processing can not be ex-
cluded. In this paper we investigate the Winger-Ville

Distribution associated with quaternion offset linear canon-

ical transform (WVD-QOLCT). Firstly, we propose the

definition of the WVD-QOLCT, and then several im-
portant properties of newly definedWVD-QOLCT, such

as nonlinearity, bounded, reconstruction formula, or-

thogonality relation and Plancherel formula are derived.

Secondly a novel canonical convolution operator and a

related correlation operator for WVD-QOLCT are pro-
posed. Moreover, based on the proposed operators, the

corresponding generalized convolution, correlation the-

orems are studied.We also show that the convolution

and correlation theorems of the QWVD and WVD-
QLCT can be looked as a special case of our achieved

results.
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1 Introduction

In the time-frequency signal analysis the classicalWigner-

Ville distribution (WVD) or Wigner- Ville transform

(WVT) has an important role to play. Eugene Wigner

introduced the concept WVD while making his calcula-
tion of the quantum corrections. later on it was J. Ville

who derived it independently as a quadratic represen-

tation of the local time-frequency energy of a signal

in 1948. Many important properties of WVT has been
studied by many authors. On replacing the kernel of

the classical Fourier transform (FT) with the kernel of

the LCT in the WVD domain, this transform can be

extended to the domain of linear canonical transform

[3]-[6], [13]-[19].

On the other hand the quaternion Fourier transform

(QFT) is of the interest in the present era. Many im-
portant properties like shift, modulation, convolution,

correlation, differentiation, energy conservation, uncer-

tainty principle of QFT have been found. Many gener-

alized transforms are closely related to the QFTs, for

example, the quaternion wavelet transform, fractional
quaternion Fourier transform, quaternion linear canoni-

cal transform, and quaternionic windowed Fourier trans-

form. Based on the QFTs, one also may extend the

WVD to the quaternion algebra while enjoying similar
properties as in the classical case. Many authors gener-

alized the classical WVD to quaternion algebra, which

they called as the quaternion Wigner-Ville distribution

(QWVD). For more details we refer to [1], [2], [7]-[12].

The linear canonical transform (LCT) with four pa-

rameters (a, b, c, d) has been generalized to a six param-

eter transform (a, b, c, d, u0, w0) known as offset linear
canonical transform (OLCT). Due to the time shifting

u0 and frequency modulation parameters, the OLCT

has gained more flexibility over classical LCT. Hence

http://arxiv.org/abs/2109.09682v1
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has found wide applications in image and signal pro-

cessing. On the other side the convolution has some

applications in various areas of Mathematics like lin-

ear algebra, numerical analysis and signal processing.

Where as Correlation like convolution is an another
important tool n signal processing, optics and detec-

tion applications. In the domains of LCT, WVD and

OLCT the convolution and correlation operations have

been studied [7]-[10].

The quaternion offset linear canonical transform

(QOLCT) has gained much popularity in recent years

because of its applications in many areas, including
colour image and signal processing. At the same time

the applications of Wigner-Ville distribution (WVD)

in signal analysis and image processing can not be ex-

cluded. Motivated by QOLCT and WVD, we in this pa-

per we investigate the Winger-Ville Distribution asso-
ciated with quaternion offset linear canonical transform

(WVD-QOLCT). Firstly, we propose the definition of

the WVD-QOLCT, and then several important prop-

erties of newly defined WVD-QOLCT, such as nonlin-
earity, bounded, reconstruction formula, orthogonality

relation and Plancherel formula are derived. Secondly

a novel canonical convolution operator and a related

correlation operator for WVD-QOLCT are proposed.

Moreover, based on the proposed operators, the corre-
sponding generalized convolution, correlation theorems

are studied.We also show that the convolution and cor-

relation theorems of the QWVD and WVD-QLCT can

be looked as a special case of our achieved results.

The paper is organised as follows. In Section 2, we

provide the definition of Wigner-Ville distribution as-

sociated with the quaternionic offset linear canonical
transform (WVD-QOLCT). Then we will investigate

several basic properties of the WVD-QOLCT which are

important for signal representation in signal process-

ing. In Section 3 we first define the convolution and
correlation for the QOLCT. We then establish the new

convolution and correlation for the WVD-QOLCT.We

also show that the convolution theorems of the QWVD

and WVD-QLCT can be looked as a special case of our

achieved results I

2 Winger-ville Distribution associated with
Quaternion Offset Linear

Canonical Transform(WVD-QOLCT)

Since in practice most natural signals are non-stationary.

In order to study a non-stationary signals the Wigner-
Ville distribution has become a suite tool for the anal-

ysis of the non stationary signals. In this section,we are

going to give the definition of Wigner-Ville distribution

associated with the quaternionic offset linear canoni-

cal transform (WVD-QOLCT),then we will investigate

several basic properties of the WVD-QOLCT which are

important for signal representation in signal processing.

Definition 1 Let Ai =

[

ai bi | ri
cs di | si

]

, be a matrix pa-

rameter such that as, bi, ci, di, ri, si ∈ R and aidi −
bici = 1, for i = 1, 2. The Wigner-Ville distribution

associated with the two-sided quaternionic offset linear
canonical transform (WVD-QOLCT) of signals f, g ∈
L2(R2,H), is given by

WA1,A2

f,g (t, u) =



















































































































































∫

R2 K
i
A1

(n1, u1)f(t+
n
2 )g(t− n

2 )

K
j
A2

(n2, u2)dn,

b1, b2 6= 0,√
d1e

i(
c1d1

2 (u1−r1)
2+ u1r1)

f(t1 +
d1(u1−r1)

2 , t2 +
n2

2 )

g(t1 − d1(u1−r1)

2 , t2 − n2

2 )

K
j
A2

(n2, u2) ,

b1 = 0, b2 6= 0;√
d2K

i
A1

(n1, u1)

f(t1 +
n1

2 , t2 +
d2(u2−r2)

2 )

g(t1 − n1

2 , t2 − d2(u2−r2)

2 )

ej(
c2d2

2 (u2−r2)
2+ u2r2) ,

b1 6= 0, b2 = 0;√
d1d2e

i(
c1d1

2 (u1−r1)
2+u1r1)

f(t1 +
d1(u1−r1

2 ), t2 +
d2(u2−r2

2 ))

g(t1 − d1(u1−r1
2 ), t2 − d2(u2−r2

2 ))

ej(
c2d2

2 (u2−r2)
2+u2r2),

b1 = b2 = 0.

(1)

where t = (t1, t2), u = (u1, u2), n = (n1, n2) andKi
A1

(n1, u1)

and K
j
A2

(n2, u2) are the quaternion kernels.

Note 1 If f = g then WA1,A2

f,f (t, u) we call it the Auto

WVD-QOLCT.Otherwise is is called CrossWVD-QOLCT

Without loss of generality we will deal with the case
bi 6= 0, i = 1, 2, as in other cases proposed transform

reduces to a chrip multiplications.Thus for any f, g ∈
L2(R2,H) we have

WA1,A2

f,g (t, u) =

∫

R2

Ki
A1

(n1, u1)f(t+
n

2
)g(t− n

2
)Kj

A2
(n2, u2)dn

= Oi,j
A1,A2

{

f
(

t+
n

2

)

g
(

t− n

2

)

}

= Oi,j
A1,A2

{hf,g(t, n)}. (2)

Where hf,g(t, n) = f
(

t+ n
2

)

g
(

t− n
2

)

is known as quater-

nion correlation product. Applying the inverse QOLCT
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to (2), we get

{hf,g(t, n)} = {Oi,j
A1,A2

}−1{WA1,A2

f,g (t, u)}

which implies

f
(

t+
n

2

)

g
(

t− n

2

)

= {Oi,j
A1,A2

}−1{WA1,A2

f,g (t, u)}

=

∫

R2

K−i
A1

(t1, u1)WA1,A2

f,g (t, u)

K
−j
A2

(t2, u2)dw. (3)

Now, we discuss several basic properties of the WVD-

QOLCT given by (1). These properties play important
roles in signal representation.

Theorem 1 (Boundedness) Let f, g ∈ L2(R2,H).

Then

∣

∣WA1,A2

f,g (t, u)
∣

∣ ≤ 2

π
√
b1b2

‖f‖L2(R2,H)‖g‖L2(R2,H) (4)

Proof By the virtue of Cauchy-Schwarz inequality in

quaternion domain, we have

|WA1,A2

f,g (t, u)|2

=

∣

∣

∣

∣

∫

R2

Ki
A1

(n1, u1) f
(

t+
n

2

)

g
(

t− n

2

)

K
j
A2

(n2, u2)dn

∣

∣

∣

∣

2

≤
(
∫

R2

∣

∣

∣

∣

K i
A1

(n1, u1)f
(

t+
n

2

)

g
(

t− n

2

)

K
j
A2

(n2, u2)

∣

∣

∣

∣

dn

)2

=

(

1
√

4π2|b1b2|

∫

R2

∣

∣

∣

∣

f
(

t+
n

2

)

g
(

t− n

2

)

∣

∣

∣

∣

dn

)2

≤ 1

4π2|b1b2|

(
∫

R2

∣

∣

∣
f
(

t+
n

2

)
∣

∣

∣

2

dn

)

(

∫

R2

∣

∣

∣

∣

g
(

t− n

2

)

∣

∣

∣

∣

2

ds

)

=
1

4π2|b1b2|

(

4

∫

R2

|f(w)|2 dw
)(

4

∫

R2

∣

∣

∣
g(y)

∣

∣

∣

2

dy

)

=
4

π2|b1b2|
‖f‖2L2(R2,H)‖g‖2L2(R2,H)

where applying the change of variables w = t+ n
2 and

y = t− n
2 in the last second step. Then we have

|WA1,A2

f,g (t, u)| ≤ 2

π
√

|b1b2|
‖f‖L2(R2,H)‖g‖L2(R2,H)

which completes the proof of Theorem.

Theorem 2 (Nonlinearity) Let f and g be two quater-

nion functions in L2(R2,H). Then

WA1,A2

f+g = WA1,A2

f,f +WA1,A2

f,g +WA1,A2

g,f +WA1,A2
g,g (5)

Proof By definition 1 we have

WA1,A2

f+g (t, u)

=

∫

R2

Ki
A1

(n1, u1)
[

f(t+
n

2
) + g(t+

n

2
)
]

[

f(t− n

2
) + g(t− n

2
)
]

K
j
A2

(n2, u2)dn

=

∫

R2

Ki
A1

(n1, u1)

[

f(t+
n

2
)f(t− n

2
)

+f(t+
n

2
)g(t− n

2
)

+ g(t+
n

2
)f(t− n

2
) + g(t+

n

2
)g(t− n

2
)

]

K
j
A2

(n2, u2)dn

=

∫

R2

Ki
A1

(n1, u1)f
(

t+
n

2

)

f
(

t− n

2

)

K
j
A2

(n2, u2)dn

+

∫

R2

Ki
A1

(n1, u1)f
(

t+
n

2

)

g
(

t− n

2

)

K
j
A2

(n2, u2)dn

+

∫

R2

Ki
A1

(n1, u1)g
(

t+
n

2

)

f
(

t− n

2

)

K
j
A2

(n2, u2)dn

+

∫

R2

Ki
A1

(n1, u1)g
(

t+
n

2

)

g
(

t− n

2

)

K
j
A2

(n2, u2)dn

= WA1,A2

f,f +WA1,A2

f,g +WA1,A2

g,f +WA1,A2
g,g

which completes the proof of Theorem.

Note the properties like Shift,Modulation,Dilation are
similar to the classical QOLCT so we avoided them.

Theorem 3 (Reconstruction formula). For f, g ∈
L2(R2,H) where g does not vanish at 0 .We get the
following inversion formula of the WVD-QOLCT:

f(t) =
1

g(0)

∫

R2

K−i
A1

(u1, n1)WA1,A2

f,g

(

t

2
, u

)

K
−j
A2

(u2, n2)du (6)

Proof By (3), we have

{hf,g(t, n)} = {Oi,j
A1,A2

}−1{WA1,A2

f,g (t, u)}

which implies

f
(

t+
n

2

)

g
(

t− n

2

)

=

∫

R2

K−i
A1

(t1, u1)WA1,A2

f,g (t, u)K−j
A2

(t2, u2)dw,

Now let t = n
2 and taking change of variable w = 2t,

we get

f(w) =
1

g(0)

∫

R2

K−i
A1

(u1, n1)WA1,A2

f,g

(w

2
, u
)

K
−j
A2

(u2, n2)du

which completes the proof of Theorem.
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Theorem 4 (Orthogonality relation). If f1, f2, g1, g2 ∈
L2(R2,H) are quaternion-valued signals.Then
〈

WA1,A2

f1,g1
(t, u),WA1,A2

f2,g2
(t, u)

〉

= [〈f1, f2〉 〈g2, g1〉]H (7)

Proof By the definition of Winger-ville distribution as-

sociated with quaternion OLCT and innear product re-

lation we have

〈WA1,A2

f1,g1
(t, u),WA1,A2

f2,g2
(t, u)〉

=

∫

R4

[

WA1,A2

f1,g1
(t, u)WA1,A2

f2,g2
(t, u)

]

H
dudt

=

∫

R4

[

WA1,A2

f1,g1
(t, u)

∫

R2

Ki
A1

(n1, u1)f2

(

t+
n

2

)

g2

(

t− n

2

)

K
j
A2

(n2, u2)dn
]

H
dudt

=

∫

R6

[

WA1,A2

f1,g1
(t, u)K−j

A2
(n2, u2)g2

(

t− n

2

)

f2

(

t+
n

2

)

K−i
A1

(n1, u1)

]

H

dudtdn

=

∫

R6

[

K−i
A1

(n1, u1)WA1,A2

f1g1
(t, u)K−j

A2
(n2, u2)

g2

(

t− n

2

)

f2

(

t+
n

2

)

]

H

dudtdn

=

∫

R4

[
∫

R2

K−i
A1

(n1, u1)WA1,A2

f1,g1
(t, u)K−j

A2
(n2, u2)du

g2

(

t− n

2

)

f2

(

t+
n

2

)

]

H

dtdn (8)

Because

Ki
A1

(n1, u1) = K−i
A1

(u1, n1) = Ki

A
−1
1

(u1, n1)

K
j
A2

(n2, u2) = K
−j
A2

(n2, u2) = K
j

A
−1
2

(u2, n2)

Now by using (3) in (8), we have
〈

WA1,A2

f1,g1
(t, u),WA1,A2

f2,g2
(t, u)

〉

=

∫

R4

[
∫

R2

Ki
A−1

1

(u1, n1)WA1,A2

f1,g1
(t, u)Kj

A
−1
2

(u2, n2)du

g2

(

t− n

2

)

f2

(

t+
n

2

)

]

H

dtdn

=

∫

R4

[

f1

(

t+
n

2

)

g1

(

t− n

2

)

g2

(

t− n

2

)

f2

(

t+
n

2

)

]

H

dtdn

Using the change of variables t+ n
2 = ω,and t− n

2 = ξ

the equation becomes

〈WA1,A2

f1,g1
(t, u),WA1,A2

f2,g2
(t, u)〉

=

∫

R4

[

f1(ω)g1(ξ)g2(ξ)f2(ω)
]

H
dωdξ

=

[
∫

R2

f1(ω)f2(ω)dω

∫

R2

g2(ξ)g1(ξ)dξ

]

H

= [〈f1, f2〉〈g2, g1〉]H

which completes the proof theorem.

Consequences of Theorem 4.

1. If g1 = g2 = g, then

〈WA1,A2

f1,g
(t, u),WA1,A2

f2,g
(w, u)〉 = ‖g‖2L2(R2)〈f1, f2〉(9)

2. If f1 = f2 = f , then

〈WA1,A2

f,g1
(t, u),WA1,A2

f,g2
(w, u)〉 = ‖f‖2L2(R2)〈g1, g2〉.(10)

3. If f1 = f2 = f and g1 = g2 = g, then

〈WA1,A2

f,g (t, u),WA1,A2

f,g (w, u)〉

=

∫

R2

∫

R2

|WA1,A2

f,g (t, u)|2dudt

= ‖f‖2L2(R2)‖g‖2L2(R2) (11)

Theorem 5 (Plancherel’s theorem for

WVD-QOLCT).For f, g ∈ L2(R2,H), we have the
equality
∫

R2

∫

R2

|WA1,A2

f,g (t, u)|2dudt

= ‖WA1,A2

f,g ‖2L2(R2,H)

= ‖f‖2L2(R2,H)‖g|2L2(R2,H) (12)

Proof If we look at (11), the proof of the theorem fol-
lows.

Now we move forward towards our main section

that is convolution and correlation theorems for winger-

ville distribution associated with quaternion offset lin-

ear canonical transform.

3 Convolution and Correlation theorem for

WVD-QOLCT

The convolution and correlation are fundamental sig-

nal processing algorithms in the theory of linear time-

invariant(LTI) systems. In engineering, they have been

widely used for various template matchings. In the fol-
lowing we first define the convolution and correlation

for the QOLCT. They are extensions of the convolu-

tion definition from the OLCT (see [16]) to the QOLCT

domain. We then establish the new convolution and cor-
relation for the WVD-QOLCT.We also show that the

convolution theorems of the QWVD and WVD-QLCT

can be looked as a special case of our achieved results.

Definition 2 For any two quaternion functions f, g ∈
L2(R2,H), we define the convolution operator of the

QOLCT as

(f ⋆ g)(t) =

∫

R2

Ψ(z1, t1)f(z)g(t− z)Ψ(z2, t2)dz (13)
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Where Ψ(z1, t1) and Ψ(z2, t2) are known as weight func-

tions.

We assume

Ψ(z1, t1) = e
−i

a1
b1

2z1(t1−z1)

and

Ψ(z2, t2) = e
−j

a2
b2

2z2(t2−z2) (14)

As a consequence of the above definition, we get the

following important theorem.

Theorem 6 (WVD-QOLCT Convolution). For any two
quaternion functions f, g ∈ L2(R2,H), the following re-

sult holds

WA1,A2

f⋆g (t, u)

=
√

2πb1ie
−i

2b1
[d1(u

2
1+r21)−2u1(d1r1−b1s1)]

×
{
∫

R2

e
−i

a1
b1

(4w1(t1−w1))WA1,A2

f,f (w, u)WA1,A2
g,g (t− w, u)

e
−j

a2
b2

(4w2(t2−w2))dw
}

×
√

2πb2je
−j

2b2
[d2(u

2
2+r22)−2u2(d2r2−b2s2)] (15)

Proof Applying the definition of the WVD-QOLCT we

have

WA1,A2

f⋆g (t, u) =

∫

R2

Ki
A1

(n1, u1)
[

(f ⋆ g)(t+
n

2
)
]

[

f ⋆ g(t− n

2
)
]

K
j
A2

(n2, u2)dn (16)

Now using Definition 2 in (16) we have

WA1,A2

f⋆g (t, u)

=

∫

R2

Ki
A1

(n1, u1)

{
∫

R2

Ψ1(z1, t1 +
n1

2
)f(z)

g(t+
n

2
− z)Ψ2(z2, t2 +

n2

2
)dz

×
∫

R2

Ψ1(γ1, t1 −
n1

2
)f(γ)g(t− n

2
− γ)

Ψ2(γ2, t2 −
n2

2
)dγ
}

K
j
A2

(n2, u2)dn

=

∫

R2

Ki
A1

(n1, u1)

{
∫

R2

e
−i

a1
b1

2z1((t1+
n1
2 )−z1)f(z)

g(t+
n

2
− z)e−j

a2
b2

2z2((t2+
n2
2 )−z2)dz

×
∫

R2

e
−i

a1
b1

2γ1((t1−
n1
2 )−γ1)f(γ)g(t− n

2
− γ)

e
−j

a2
b2

2γ2((t2−
n2
2 )−γ2)dγ

}

K
j
A2

(n2, u2)dn (17)

For simplicity let us denote

Ki
A1

(t1, u1) = Ki
A1

e
i

2b1
[a1t

2
1+2t1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1],

Ki
A1

=
1√
2πb1i

e
i

d1
2b1

r21 (18)

and

K
j
A2

(t2, u2) = K
j
A2

e
j

2b2
[a2t

2
2+2t2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2],

K
j
A2

=
1√

2πb2j
e
j

d2
2b2

r22 (19)

Now using (18)and (19) in (17),we have

WA1,A2

f⋆g (t, u)

=

∫

R6

Ki
A1

e
i

2b1
[a1n

2
1+2n1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1]

e
−i

a1
b1

2z1((t1+
n1
2 )−z1)

×f(z)g(t+
n

2
− z)e

−j
a2
b2

2z2((t2+
n2
2 )−z2)

e
−i

a1
b1

2γ1((t1−
n1
2 )−γ1)

×f(γ)g(t− n

2
− γ)e−j

a2
b2

2γ2((t2−
n2
2 )−γ2)

×K
j
A2

e
j

2b2
[a2n

2
2+2n2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dzdγdn

Setting zi = wi +
pi

2 , γi = wi − pi

2 , i = 1, 2 we get

WA1,A2

f⋆g (t, u)

=

∫

R6

Ki
A1

e
i

2b1
[a1n

2
1+2n1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1]

e
−i

a1
b1

2(w1+
p1
2 )((t1+

n1
2 )−(w1+

p1
2 ))

×f
(

w +
p

2

)

g
(

t+
n

2
− (w +

p

2
)
)

e
−j

a2
b2

2(w2+
p2
2 )((t2+

n2
2 )−(w2+

p2
2 ))

×e
−i

a1
b1

2(w1−
p1
2 )((t1−

n1
2 )−(w1−

p1
2 ))

f
(

w − p

2

)

g
(

t− n

2
− (w − p

2
)
)

×e
−j

a2
b2

2(w2−
p2
2 )((t2−

n2
2 )−(w2−

p2
2 ))

K
j
A2

e
j

2b2
[a2n

2
2+2n2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dpdqdw

and ni = pi + qi, i = 1, 2 we obtain

WA1,A2

f⋆g (t, u)

=

∫

R6

Ki
A1

e
i

2b1
[a1(p1+q1)

2+2(p1+q1)(r1−u1)−2u1(d1r1−b1s1)+d1u
2
1]

e
−i

a1
b1

(4w1(t1−w1))e
−i

a1
b1

p1q1

×f
(

w +
p

2

)

f
(

w − p

2

)

g
(

t− w +
q

2

)

g
(

t− w − q

2

)

e
−j

a2
b2

(4w2(t2−w2))e
−j

a2
b2

p2q2

×K
j
A2

e
j

2b2
[a2n

2
2+2n2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dpdqdw

=

∫

R2

{[
∫

R2

Ki
A1

e
i

2b1
[a1p

2
1+2p1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1]

f
(

w +
p

2

)

f
(

w − p

2

)

× K
j
A2

e
j

2b2
[a2p

2
2+2p2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dp

]
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×
∫

R2

e
i

2b1
[a1q

2
1−2q1(r1−u1)]g

(

t− w +
q

2

)

× g
(

t− w − q

2

)

e
j

2b2
[a2q

2
2−2q2(r2−u2)]dq

}

×e
−i

a1
b1

(4w1(t1−w1))e
−j

a2
b2

(4w2(t2−w2))dw (20)

Nowmultiply (20)both sides byKi
A1

e
i

2b1
[d1u

2
1−2u1(d1r1−b1s1)]

and K
j
A2

e
j

2b2
[d2u

2
2−2u2(d2r2−b2s2)],we get

Ki
A1

e
i

2b1
[d1u

2
1−2u1(d1r1−b1s1)]

K
j
A2

e
j

2b2
[d2u

2
2−2u2(d2r2−b2s2)]WA1,A2

f⋆g (t, u)

=

∫

R2

e
−i

a1
b1

(4w1(t1−w1))WA1,A2

f,f (w, u)

WA1,A2
g,g (t− w, u)e−j

a2
b2

(4w2(t2−w2))dw (21)

Now using (18) and (19) in (21) we get,

WA1,A2

f⋆g (t, u)

=
√

2πb1ie
−i
2b1

[d1(u
2
1+r21)−2u1(d1r1−b1s1)]

×
{
∫

R2

e
−i

a1
b1

(4w1(t1−w1))WA1,A2

f,f (w, u)WA1,A2
g,g (t− w, u)

e
−j

a2
b2

(4w2(t2−w2))dw
}

×
√

2πb2je
−j

2b2
[d2(u

2
2−r22)−2u2(d2r2−b2s2)]

which completes the proof of theorem.

Consequences of theorem 6.

1. Changing parameter Ai =

[

ai bi | ri
ci di | si

]

,i = 1, 2 to

Ai =

[

ai bi | 0
ci di | 0

]

,i = 1, 2, then the Theorem 4 re-

duces to convolution theorem of the WVD-QLCT

as follows:

WA1,A2

f⋆g (t, u)

=
√

2πb1ie
−i

2b1
d1u

2
1
√

2πb2je
−j

2b2
d2u

2
2

×
{
∫

R2

e
−i

a1
b1

(4w1(t1−w1))WA1,A2

f,f (w, u)WA1,A2
g,g (t− w, u)

e
−j

a2
b2

(4w2(t2−w2))dw
}

(22)

whereWA1,A2

f,f andWA1,A2
g,g is the WVD in the QLCT

domain of a signal f and g, respectively.

2. Changing parameter Ai =

[

ai bi | ri
ci di | si

]

,i = 1, 2

to Ai =

[

0 1 | 0
−1 0 | 0

]

,i = 1, 2, then the Theorem

4 reduces to convolution theorem of the WVD in

Quaternion Domain as follows:

Wf⋆g(t, u) =
√
2πi

{
∫

R2

W i,j
f,f (w, u)W i,j

g,g(t− w, u)dw

}

√

2πj (23)

whereW i,j
f,f andW i,j

g,g is the WVD in the Quaternion

domain of a signal f and g, respectively.

Next, we will derive the correlation theorem in the WVD-

QOLCT. Let us define the correlation for the QOLCT.

Definition 3 For any two quaternion functions f, g ∈
L2(R2,H), we define the correlation operator of the

QOLCT as

(f◦g)(t) =
∫

R2

e
i
a1
b1

2z1(z1+t1)f(z)g(z+t)ej
a2
b2

2z2(z2+t2)dz(24)

Now, we reap a consequence of the above definition .

Theorem 7 (WVD-QOLCT Correlation). For any

two quaternion functions f, g ∈ L2(R2,H), the follow-
ing result holds

WA1,A2

f◦g (t, u)

=
√

2πb1ie
−i
2b1

[d1(u
2
1+r21)+2u1(d1r1−b1s1)]

×
{
∫

R2

e
i
a1
b1

(4w1(t1+w1))WA1,A2

f,f (w,−u)

WA1,A2
g,g (t+ w, u)ej

a2
b2

(4w2(t2+w2))dw
}

×
√

2πb2je
−j

2b2
[d2(u

2
2+r22)+2u2(d2r2−b2s2)] (25)

Proof Applying the definition of the WVD-QOLCT we

have

WA1,A2

f◦g (t, u)

=

∫

R2

Ki
A1

(n1, u1)
[

(f ◦ g)(t+ n

2
)
]

[

f ◦ g(t− n

2
)
]

K
j
A2

(n2, u2)dn (26)

Now using definition 3 in (26) we have

WA1,A2

f◦g (t, u)

=

∫

R2

Ki
A1

(n1, u1)

{
∫

R2

e
i
a1
b1

2z1(z1+(t1+
n1
2 ))

f(z)

g(z + t+
n

2
)e

j
a2
b2

2z2(z2+(t2+
n2
2 ))

dz

×
∫

R2

e
i
a1
b1

2γ1(γ1+(t1−
n1
2 ))

f(γ)g(γ + (t− n

2
))

e
j
a2
b2

2γ2(γ2+(t2−
n2
2 ))

dγ
}

K
j
A2

(n2, u2)dn (27)

Now with the help of (18) and (19),we have from (27)

WA1,A2

f◦g (t, u)

=

∫

R6

Ki
A1

e
i

2b1
[a1n

2
1+2n1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1]

e
i
a1
b1

2z1(z1+(t1+
n1
2 ))

×f(z)g(z + (t+
n

2
))e

j
a2
b2

2z2(z2+(t2+
n2
2 ))

e
i
a1
b1

2γ1(γ1+(t1−
n1
2 ))

×f(γ)g(γ + (t− n

2
))ej

a2
b2

2γ2(γ2+(t2−
n2
2 ))

×K
j
A2

e
j

2b2
[a2n

2
2+2n2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dzdγdn
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Setting zi = wi +
pi

2 , γi = wi − pi

2 , i = 1, 2, we get

WA1,A2

f◦g (t, u)

=

∫

R6

Ki
A1

e
i

2b1
[a1n

2
1+2n1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1]

e
i
a1
b1

2(w1+
p1
2 )((t1+

n1
2 )+(w1+

p1
2 ))

×f
(

w +
p

2

)

g
(

(t+
n

2
) + (w +

p

2
)
)

e
j
a2
b2

2(w2+
p2
2 )((t2+

n2
2 )+(w2+

p2
2 ))

×e
i
a1
b1

2(w1−
p1
2 )((t1−

n1
2 )+(w1−

p1
2 ))f

(

w − p

2

)

g
(

(t− n

2
) + (w − p

2
)
)

×e
j
a2
b2

2(w2−
p2
2 )((t2−

n2
2 )+(w2−

p2
2 ))Kj

A2

e
j

2b2
[a2n

2
2+2n2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dpdqdw (28)

Now put ni = qi−pi, i = 1, 2 and on following the same

procedure as followed in previous Theorem 6, we have

from (28)

WA1,A2

f◦g (t, u)

=

∫

R2

[
∫

R2

e
i

2b1
[a1p

2
1−2p1(r1−u1)]f

(

w +
p

2

)

f
(

w − p

2

)

e
j

2b2
[a2p

2
2−2p2(r2−u2)]dp

]

×
[
∫

R2

Ki
A1

e
i

2b1
[a1q

2
1+2q1(r1−u1)−2u1(d1r1−b1s1)+d1u

2
1]

×g
(

t+ w +
q

2

)

g
(

t+ w − q

2

)

× K
j
A2

e
j

2b2
[a2q

2
2+2q2(r2−u2)−2u2(d2r2−b2s2)+d2u

2
2]dq

]

×e
i
a1
b1

(4w1(t1+w1))e
j
a2
b2

(4w2(t2+w2))dw (29)

On multiplying (29) both sides by

Ki
A1

e
i

2b1
[d1u

2
1−2u1(d1r1−b1s1)+4p1(r1−u1)] and

K
j
A2

e
j

2b2
[d2u

2
2−2u2(d2r2−b2s2)+4p2(r2−u2)],we get

Ki
A1

e
i

2b1
[d1u

2
1−2u1(d1r1−b1s1)+4p1(r1−u1)]

K
j
A2

e
j

2b2
[d2u

2
2−2u2(d2r2−b2s2)+4p2(r2−u2)]WA1,A2

f◦g (t, u)

=

∫

R2

e
−i

a1
b1

(4w1(t1−w1))WA1,A2

f,f (w, u)

WA1,A2
g,g (t− w, u)e

−j
a2
b2

(4w2(t2−w2))dw (30)

Now using (18) and (19) in (30) we obtain,

WA1,A2

f⋆g (t, u)

=
√

2πb1ie
−i

2b1
[d1(u

2
1+r21)+2u1(d1r1−b1s1)]

×
{
∫

R2

e
i
a1
b1

(4w1(t1+w1))WA1,A2

f,f (w,−u)WA1,A2
g,g (t+ w, u)

× e
j
a2
b2

(4w2(t2+w2))dw
}

√

2πb2je
−j

2b2
[d2(u

2
2+r22)+2u2(d2r2−b2s2)]

which completes the proof of theorem.

Consequences of Theorem 7.

1. Changing parameter Ai =

[

ai bi | ri
ci di | si

]

,i = 1, 2 to

Ai =

[

ai bi | 0
ci di | 0

]

,i = 1, 2, then the Theorem 7 re-

duces to correlation theorem of the WVD-QLCT as

follows:

WA1,A2

f◦g (t, u)

=
√

2πb1ie
−i
2b1

d1u
2
1
√

2πb2je
−j

2b2
d2u

2
2

×
{
∫

R2

e
i
a1
b1

(4w1(t1+w1))WA1,A2

f,f (w,−u)

WA1,A2
g,g (t+ w, u)ej

a2
b2

(4w2(t2+w2))dw
}

whereWA1,A2

f,f andWA1,A2
g,g is the WVD in the QLCT

domain of a signal f and g, respectively.

2. Changing parameter Ai =

[

ai bi | ri
ci di | si

]

,i = 1, 2 to

Ai =

[

0 1 | 0
−1 0 | 0

]

,i = 1, 2, then the Theorem 4.4 re-

duces to correlation theorem of the WVD in Quater-

nion Domain as follows:

Wf◦g(t, u) =
√
2πi

{
∫

R2

W i,j
f,f (w,−u)W i,j

g,g(t+ w, u)dw

}

√

2πj

whereW i,j
f,f andW i,j

g,g is the WVD in the Quaternion

domain of a signal f and g, respectively.
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