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Abstract 

Active contours Model (ACM) has been extensively used in computer vision and image 

processing. In recent studies, Convolutional Neural Networks (CNNs) have been 

combined with active contours replacing the user in the process of contour evolution 

and image segmentation to eliminate limitations associated with ACM’s dependence on 

parameters of the energy functional and initialization. However, prior works did not aim 

for automatic initialization which is addressed here. In addition to manual initialization, 

current methods are highly sensitive to initial location and fail to delineate borders 

accurately. We propose a fully automatic image segmentation method to address 

problems of manual initialization, insufficient capture range, and poor convergence to 

boundaries, in addition to the problem of assignment of energy functional parameters. 

We train two CNNs, which predict active contour weighting parameters and generate a 

ground truth mask to extract Distance Transform (DT) and an initialization circle. 

Distance transform is used to form a vector field pointing from each pixel of the image 

towards the closest point on the boundary, the size of which is equal to the Euclidean 

distance map. We evaluate our method on four publicly available datasets including two 

building instance segmentation datasets, Vaihingen and Bing huts, and two 

mammography image datasets, INBreast and DDSM-BCRP. Our approach outperforms 

latest research by 0.59 and 2.39 percent in mean Intersection-over-Union (mIoU), 7.38 

and 8.62 percent in Boundary F-score (BoundF) for Vaihingen and Bing huts datasets 

respectively. Dice similarity coefficient for the INBreast and DDSM-BCRP datasets is 

94.23% and 90.89%, respectively indicating our method is comparable to state-of-the-

art frameworks.  

Keywords: Image segmentation, Active contour models, Convolutional neural 

networks, Distance transform, Capture range 

 

1. Introduction 

Active Contour Models (ACM), also called snakes, are deformable parametric curves 

that have become a very influential tool for image segmentation. Given initial 

coordinates, ACM converges toward the edges of the region of interest by solving an 

energy optimization problem based on edge information and shape priors such as 

boundary continuity and curvature through an iterative process [1]. 



 

A major drawback of active contours is their dependence on the internal energy 

parameters chosen by the user and the chosen external energy functional. The user 

makes a choice by examining the effect of different contour initializations and energy 

functional parameters on contour convergence to the object boundary. In other words, 

active contours initialization and parameters are critical factors in contour convergence. 

If the contour is initialized far from the true boundaries, it may not converge due to 

presence of local minima. If the contour is parameterized improperly, inaccurate results 

could be produced. 

Different vector fields, may also lead to different results in contour performance. The 

first external force introduced for active contours, has a limited capture range and 

requires the initial contour to be set close to the object. Capture range is the area of the 

image where external energy can guide the active contour to the boundary. It is also not 

able to detect concavity [1]. Distance vector field (DVF) based on the Euclidean 

distance has a higher capture range but fails to detect concavity asdone by traditional 

snakes [2]. A few vector fields including gradient vector flow (GVF) were then 

introduced to enhance the capability of the snake to capture concave boundaries [3, 4, 

5, 6]. The balloon term has also been proposed as an additional term to snake energy; It 

pushes the snakes’ vertices outwards, by applying a force perpendicular to the contour 

vertices. The initial position of the contour must be selected inside the target when using 

the balloon method [7]. 

Due to the active contours dependence on the mentioned terms, the user interaction 

is necessary to verify the convergence of the contour towards the object boundary. 

In recent studies, deep convolutional neural networks (CNNs) have been combined 

with active contours replacing the user in the process of contour evolution and image 

segmentation to eliminate limitations associated with ACM’s dependence on 

parameters of the energy functional and initialization.  

In 2018, Marcos et al. presented an end-to-end trainable Deep Structured Active 

Contours (DSAC), which combines ACMs with CNNs in order to estimate active 

contour parameters on a per-pixel basis automatically. The major drawback of DSAC 

is that it does not delineate borders on it’s external energy properly. Therefore, DSAC 

is highly sensitive to initialization. If the initial contour is chosen far from the boundary, 

active contour evolves to the local minima or collapses to a single point due to gradient 

invisibility [8]. 

Several models have then been proposed combining ACMs with CNNs [9, 10]. 

However, they fail to delineate borders accurately and the problem of manual contour 

initialization still persists. 

In our approach, the internal energy parameters and the balloon term are obtained 

using the DSAC framework. We propose a new method for extracting external energy 



 

and automatic initialization to improve segmentation. To address problems of manual 

initialization, limited capture range due to local minima in DSAC external energy, and 

poor convergence to boundary, we propose to train a CNN to predict a ground truth 

mask from which initialization circle and distance transform is derived. To form a 

vector field in which every pixel learns a vector to the closest point on the ground truth 

edge with the magnitude of Euclidean distance map, we use distance transform as a 

local controlling parameter of distance vector flow. 

 

2. Related works 

Active contours: The ACMs were first introduced by Kass et al. in 1988 by the name 

of snakes [1]. The original ACMs had some drawbacks, such as their failure to extract 

acute concave shapes, sensitivity to initialization, limited capture range, parametrization 

dependency, topological changes, and the need for user interaction. Thus, much effort 

has been made in order to increase the robustness of active contours. The balloon force 

proposed in 1991, causes the curve to inflate like a balloon passing over weak edges 

and preventing it from collapsing to a single point [7]. Several new external forces have 

been proposed by subsequent researchers. In 1993, the distance potential force based on 

the Euclidean distance was introduced to increase the capture range, but it failed to 

detect concavity [2]. In 1998, Gradient Vector Flow (GVF) was introduced to enhance 

the capability of the snake based on distance potential. This energy was obtained from 

the edge map of the image, drawing the contour points towards the edges. Compared to 

Kass et al.’s model, GVF snake was less sensitive to initialization due to larger capture 

range and able to detect concavity [3]. In 2006, Boundary Vector Field (BVF) which 

was obtained from binary boundary map was introduced to increase the capture range 

and the  concavity extraction capability of GVF snake and reduce the computational 

requirements of generating GVF [4]. In 2008, Magnetostatic Active Contour (MAC), 

was introduced using a new external force field based on magnetostatics and 

hypothesized magnetic interactions between the active contour and object boundaries 

[5]. In 2009, Fluid Vector Flow (FVF) was proposed demonstrating improvements in 

capture range and concavity extraction capability over previous techniques [6]. 

Interactive image segmentation combining deep CNNs with ACMs: The first work 

combining deep CNNs and active contours for image segmentation was proposed in 

2016  where a CNN was trained to predict a vector for a patch around a given contour 

node pointing towards the closest point on the true boundary [11]. Marcos et al. 

proposed an end-to-end trainable Deep Structured Active Contours (DSAC), which 

combined ACMs with CNNs in order to estimate active contour parameters on a per-

pixel basis using a structured support vector machine (SSVM) hinge loss optimizing for 

IoU [8]. Cheng et al. proposed Deep Active Ray Network (DARNet), which combined 

energy maps predicted by a CNN with polar representation of active contours, known 



 

as active rays, to prevent contour self-intersection and the energy function 

computational overhead [9]. Gur et al. proposed a fully differentiable framework, 

ACDRNet, in which the active contour evolved based on a 2D displacement field 

predicted by an encoder-decoder architecture. ACDRNet adopted a neural renderer to 

reconstruct the polygon shape from it’s vertices. Loss was computed using the 

difference between the reconstructed polygon shape and the ground truth mask [10]. 

In recent years, several works have also combined CNNs with level set segmentation 

approach. Hoogi et al. proposed a CNN based method for adaptive estimation of level 

set active contour parameters in which CNN outputs 3 probabilities, inside the lesion 

and far from it’s boundaries, close to the lesion boundaries, or outside the lesion and far 

from it’s boundaries  which were then used to calculate the energy parameters [12]. Le 

et al. proposed a recurrent neural network based level-set framework for semantic 

segmentation of natural images [13]. Hatamizadeh et al. proposed Deep Convolutional 

Active Contours (DCAC), a fully automatic framework which adopts CNN to predict 

level set active contours parameters [14]. Wang et al. proposed Deep Extreme Level Set 

Evolution (DELSE), an interactive framework in which a backbone CNN and user 

clicks on the extreme boundary points, were used for level set evolution [15]. Recently 

Hatamizadeh et al. proposed an end-to-end automatically differentiable and 

backpropagation trainable framework under the name of Trainable Deep Active 

Contours (TDACs) [16]. 

 

3. Our Approach 

In this section, we introduce the proposed method. As shown in Figure 1, this study 

uses two CNNs that are trained simultaneously. Given an input image, one CNN 

predicts the contour’s internal energy parameters and the balloon force using DSAC 

idea. The other CNN generates a ground truth mask from which, an initialization circle 

and distance transform  are generated. We propose to use distance transform as a local 

controlling parameter of the distance vector flow to form a vector field pointing from 

each pixel towards the closest point on the boundary with the magnitude of it’s 

Euclidean distance to the edge. CNN predictions are passed to ACM. Then the active 

contour evolves towards the target by an iterative energy minimization process. 



 

 

Figure 1. The proposed framework. 

 

3.1.  Contour Presentation 

Locally penalized active contours [8] represent classical active contours as a set of 

polygon points ys = (us, vs) ∈ ℝ2 with s representing the contour node and s ∈

{1, 2, … , L}, where L is the number of polygon nodes. The aim of the snake is to evolve 

towards target edges by minimizing the following energy functional: 

(1) 

E(y, x) = ∑ [D(x, (ys)) + α(x, (ys)) |
∂y

∂s
|

2

+ β(x, (ys)) |
∂2y

∂s2
|

2

]

L

s=1

+ ∑ k(x, (u, v))

u,v∈Ω(y)

 

 

where x ∈ ℝU×V×d is a notation of input image of size U × V. D(x), α(x), β(x) ∈

ℝU×V are external energy, weight of continuity energy, and weight of curvature energy 

, respectively. The weighted summation of first and second-order derivatives around 

the contour is the internal energy penalizing the length and curvature of the polygon, 

respectively. κ(x) is the balloon term and Ω(y) is the region enclosed by y. We allow β 

and κ to vary locally, while α is treated as a single scalar for all pixels as proposed in 

DSAC. 

The above formulation makes the contour energy locally adaptive by penalizing each 

parameter differently at each image pixel. Since no ground truth is available for energy 

parameters, the problem is defined as a structured support vector machine (SSVM) 



 

hinge loss optimizing for IoU. The subgradients of loss ℒ with respect to the outputs are 

as follows: 

(2) 

𝜕ℒ(𝑦𝑖 , 𝑥𝑖; 𝜔)

𝜕𝛼𝜔(𝑥𝑖)
= |

𝜕𝑦𝑖(𝑢, 𝑣)

𝜕𝑠
|

2

[(𝑢, 𝑣) ∈ 𝑦𝑖]

− |
𝜕𝑦̂𝑖(𝑢, 𝑣)

𝜕𝑠
|

2

[(𝑢, 𝑣) ∈ 𝑦̂𝑖] 

 

 

 (3) 

𝜕ℒ(𝑦𝑖 , 𝑥𝑖; 𝜔)

𝜕𝛽𝜔(𝑥𝑖)
= |

𝜕2𝑦𝑖(𝑢, 𝑣)

𝜕𝑠2
|

2

[(𝑢, 𝑣) ∈ 𝑦𝑖]

− |
𝜕2𝑦̂𝑖(𝑢, 𝑣)

𝜕𝑠2
|

2

[(𝑢, 𝑣) ∈ 𝑦̂𝑖] 

 

 

(4) 
𝜕ℒ(𝑦𝑖 , 𝑥𝑖; 𝜔)

𝜕𝜅𝜔(𝑥𝑖)
= [(𝑢, 𝑣) ∈ Ω(𝑦𝑖)] − [(𝑢, 𝑣) ∈ Ω(𝑦̂𝑖)] 

 

 

where 𝑥𝑖, 𝑦𝑖 and 𝑦̂𝑖 present input image, ground truth contour and predicted contour, 

respectively and i ∈ {1, 2, … , N}. We use the following subgradient to predict the 

initialization mask: 

(5) 
𝜕ℒ(𝑚𝑎𝑝𝐼; 𝜔)

𝜕𝑚𝑎𝑝𝐼𝜔(𝑥𝑖)
= 𝑚𝑎𝑝𝐼 − 𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑚𝑎𝑠𝑘 

 

 

where 𝑚𝑎𝑝𝐼 is the mask predicted by the CNN.  

 

3.2. Locally Controlled Distance Vector Flow (LCDVF) 

Contour external energy in DSAC is defined in a way that provides small values on 

edges of the region of interest and large values elsewhere, the direction of steepest 

descent −𝛻𝐷(𝑥) = − [
𝜕𝐷(𝑥)

𝜕𝑢
,

𝜕𝐷(𝑥)

𝜕𝑣
] moves contour nodes toward the edges [8]. But this 

external force failed to provide a large capture range for contour, and the initial snake 

must be defined only inside the region of interest and close enough to the target to 

evolve. To overcome this issue, we have replaced external energy with distance 

transform. Distance transform energy can provide a large capture range but cannot guide 

a snake into boundary concavities. We address this issue by using distance transform 

itself as a local controlling parameter to multiply by ∇D(x) preventing contour points 

from collapsing to a single point resulting in high capture range and eliminating contour 

sensitivity to initialization. The direction of steepest descent will be as follows:  



 

 (6) −∇𝐷(𝑥) = −𝐷𝑇(𝑥) × [
𝜕𝐷𝑇(𝑥)

𝜕𝑢
,
𝜕𝐷𝑇(𝑥)

𝜕𝑣
]  

 

3.3. Automatic Initialization 

To automatically initialize active contour, the inscribed circle of the initialization 

mask output by CNN can be found by solving an iterative optimization problem 

minimizing the difference between the CNN predicted mask and the binary mask of the 

suggested circle. The circumscribed circle of the mask, can also be found by solving an 

iterative optimization problem. 

Figure 2 and Figure 3  demonstrates parameters predicted by CNN, given an example 

input image from the Vaihingen data set. 

   

a) Input Image b) Carvature term (𝛽) c) Balloon term (𝛫) 

   

d) Predicted mask and 

initialization 
e) Distance transform f) Result 

Figure 2. Examples of learned parameters for a given input image. 



 

   

b) LCDVF a) DVF 

Figure 3. Examples of learned vector flow. 

 

3.4. CNN Architecture  

The backbone CNN structure is illustrated in Figure 4. It is similar to DSAC CNN 

model [8] and consists of a contracting path with 6 layers with 64, 64, 128,128, 256, 

and 256 filters, respectively. The size of the first two convolutional layers are 7×7,  5×5, 

and 3×3 convolution is used for the remaining layers. Each convolutional layer is 

followed by rectified linear unit (ReLU) activation, batch normalization, and 2×2 max-

pooling operation with stride 2 for downsampling. The output tensors of the last four 

layers are then upsampled to the output size and concatenated. Then, a two-layer MLP 

with 256 and 64 hidden units is followed by three 1×1 convolution to predict the three 

output maps, α(x), β(x), κ(x). The same structure is used to predict an initialization 

mask to obtain distance transform and estimate the initialization circle. These two CNNs 

are trained simultaneously. 

 

Figure 4 CNN Architecture. 



 

4. Experiments 

4.1. Datasets and Augmentation 

We evaluate our method on four publicly available datasets: Vaihingen [17], Bing 

Huts [8], INBreast [18] and DDSM-BCRP (digital database for screening 

mammography breast cancer research program) [19]. 

Vaihingen: The Vaihingen buildings dataset consists of 168 building images of size 

512×512 pixels at a resolution of 9 cm/pixel in a town in southern Germany. We used 

the first 100 images for training and the remaining 68 for test as done in previous works 

[8, 9, 10]. In order to reduce overfitting and improve the generalization capabilities of 

our model, we have expanded the dataset with data augmentation methods which 

generate 25 synthetic images from each existing training image by 10 random rotations, 

10 random scalings, flipping horizontally and vertically, adding Gaussian Noise, and 

changing the brightness resulting 2500 training images in total. 

Bing huts: The Bing huts dataset consists of 606 challenging images of size 64×64 

at a 30 cm/pixel resolution in a rural area of Tanzania. This dataset is divided into 

335/271 examples for train/test as done in previous works [8, 9, 10].  

INBreast: The INbreast dataset is a mammographic dataset which includes several 

types of lesions (masses, calcifications, asymmetries, and distortions). The dataset 

contains a total of 116 accurately annotated mass regions with mass sizes ranging from 

15mm2 to 3689mm2, which are divided into 58 ROIs for training and 58 ROIs for test, 

the same train-test split as previous works [10, 20, 21, 22, 23]. We have increased the 

number of training images to 870 by 10 random rotation, flipping horizontally and 

vertically, adding Gaussian Noise, and changing the brightness. 

DDSM-BCRP: The DDSM-BCRP dataset is a mammographic dataset selected from 

the digital database for screening mammography database containing 171 annotated 

mass regions divided into 84 ROIs for training, and 87 ROIs for test as done in previous 

works [10, 20, 21, 22]. 

 

4.2. Evaluation Metrics 

To measure the performance of the proposed method, we employ four different 

metrics, including Intersection over Union (IoU), Dice similarity coefficients (F1 Score) 

and boundary F-score (BoundF) [9]. 

IoU metric measures the area of overlap divided by the area of union that is the total 

number of pixels in both masks excluding the overlap. 

(7) 𝐼𝑜𝑈 =
𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
  



 

Dice Coefficient which is closely related to the IoU is twice the area of overlap 

between the prediction and the ground truth divided by the total number of pixels 

present across both images. 

(8) 𝐷𝑖𝑐𝑒 =
2 × (𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

|𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ| + |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
  

BoundF is boundary F1score averaged over 1 to 5 pixels thresholds around the 

boundaries of the ground truth, which demonstrates the model capability in capturing 

boundaries. 

 

4.3. Implementation Details 

Our implementation is based on Tensorflow. Input and output sizes are set to 256 

and 128 for training Vaihingen and 128 and 128  for other datasets. We trained the 

network with a batch size of 1 by Adam optimizer. Initial learning rate is set to 0.001  

that decays exponentially by a factor of 0.99 every epoch for all datasets except 

INBreast in which learning rate starts at 0.003 and decays by a factor of 0.96 every 

100000 epochs. The number of ACM iterations is set to 50 across all datasets except 

DDSM-BCRP, for which 10 ACM iterations are found to be sufficient for contour 

convergence. We use 60 and 100 contour nodes for building and mammography 

datasets, respectively. 

 

5. Results and Discussion 

5.1. Model capability in reducing overfitting and improving 

generalization 

Figure 5 demonstrates the convergence of Dice coefficient over CNN iterations 

across all datasets. It can be seen that the proposed method achieves better results as 

compared to the baseline CNN. Besides, CNNs overfit massively on small datasets. 

Evaluation metrics over iterations imply combining the capabilities of CNNs with 

active contour models can both reduce overfitting and improve generalization. 

Comparing four datasets yields that Vaihingen has the most improvement in 

generalization and overfitting is almost eliminated. 



 

  

  

Figure 5. Dice coefficient over CNN iterations. 

 

5.2. Building datasets segmentation result 

We summarize the results of recent methods including DSAC, DARNet, ACDRNet 

in Table 1 and Table 2 which evaluates  our method. These statistics imply our approach 

outperforms ACDRNet by 0.59 and 2.39 percent in mIoU, 7.38, and 8.62 percent in 

BoundF for Vaihingen and Bing huts datasets, respectively. 

Table 1. Vaihingen test set results. 

Method 
Vaihingen 

mIoU Dice BoundF Initialization 

FCN 87.16 86.59 71.40 Not applicable 

DSAC [8] 71.10 - 36.44 Manual 

DARNet [9] 88.24 93.65 75.91 Manual 

ACDRNet [10] 91.74 95.62 79.19 Manual 

Our approach 92.33 92.44 86.57 Automatic 

 

 

 



 

Table 2. Bing huts test set results. 

Method 
Bing huts 

mIoU Dice BoundF Initialization 

FCN 85.92 85.08 66.90 Not applicable 

DSAC [8] 38.74 - 37.16 Manual 

DARNet [9] 75.29 85.21 38.08 Manual 

ACDRNet [10] 84.73 91.04 58.29 Manual 

Our approach 87.12 86.86 66.91   Automatic 

 

Figure 6 shows the proposed vector field, LCDVF, compared to the DSAC energy 

vector field. In DSAC, the external energy of the contour is updated in a way to provide 

low values on the boundary and high values elsewhere. It’s  major drawback is that it 

does not delineate borders properly; the boundary of adjacent buildings, streets, and 

cars may be as small as the boundary of the region of interestt, so the contour may 

converge toward these local minima. In addition, in some parts of the image where the 

intensity changes are insignificant, DSAC does not provide a good gradient field, 

making contour points collapse to a single point and failing to properly segment the 

region. Therefore, DSAC is highly sensitive to the initial location. 

  



 

 

Input image 

  

LCDVF DT 

  

DSAC vector field DSAC external energy 

Figure 6. LCDVF compared to DSAC energy vector field. 

The problems of local minima and gradient invisibility in DSAC, are addressed in 

our proposed approach. Distance vector field with a local controlling parameter equal 

to the magnitude of the distance transform itself can guide our contour points towards 

edges with a high capture range. Our method exhibits significant improvement 

comparing against DSAC, as seen in Figure 7 and Figure 8. 



 

     

     

     

     

     

Predicted DT DSAC Energy DSAC Our approach Input  

Figure 7. Examples of Vaihingen test set. Ground truth, initial contour and the 

result are in solid green line, dash-dot cyan and dashed blue, respectively. 

 

 

 

 

  



 

     

     

     

     

     

Predicted DT DSAC Energy DSAC Our approach Input  

Figure 8. Examples of Bing huts test set. Ground truth, initial contour and the 

result are in solid green line, dash-dot cyan and dashed blue, respectively. 

 

5.3. Mammography datasets segmentation result 

Table 3 shows Dice results of the proposed model in comparison with recent methods 

in mammographic images. Our method Dice is almost equal to the best reported result 

for INBreast dataset and has a comparable performance compared to the others for 

DDSM-BCRP. We show sample segmentations in Figure 9. 

  



 

Table 3. Medical test set results. 

Method 
INBreast DDSM-BCRP 

Dice Initialization Dice Initialization 

FCN 93.06 Not applicable 89.82 Not applicable 

Ball & Bruce [20] 90.90 Not applicable 90.00 Not applicable 

Zhu et al. [21] 90.97 Not applicable 91.30 Not applicable 

Li et al. [22] 93.66 Not applicable 91.14 Not applicable 

Singh et al. [23] 92.11 Not applicable - Not applicable 

ACDRNet [10] 94.28 Manual 92.32 Manual 

Our approach 94.23 Automatic  90.89 Automatic  

 

INBreast 

     

DDSM-BCRP 

     

Figure 9. Examples of Medical data test set. Ground truth, initial contour and the 

result are in solid green line, dash-dot cyan and dashed blue respectively. 

 

5.4. Model sensitivity 

5.4.1. Energy parameters 

The importance of energy weighting parameters, the balloon term and the external 

energy in contour convergence to the boundary is shown in Table 4 and Table 5. 

Camparing our approach using DVF and LCDVF indicates that using DT as a 

coefficient to control the size of DVF improves the result significantly across all 

datasets. BoundF is increased by 3.11%, 0.04%, 7.16%, and 1.44% in Vaihingen, Bing 

huts, INBreast, and DDSM-BCRP datasets, respectively. Besides, segmentation results 

obtained by LCDVF, are comparable to state-of-the-art methods indicating that LCDVF 

alone is very well able to guide the contour to the boundary. As can be seen, LCDVF 

outperforms our approach in the Bing huts dataset. The balloon term plays an important 

role in contour convergence. As can be seen, BoundF improved by 6.2%, 0.13%, 5.2% 



 

and 1.31% in Vaihingen, Bing huts, INBreast and DDSM-BCRP datasets, respectively, 

when using balloon energy. 

Table 4. Model sensitivity to energy terms in building datasets. 

Method 
Vaihingen Bing huts 

mIoU Dice BoundF mIoU Dice BoundF 

Our approach  

(No kappa) 
90.23 90.20 80.37 87.07 86.79 66.78 

LCVDF 90.18 90.15 79.75 87.66 87.45 68.97 

Our approach  

(DVF) 
91.28 91.33 83.46 87.07 86.74 66.87 

Our approach 

(LCDVF) 
92.33 92.44 86.57 87.12 86.86 66.91 

 

Table 5. Model sensitivity to energy terms in mammography datasets. 

Method 
INBreast DDSM-BCRP 

mIoU Dice BoundF mIoU Dice BoundF 

Our approach  

(No kappa) 
80.71 93.29 55.47 72.77 90.52 41.89 

LCVDF 80.99 93.31 56.44 72.99 90.59 42.09 

Our approach  

(DVF) 
79.87 92.97 53.51 72.69 90.77 41.76 

Our approach 

(LCDVF) 
82.72 94.23 60.67 72.16 90.89 43.20 

 

5.4.2. Snake Iteration 

Figure 10 shows evaluation metrics over the number of snake iterations across all 

datasets. It is visible that our model performance slightly changes by increasing the 

number of snake iterations. We choose 50 iterations for Vaihingen, Bing huts, and 

INBreast and 10 for DDSM-BCRP dataset as the optimal iteration number. 

  



 

  

  

Figure 10. Evaluation metrics over the number of snake iterations. 

 

 

5.4.3. Automatic Initialization 

Table 6 shows the effect of choosing inscribed or circumscribed circle of the 

predicted mask as initialization. As can be seen, the proposed method performance 

slightly depends on the type of automatic initialization circle. However, we choose 

circumscribed circle for building datasets and inscribed circle for medical datasets as 

automatic initialization. 

 

Table 6. The effect of initialization method. 

Datasets 
Inscribed circle Circumscribed circle 

mIoU Dice BoundF mIoU Dice BoundF 

Vaihingen 92.02 92.10 85.88 92.33 92.44 86.57 

Bing huts 86.81 86.47 66.27 87.12 86.86 66.91 

INBreast 82.72 94.23 60.67 82.33 94.09 59.83 

DDSM-BCRP 72.16 90.89 43.20 71.15 90.72 42.39 

 

 

 



 

5.4.4. Capture Range 

DSAC framework is susceptible to initialization, which is also addressed due to using 

DVF as external energy. The proposed method provides a wide range of optional 

initializations. Figure 11 showing mIoU over initialization circle radius indicates the 

importance of active contour internal energy and kappa term in models capture range. 

It also suggests the proposed method has the least sensitivity to contour initialization. It 

is interesting to note that although using LCDVF gives comparable result to our model, 

it has the most sensitivity to contour initialization.  

  

Figure 11. Model’s capture range sensitivity to energy terms. 

 

Figure 12 demonstrates building segmentation using our approach with three 

different initializations compared to DSAC. As can be seen, DSAC is highly sensitive 

to initialization. If the initialization is chosen to be outside the boundary, contour does 

not converge due to local minima and gradient invisibility. Therefore,  the initialization 

needs to be inside the target and close enough to be able to capture the edges, otherwise 

contour might converge to local minima inside the target. On the other hand, our method 

performs much better and converges to edges in three cases with almost the same 

quality. 
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Figure 12. initialization sensivity. Ground truth, initial contour and the result are in 

solid green line, dash-dot cyan and dashed blue respectively. 

 

6. Conclusions 

In this work we have proposed locally controlled distance vector field in which a 

vector pointing toward the nearest point on the edge with the magnitude of 

corresponding distance is learned for each pixel. Active contour parameters and 

initialization are predicted by a CNN. The method is fully automatic and needs no 

human supervision. We have tested our approach with four datasets which indicates 

high capture range and concavity extraction capability in comparison to competing 

state-of-the-art methods.  

DSAC 

Ours 
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