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Abstract

Today, we are facing the COVID-19 pandemic. Accordingly, properly wearing face masks has become vital as an effective
way to prevent the rapid spread of COVID-19. This research develops an Efficient Mask-Net method for low-power devices,
such as mobile and embedding models with low-memory requirements. The method identifies face mask-wearing conditions
in two different schemes: I. Correctly Face Mask (CFM), Incorrectly Face Mask (IFM), and Not Face Mask (NFM) wearing;
II. Uncovered Chin IFM, Uncovered Nose IFM, and Uncovered Nose and Mouth IFM. The proposed method can also be
helpful to unmask the face for face authentication based on unconstrained 2D facial images in the wild. In this study, deep
convolutional neural networks (CNNs) were employed as feature extractors. Then, deep features were fed to a recently
proposed large margin piecewise linear (LMPL) classifier. In the experimental study, lightweight and very powerful mobile
implementation of CNN models were evaluated, where the novel “EffientNetb0” deep feature extractor with LMPL classifier
outperformed well-known end-to-end CNN models, as well as conventional image classification methods. It achieved high
accuracies of 99.53 and 99.64% in fulfilling the two mentioned tasks, respectively.

Keywords COVID-19 - EfficientNet - Face mask-wearing - Face authentication - Large margin classifier - Deep feature
extraction

different. In other words, there are a great intra-class varia-
tion and a small inter-class variation, which make it difficult

1 Introduction and motivation

It is necessary to design a model for automatic identification
of face mask-wearing conditions and use it as a first step to
unmask the faces for face authentication in mobile devices
and security systems, such as ATMs, banks, airport security
checkpoints, and facial-biometric attendance systems.

The face mask condition identification is a very challeng-
ing task because while samples from the different classes are
highly similar, samples from the same class may be much
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to learn discriminant features. Figure 1 depicts some samples
from the three classes.

In this paper, a new method has been developed for
face mask-wearing identification using well-known deep
convolutional neural networks (CNNs) as feature extractors
and a novel large margin piecewise linear (LMPL) [1] as a
classifier.

The proposed method contains four main steps: image pre-
processing, deep feature extraction, face mask- wearing clas-
sification, and face unmasking. The proposed method showed
an excellent performance in a computational resource-
limited environment, for both classification tasks with 99.53
and 99.64% accuracy, respectively. Moreover, unmasking the
masked faces showed a promising result. It can be concluded
that the proposed EfficientMask-Net method is effective in
face mask-wearing identification, as well as face unmask-
ing. Therefore, it can be used in many security systems for
epidemic prevention and face authentication.
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Fig. 1 Sample images of MaskedFace-Net dataset. a Correct Face Mask
(CEM), b Incorrectly Face Mask (IFM), and ¢ Not Face Mask (NFM)
wearing show the challenge of this task: Samples of different classes
are highly similar, while those of the same classes are so different

2 Related work
2.1 Masked face detection

Prasad et al. [2] proposed a lightweight model called
“MaskedFaceNet” for real-time mask detection using a
progressive semi-supervised approach. Fasfous et al. [3]
presented BinaryCoP (Binary COVID-mask Predictor) to
detect correct face mask-wearing and positioning. The pro-
posed BinaryCoP was a low-power binary neural network
(BNN) classifier, which performed the classification on edge
devices, such as embedded FPGA accelerator. They used the
MaskedFaceNet dataset with four classes, including IMFD
Nose and Mouth, IMFD Nose, IMFD Chin, and CMFD, and
balanced the dataset with data augmentation techniques. As
aresult, accuracy of up to 98% was obtained for the wearing
positioning problem.

2.2 Mobile-based face mask detection

Cabani et al. [4] introduced the MaskedFace-Net dataset
with 137,016 images. This large-scale dataset includes
Correctly Masked Face Dataset (CMFD) and Incorrectly
Masked Face Dataset (IMFD), in which masked faces are
created by applying a deformable model on the Flickr-Faces-
HQ3 (FFHQ) face dataset. Qin et al. [5] proposed image
super-resolution and classification network (SRCNet), in
which a super-resolution method was applied to improve
the performance of low-quality images. They classified the
face mask-wearing situations into three classes, includ-
ing correct mask-wearing, incorrect mask-wearing, and
no mask-wearing, and achieved an accuracy of 98.70%.
The training and evaluation were performed on the public
Medical Masks Dataset containing 3835 images.
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2.3 Identification of face mask-wearing conditions

Dey et al. [6] proposed a deep learning and multi-stage
face mask detection method called “Mobile-Net Mask.”
They used two different datasets with 5200 images to detect
Masked or NotMasked faces from still images and video
streams. The Mobile-Net Mask reached an accuracy of 93%.
Jiang et al. [7] presented a RetinaFaceMask detector based on
the one-stage RetinaNet for high-accuracy face mask detec-
tion. The introduced model contained ResNet or MobileNet
as a backbone, along with a feature pyramid network (FPN)
and context attention modules. The authors achieved a 93.4%
precision, which was higher than baseline results.

As presented in this section, although researchers have
introduced several approaches to identify face mask-wearing
conditions, face authentication lacks a unified system. In this
study, we developed a unified, efficient method for face mask-
wearing identification besides unmasking the masked faces,
which can be useful in authentication systems.

3 Materials and methods

This section describes the overall process of the proposed
EfficientMask-Net method. Figure 2 demonstrates the dia-
gram of the proposed mask-wearing system.

3.1 Image preprocessing

Image preprocessing enhances the visual appearances of
images and results in higher accuracy of the detection system.

3.2 Resizing face images

The inputimages of EfficientNet were resized to 224 x 224 x 3
using bicubic interpolation.

3.3 Image adjustment

Real-world images have a considerable variation in contrast
and exposure. The images were adjusted by mapping input
intensity to the new values to saturate 1% of the pixel values
in low and high intensities. Besides, the histogram of images
was calculated to determine the adjustment limit automati-
cally.

3.4 Deep feature extraction

High-level and abstract features can be extracted by deep
CNNe . This study focused on a small and efficient network in
computational power. Transfer learning was used to prevent
overfitting and obtain better generalization.
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Fig.2 A schematic of the

proposed EfficientMask-Net
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EfficeintNet was introduced by Tan and Le [8] in 2019. It
is one of the most efficient CNN models among well-known
pre-trained networks with a small number of FLOPS. Com-
pared to other models achieving similar ImageNet accuracy,
the EfficientNet is much smaller and faster. The authors have
shown that the proposed EfficientNet is five times faster for
inference on mobile devices [8].

3.5 Large margin piecewise linear (LMPL) classifier

The novel large margin piecewise linear (LMPL) classifier
[1] works based on a cellular structure. First of all, a grid
is considered on feature space. In fact, some random hyper-
planes partition feature space into subpartitions called cells.
Each cell is labeled by a class label based on covered training
instances. The main problem is with tuning of initial hyper-
planes.

1) Normal: Ordinary samples, which are correctly classified
at just one side of the hyper-plane. Their loss function is
Hinge loss as defined in (1):

l(x)Normal@) = max(O, 1-y (wT.x + b))

where: y = {—1, +1}

ey

where ¥ is the virtual label of sample x and determines
at which side of the hyper-plane, x is correctly classified.

2) Negative don’t care: These samples are classified incor-
rectly on both sides of the hyper-plane. Their loss is
defined in (2):

LX) pontCare~ = max(l (X)Normal#1)» l(x)Norma](_l)) 2
3) Positive don’t care: This group is the opposite of Neg-
ative don’t care, and samples are classified correctly
on both sides of the hyper-plane. Their loss function is
defined in (3):
3

[(X)pontCaret = min (l (X)Normal D> ! (x)Normal(’l))
The Positive don’t care samples, which are always clas-
sified correctly, are ignored in this paper. The main reason

is that the loss function in (3) is not convex. Therefore, the
objective function is defined as presented in (4):

1
min 2wl +C1 Y ) g

x€Normal

+C Z 1(X) pontCare
xeDC~

“

The scalar values Cy and C, control the balance between
the structural and empirical error. In this paper, both C and
C, were experimentally tested and set to 1000.

The LMPL classifier optimizes each hyper-plane based on
the introduced objective function with a convex optimizer.

@ Springer
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After some iterations, the model converges to some hyper-
planes in order to classify samples of different classes, and
extra hyper-planes that are not useful in the classification
are removed. Therefore, regarding the distribution and the
complexity of the decision boundaries, the complexity of the
model is tuned by removing redundant hyper-planes, and an
efficient large margin approach is obtained.

3.6 Unmasking the face

Given its contactless nature, especially in the pandemic era,
using faces is preferred in biometric recognition. However,
these systems are designed for non-occluded faces [9], the
proposed method was designed to work based on existing
face authentication methods and avoid retraining them on
masked face datasets. Most of the recent works have focused
on the eye area exclusively [10] or retraining existing meth-
ods on the simulated masked faces [11].

1) Image segmentation

As the first step, faces were segmented into Mask and
Non-Mask segments to determine missed parts of the face.
Figure 3a illustrates an example of an input masked face and
the resulting segmented face.

2) Generating Synthetic Faces

A generative advertising network (GAN) was trained on
15,000 real-world faces without face masks. Then, 25 syn-
thetic faces were generated by the trained GAN to complete
the masked faces, as shown in Fig. 3b.

3) Selecting the Matched generated face

The distance between a masked face and generated
faces was calculated at pixel level based on the normal-
ized root-mean-square error (NRMSE), which ranges from
0 (identical) to 1 (completely different). The synthetic face
with the smallest value was selected to complete the masked
face. An example is shown in Fig. 3c.

4) Face Completion

Facial parts of the mask area were extracted from the
selected synthetic face to fill missed parts of the masked face.
An example of the final output of the proposed method is
shown in Fig. 3d.

Algorithm 1 shows the whole process of the proposed
EfficientMask-Net method.
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4 Experimental results
4.1 Experimental setup

All experiments were implemented using the deep learning
and image processing toolboxes of MATLAB R2021a. A
CPU Core i7 4.00 GHz with 24 GB RAM was applied to
implement the

MaskEfficeint-Net. The Adam optimizer [12] with 1 =
0.9, B = 0.999, and € = 10~8 was also used. Moreover,
weight decay of 10~ for L2 regularization was applied to
avoid overfitting.

The network was trained for five epochs with a mini-batch
size of 64. The initial learning rate was set on 1073, and the
learning rate drop factor was set on 0.1 for all three epochs
to increase the learning speed. Besides, the training dataset
shuffled every epoch.

Algorithm 1. The proposed EfficientMask-Net method
1. Initialization: Experiment 1
2. Experiment 2
Mask-wearing condition identification:

3. Input: Face images
4. Image preprocessing:
S. Image resizing to 224 x 224 x 3 pixels
6. Image adjustment
7.  Feature extraction:
8. Fine-tuning the pre-trained EfficientNet-B0 by transfer
learning
9. Deep feature extraction by EfficientNet-B0O
10.  Classification:
11. Training:
12. Train the LMPL classifier on the training
set x
13. Testing:
14. Classifying the test image x’ by LMPL model
15.  Output:
16. y' : Predicted class label of the test image

Face Unmasking:
17.  Input: Masked face
18. Image segmentation:
Image segmentation to Mask and Non-Mask segments
19.  Generating synthetic faces:
25 faces generated by a trained GAN
20. Selecting the best matched generated image:

21. Calculating NRMSE between the masked face and 25
generated faces

22. Selecting the synthetic face with the smallest value

23.  Face completion:

24. Extracting facial parts of the mask area from the selected
synthetic face

25. Filling the missed parts of the masked face

26. Output: Unmasked face

In this study, two experiments were carried out for two
different classification schemes:

1. Experiment 1: Correctly Face Mask (CFM), Incorrectly
Face Mask (IFM), and Not Face Mask (NFM) wearing

II. Experiment 2: Uncovered Chin IFM, Uncovered Nose
IFM, and Uncovered Nose and Mouth IFM



Signal, Image and Video Processing (2022) 16:1991-1999

1995

Fig.3 The steps of unmasking
the faces. a A masked face and
the resulting segmented face.

b 25 generated images by GAN.
¢ The selected synthetic face and
extracted facial parts of the mask
area. d The unmasked face

B. MaskedFace Dataset

4.2 MaskedFace dataset

In this study, we combined the novel MaskedFace-Net! and
the well-known Flicker-Face-HQ? (FFHQ) datasets. FFHQ
is an open-access high-quality dataset with PNG images of
1024 x 1024 resolution. The original FFHQ was used as
the Not mask-wearing dataset. The details of class samples
and the related experiments are listed in Table 1. Finally,
14,783 and 4992 face images were used in Experiments 1
and 2, respectively. The complete dataset for each experiment
can be found in the Zenodo repository (https://zenodo.org/
record/4892677).

4.3 Experimental results and analysis

1) Performance Analysis

Several lightweight deep networks were compared as an
end-to-end network and a feature extractor with the novel
LMPL classifier (called CNN™) in terms of different metrics,
as shown in Tables 2 and 3 for both experiments. In both
experiments, EfficientNetB0 achieved the best results in both
schemes as an end-to-end network and a feature extractor
with the LMPL classifier (EfficientNetB0™).

The novel LMPL was also compared with well-known
classifiers. According to the results, LMPL outperformed
all other classifiers in terms of performance metrics. As
illustrated in Tables 4 and 5, the LMPL achieved the best
classification accuracy in both experiments.

2) Statistical Analysis

1 gee “MaskedFace-Net
MaskedFace-Net

2 see “dataset of face images Flickr-Faces-HQ (FFHQ)” https://github.
com/NVlabs/fthq-dataset

dataset”  https://github.com/cabani/

(d)

Table 1 Details of face image dataset

Experiment  Types No. of Source database
X-ray
images
Experiment  Correctly Face ~ 4792 MaskedFace Net,
1 Mask (CFM)- Correctly
wearing Maskedface
Dataset (CMD)
Incorrectly 4991 MaskedFace Net,
Face Mask Incorrectly
(IFM)- Maskedface
wearing Dataset (IMD)
Not Face Mask 5000 Flicker-Face-HQ
(NFM)- (FFHQ)
wearing
Experiment  Uncovered 1815 MaskedFace Net,
2 Chin, IFM Incorrectly
Maskedface
Dataset (IMD)
Uncovered 1608 MaskedFace Net,
Nose, IFM Incorrectly
Maskedface
Dataset (IMD)
Uncovered 1569 MaskedFace Net,
Nose and Incorrectly
Mouth, IFM Maskedface
Dataset (IMD)
Unmasking  Not face mask 15,000 Flicker-Face-HQ
face (NFM)- (FFHQ)

wearing

Friedman test is a popular statistical analysis for simple,
nonparametric, and safe comparison of at least three-related
samples. It has no assumption about primary data distribu-
tion. This test ranks methods for each metric independently.
Indeed, R; is the average rank of the j th method based on
different metrics. Note that in the case of tie, i.e., identical
performance, the same ranks are assigned.

As can be seen in Tables 2, 3, 4, 5, the novel LMPL
improved the performance metrics significantly and obtained
the best average ranks in all cases. These tables reveal the
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Table 2 Comparison of deep CNNs as an end-2-end network and as a feature extractor, along with the proposed LMPL classifier (CNN*) in

experiment 1: correctly Face Mask (CFM), Incorrectly Face Mask (IFM), and Not Face Mask (NFM) wearing

Method Performance Metrics (%)
Sensitivity (Recall) Specificity (TNR)  Precision (PPV) F1-score Accuracy Average rank

EfficientNet 97.24 +0.22(1) 97.62 +0.11(1) 97.25 +£0.22(1) 97.24 £0.22(1) 97.24 £0.22(1) 1.0
EfficientNet* 99.54 + 0.16(1) 99.77 + 0.08(1) 99.54 +0.16(1) 99.54 £ 0.16(1) 99.53 £ 0.16(1) 1.0
MobileNetV2 97.23 £0.16(2) 97.61 £ 0.08(2) 97.23 £0.16(2) 97.23 £0.16(2)  97.22£0.16(2) 2.0
MobileNetV2* 98.50 £0.11(2) 98.75 £ 0.06. (2) 98.51 £0.11(2) 98.50 £0.11(2)  98.50 £0.11(2) 2.0
NasNetMobile 96.93 £0.14(4) 97.46 £ 0.07(4) 96.95 £0.13(4) 96.94 £ 0.14(4)  96.93 £0.14(4) 4.0
NasNetMobile™  98.45 4+ 0.15(4) 98.72 £ 0.08(4) 98.46 £0.14. (4) 98.45+£0.154) 98.45+0.15(4) 4.0
ShuffleNet 97.10 £0.11(3) 97.54 £ 0.05(3) 97.10 £ 0.10(3) 97.10 £0.103) 97.09+£0.11.(3) 3.0
ShuffleNet* 98.47 £+ 0.20(3) 98.73 £ 0.10(3) 98.48 £ 0.20(3) 98.47 £0.20(3)  98.47 £ 0.20(3) 3.0
SqueezeNet 96.92 £ 0.12(5) 97.46 £+ 0.06(4) 96.93 £0.11(5) 96.92 £0.12(5)  96.92 £ 0.12(5) 4.8
SqueezeNet* 98.21 £ 0.27(5) 98.60 £ 0.14(5) 98.22 £+ 0.26(5) 98.21 £0.27(5)  98.21 £0.27(5) 5.0
Avg. on CNN 97.08 £0.16 97.54 £ 0.08 97.09 £0.15 97.09 £0.15 96.04 £ 0.22

Avg on CNN+ 98.63 £0.52 98.91 £0.48 98.64 £ 0.52 98.63 £ 0.52 98.63 £ 0.52

*Bold numbers indicate the best performance

Table 3 Comparison of deep CNNs as an end-2-end network and as a feature extractor, along with the proposed LMPL classifier (CNN™) in

experiment 2: uncovered chin IFM, uncovered nose IFM, and uncovered nose and mouth IFM

Method Performance metrics (%)
Sensitivity (Recall) Specificity (TNR) Precision (PPV) F1-score Accuracy Average rank

EfficientNet 96.47 +0.19(1) 96.74 £+ 0.09(1) 96.48 + 0.18(1) 96.47 + 0.18(1) 96.48 + 0.18(1) 1.0
EfficientNet* 99.64 + 0.06(1) 99.82 £+ 0.03(1) 99.63 + 0.06(1) 99.63 + 0.06(1) 99.64 + 0.05(1) 1.0
MobileNetV2 96.12 £ 0.25(2) 96.57 £0.13(2) 96.12 £ 0.25(2) 96.12 £ 0.25(2) 96.14 £ 0.25(2) 2.0
MobileNetV2* 98.53 £0.15(2) 98.77 £0.07(2) 98.52 £ 0.14(2) 98.53 £0.14(2) 98.54 £0.13(2) 2.0
NasNetMobile 94.60 £ 0.66(5) 94.83 £0.31(5) 94.61 £ 0.64(5) 94.59 £ 0.68(5) 94.64 £ 0.64(5) 5.0
NasNetMobile* 97.79 £ 1.81(5) 98.42 £ 0.85(5) 97.88 £ 1.60(5) 97.80 £ 1.78(5) 97.84 £ 1.71(5) 5.0
ShuffleNet 95.62 £ 0.34(4) 96.32 £ 0.16(3) 95.62 £+ 0.36(4) 95.62 +0.35(4) 95.64 £ 0.34(4) 3.8
ShuffleNet* 98.49 £ 0.23(3) 98.76 £0.11(3) 98.48 +£0.22(3) 98.48 £ 0.22(3) 98.50 £ 0.21(3) 3.0
SqueezeNet 95.88 £+ 0.56(3) 95.45 £ 0.28(4) 95.88 £ 0.57(3) 95.88 £ 0.57(3) 95.90 £ 0.56(3) 32
SqueezeNet* 97.93 £ 0.64(4) 98.47 £0.32(4) 97.92 £+ 0.66(4) 97.92 + 0.65(4) 97.94 £+ 0.64(4) 4.0
Avg. on CNN 95.74 £0.71 95.98 £ 0.81 95.74 £0.71 95.74 £0.71 95.76 £0.70

Avg on CNN+ 98.48 £0.73 98.84 £ 0.57 98.49 £ 0.71 98.47 £0.72 98.49 £ 0.72

*Bold numbers indicate the best performance

significant difference between the efficiency of the different
methods.

3) Visual Analysis

Gradient-weighted class activation mapping (Grad-CAM)
technique [15] was used for detailed visual analysis, which
provides a visualization of the extracted deep features
through the fine-tuned EfficientNetB0, as shown in Fig. 6.
Grad-CAM is a technique to interpret deep CNN predictions

@ Springer

and check whether the CNN is focusing on the right parts of
the input image. Prediction regions can be investigated using
heat maps. The spatial parts with the greatest impact on the
network score were identified by Grad-CAM heat mapping,
as shown in Fig. 6. The standard jet map was used in which
red and yellow indicate regions with high contribution to the
right predictions and blue denotes regions with low contri-
bution. As can be seen, the fine-tuned deep EfficientNetB0
well identified the effective regions in the classification pre-
dictions.
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Table 4 Comparison of well-known classifiers with the proposed LMPL classifier in experiment 1: correctly face mask (CFM), incorrectly face

mask (IFM), and not face mask (NFM) wearing

Method Performance Metrics (%)
Sensitivity (Recall)  Specificity (TNR)  Precision (PPV) F1-score Accuracy Average rank

NaiveBayes 93.59 £ 0.80(13) 96.30 £ 0.41(13) 93.89 £0.76(13)  93.66 £0.79(13)  93.62 £0.82(13) 13.0
k NN (k =3) 96.10 £+ 1.25(6) 97.54 £+ 0.63(6) 96.15 £ 1.18(7) 96.08 £+ 1.31(6) 96.08 £ 1.28(6) 6.2
kNN (k=5) 96.17 £+ 1.44(4) 97.58 £0.57(4) 96.22 £+ 1.08(4) 96.15 £+ 1.19(4) 96.16 £ 1.17(4) 4.0
kNN (k=17) 96.14 £ 1.12(5) 97.56 £ 0.56(5) 96.19 £ 1.04(5) 96.12 £ 1.17(5) 96.13 £ 1.14(5) 5.0
OvO SVM 96.08 £ 1.26(7) 97.53 £ 0.63(7) 96.16 £ 1.14(6) 96.06 £+ 1.32(7) 96.06 £+ 1.28(7) 6.8
OvA SVM 96.02 £+ 1.45(8) 97.50 £ 0.73(8) 96.10 £ 1.31(8) 96.00 £+ 1.51(8) 96.00 £ 1.48(8) 8.0
Decision Tree 95.19 £ 1.01(11) 97.08 £ 0.52(11) 95.28 £0.87(11)  95.19+£1.00(11)  95.16 £1.02(11) 11.0
AdaBoostM?2 95.47 £ 0.59(9) 97.23 £ 0.30(9) 95.47 £ 0.60(9) 95.43 £ 0.61(9) 95.46 £ 0.60(9) 9.0
TotalBoost 95.36 £ 0.71(10) 97.18 £ 0.36(10) 95.38 £0.68(10)  95.33 £0.73(10)  95.35+0.72(10)  10.0
LP Boost 94.64 £+ 0.34(12) 96.81 £0.17(12) 94.69 £0.35(12) 94.58 £0.34(12) 94.61 £0.34(12) 12.0
Random Forrest  96.28 £+ 1.11(3) 97.64 £ 0.56(2) 96.34 £ 1.00(3) 96.26 £ 1.17(3) 96.27 £ 1.13(3) 2.8
SoftMax 97.24 +£0.22(2) 97.62 £0.11(3) 97.25 £0.22(2) 97.24 +£0.22(2) 97.24 +£0.22(2) 2.2
Novel LMPL 99.54 +0.16(1) 99.77 + 0.08(1) 99.54 + 0.16(1) 99.54 +0.16(1) 99.53 +£0.16(1) 1.0

*Bold numbers indicate the best performance

Table 5 Comparison of well-known classifiers with the proposed LMPL classifier in experiment 2: uncovered chin IFM, uncovered nose IFM, and

uncovered nose and mouth IFM

Method Performance metrics (%)
Sensitivity (Recall)  Specificity (TNR)  Precision (PPV) F1-score Accuracy Average Rank

NaiveBayes 92.05 £0.62(11) 95.13 £0.29(10)  92.11 £0.62(11)  92.07 £0.62(10)  92.21 £0.58(10) 10.4
k NN (k =3) 92.54 £0.92(9) 95.36 £+ 0.46(9) 92.51 +£0.94(9) 92.52 £ 0.93(9) 92.65 £ 0.93(9) 9.0
kNN (k=5) 92.73 £0.75(7) 95.46 +£ 0.37(7) 92.71 £ 0.76(7) 92.71 £ 0.76(7) 92.82 £+ 0.74(7) 7.0
kNN (k=17) 93.08 £ 0.69(6) 95.63 £ 0.34(6) 93.06 £+ 0.71(6) 93.07 £ 0.70(6) 93.19 £ 0.70(6) 6.0
OvO SVM 93.34 £ 1.05(4) 95.75 £0.51(4) 93.34 £+ 1.04(4) 93.33 £ 1.05(4) 93.45 £ 1.03(4) 4.0
OvA SVM 93.30 £ 1.06(5) 95.73 £ 0.51(5) 93.31 £ 1.05(5) 93.30 £+ 1.05(5) 93.41 £ 1.03(5) 5.0
Decision Tree 90.67 £0.61(13) 94.47 £0.29(13)  90.69 £0.59(13)  90.68 +0.60(13)  90.85 +£0.59(13)  13.0
AdaBoostM2 92.72 £ 0.56(8) 95.40 +0.27(8) 92.66 £ 0.56(8) 92.68 £ 0.56(8) 92.75 £ 0.54(8) 8.0
TotalBoost 91.04 £ 1.13(12) 94.56 £0.56(12)  91.39+£1.16(12) 91.00 + 1.14(12)  91.01 £1.13(12) 12.0
LP Boost 92.10 £ 1.72(10) 95.07 £0.86(11)  92.15+£1.63(10) 92.03 £ 1.74(11)  92.05 £ 1.76(11)  10.6
Random Forrest  94.69 4+ 1.06(3) 96.38 £ 0.52(3) 94.69 £+ 1.07(3) 94.66 £ 1.07(3) 94.72 £ 1.05(3) 3.0
SoftMax 96.47 £0.19(2) 96.74 £+ 0.09(2) 96.48 +0.18(2) 96.47 £ 0.18(2) 96.48 £ 0.18(2) 2.0
Novel LMPL 99.64 + 0.06(1) 99.82 +0.03(1) 99.63 + 0.06(1) 99.63 +0.06 (1) 99.64 + 0.05(1) 1.0

*Bold numbers indicate the best performance

4) Comparison with State-of-the-Art Studies

well as face authentication services in lightweight devices

like mobile phones.

According to Table 6, the developed method showed supe-

rior performance in comparison to several recent studies. It

can be concluded that the proposed Efficient-Mask Net can

5 Conclusion and future work

be useful in face mask-wearing monitoring systems, espe-
cially in public places, to control coronavirus spreading, as

The proposed EfficientMask-Net model is lightweight and
needs low power resources. Hence, the method can be useful

@ Springer
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Table 6 Comparison of the
proposed method with

state-of-the-art deep models in

face mask detection (CFM =
correctly face masK-, IFM =

incorrectly face mask-, NFM =

not face mask-wearing)

@ Springer

Study No. of cases Method Accuracy
(%)
Qin et al. [5] 3030 CFM SRCNet 98.70
134 IFM
671 NFM
Nagrath et al. [14] 690 Masked MobilenetV2 92.64
686 Not Masked
Fasfous et. al [3] 68,229 CFM BinaryCOP 98.10
6,689 Chin
1608 Nose
52,175 Nose & Mouth
Jiang et al. [7] 34,806 Masked RetinaFaceMask 93.4
393,703 Not Masked (Precision)
1916 Masked MobileNetV2 96.85
1930 Not Masked
Inamdar et al. [21] 10 CFM Facemasknet 98.6
15 IFM
10 NFM
Loey et al. [19] 785 Masked ResNet-50 99.49
785 Not Masked
Mercaldo and Santone [15] 2165 Masked MobilenetV2 98.0
1930 Not Masked
Zhang et al. [20] 636 CFM Context-Attention 84.1 (mAP)
48 IFM R-CNN
3988 NFM
Batagelj et al. [16] 29,532 CFM ResNet-152 98.93
1528 IFM
32,012 NFM
Jiang et al. [7] 7695 CFM SE-YOLOV3 and 98.6
366 IFM DarkNet-53 (AP)
10,471 NFM
Militante and Dionsio [17] 12,500 Masked CNN 96.0
12,500 Not Masked
Dey et. al [6] 1916 Masked MobileNet Mask 93.0
1919 Not Masked
Efficient-Mask Net 4792 CFM Efficient -NetBO 99.53
(Proposed Method) 4991 IFM
5000 NFM
1815 Chin 99.64
1608 Nose

1569 Nose & Mouth
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Fig.4 Grad-CAM visualization results of different class face images.
a Correctly Face Mask (CFM), b Incorrectly Face Mask (IFM), and
¢ Not Face Mask (NFM) wearing. (Original images are shown in Fig. 1)

in real-time face mask-wearing systems to identify mask-
wearing conditions in public places for epidemic prevention.
Two experiments were conducted to evaluate the proposed
method on various deep CNNs. The EffientNetB0 with the
novel LMPL classifier showed the best average accuracy in
both experiments, equal to 99.53 and 99.64%, respectively.
The face unmasking was also performed on masked faces and
showed promising results that can be useful in face authen-
tication systems.

In the future, the proposed method can be extended to
work on real-world masked face datasets. In order to improve
face unmasking, the existing face completion methods under
occlusion can be applied to masked faces. Besides, the impact
of unmasking on present face recognition methods can be
investigated.
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