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Abstract
The coronavirus (COVID-19) and its global effect have increased the interests of researchers from different disciplines to
the medical methods such as immune or convalescent plasma treatment. Immune Plasma algorithm (IPA) that is the first
meta-heuristic referencing the steps of the immune plasma treatment as the name implies has been proposed recently and
its potential has been investigated. In this study, a pandemic management strategy based on limiting the free movements
between regions was modeled and integrated into the workflow of the IPA and a new variant called regional IPA (rIPA) was
introduced. For analyzing the contribution of the proposed method, twelve numerical benchmark problems were solved. Also,
the performance of the rIPA was investigated by solving a new big data optimization problem that requires minimization
of the measurement noise of electroencephalography signals. The results obtained by the rIPA were compared with the
fourteen well-known and state-of-art meta-heuristics. Comparative studies showed that managing the relationship between
the individuals of the population as in the proposed regional model significantly contributes to the capabilities and rIPA
outperforms other meta-heuristics for most of the test cases.

Keywords Meta-heuristics · IPA · Regional restriction · Noise filtering

1 Introduction

The increasing difficulties of real world or engineering
problems limit the solving capabilities of the well-known
analyticalmethods [21,23]. In order to address the drawbacks
stemmed from the computational and storage limitations
of these methods, researchers increased the density of the
their studies on a relatively new area called meta-heuristics
[21,23]. Ameta-heuristic algorithmprovides a problem inde-
pendent framework guiding a set of strategies and different
types of optimization problems relatedwith the fields ranging
from image, video or signal processing [2] to pattern-motif-
gene discovery [20], digital filter design [5] to unnamed
vehicle planning [19] have been solved successfully.
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The meta-heuristics that model the brilliant behaviors of
the animals such as ants, birds or other creatures are called
swarm intelligence based algorithms. Particle Swarm Opti-
mization (PSO) [6] referencing the bird flocking or fish
schooling and Artificial Bee Colony (ABC) [2] referencing
the foraging habits of the honey bees are listed in the most
commonly used swarm intelligence based meta-heuristics.
Yang introduced Firefly algorithm (FA) [13] after analyz-
ing flashing and signaling capabilities of the fireflies and
Bat algorithm (BA) [10] by investigating bats and their
echolocation properties. In addition to these algorithms, self
and cross pollinating flowers became the source of inspi-
ration for Yang and Flower Pollination algorithm (FPA)
was proposed [1]. Mirjalili introduced or contributed to the
developments of the meta-heuristics such as Moth-Flame
Optimization (MFO) algorithm [14] based on the flying
characteristics of the moths, Salp Swarm algorithm (SSA)
[16] based on swarming behaviors of the salps and Harris
Hawks Optimizer (HHO) [11] based on chasing styles of
a special type of hawks. Another group of meta-heuristics
also called evolutionary algorithms tries to model biological
mechanisms including natural selection, crossover andmuta-
tion. Genetic algorithm (GA) [12] introduced by Holland
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brought a new perspective to the concept of meta-heuristics
and promising capabilities of them. The idea lying behind
the representation of the solutions, subtly designed selec-
tion, crossover and mutation operators still contributes to the
new researches about the meta-heuristics. Differential Evo-
lution (DE) [8] proposed by Storn and Price is another well
balanced evolutionary algorithm.Thefinal group of themeta-
heuristics usually guides the prominent physical, chemical or
mathematical laws, theorems or different phenomenas. Grav-
itational Search algorithm (GSA) proposed by Rashedi et al.
used Newtonian law of gravity to manage the search oper-
ation [24]. Cuevas et al. considered the transition between
solid, liquid and gas phases of a matter and State of Mat-
ter Search (SMS) was introduced [7]. Mirjalili showed that
some trigonometric functions such as sine and cosine can be
used to generate and fluctuate candidate solutions and then
Sine-Cosine algorithm (SCA) was proposed [15] and helped
understanding richness of the laws or phenomenas being ref-
erenced.

As in the other disciplines, the COVID-19 has changed the
working routines and search motivations of the researchers
from the computer and data sciences and various studies have
been conducted. In one of these studies, a medical method
that is known as the immune or convalescent plasma and also
used commonly for the treatment of the COVID-19 infection
was investigated and a new meta-heuristic called Immune
Plasma algorithm (IP algorithm or IPA) was introduced [3].
Even though the IPA is capable of obtaining promising results
for different types of problems, it still requires subtly adjust-
ment of two control parameters for determining the number
of donors and receivers. The performance of the IPA can be
further improved by adapting some pandemic management
operations such as controlling freemovements of the citizens
and applying internal or external border restriction. More-
over, using pandemic management operations can determine
the number of donors and receivers without using special
control parameters. In this study, some pandemic manage-
ment operations were first modeled and ported to the IPA
and then an improved IPA variant called the regional IPA
(rIPA) was introduced.

The subsequent sections of the paper are organized as fol-
lows: Basic workflow and used mathematical models by the
standard IPA are given in Sect. 2. Implementation details of
the border restriction mechanism and details of the rIPA are
presented in Sect. 3. Results of the experiments and compara-
tive studies are detailed in Sects. 4 and 5. Finally, conclusion
and some assumptions about the future works are summa-
rized in Sect. 6.

2 Immune plasma algorithm

When solving a D-dimensional problem with the IPA for
which the size of the population is PS, the j th parameter
of the xk individual is initialized as in the Eq. (1) [4]. In Eq.
(1), xk j is used on behalf of the j th parameter of the xk . xhj
and xlj correspond to the upper and lower bounds of the j th
parameter, respectively. Finally, the rand(0, 1) represents a
number generated randomly between 0 and 1.

xk j = xlj + rand(0, 1)(xhj − xlj ) (1)

For modeling how an infection is transferred from an indi-
vidual to another, IPA uses the Eq. (2) in which xk j and xmj

are matched with the randomly determined j th parameters
of the xk and xm individuals [4]. Also, the xin fk j is used to rep-

resent the j th parameter of the infected xk showed by xin fk .
While the k index is chosen from the set of {1, 2, . . . , PS}
sequentially, the m index is chosen randomly from the same
set but it must be different than the selected k. When the xk is
infected by the xm , IPA computes the immune response of the
xin fk by using the objective function f that will be minimized
for the considered problem. If the immune response of the
infectious xk found as the f (xin fk ) is less than the immune
response of the xk before the infection found as the f (xk), it is
assumed that the xk is capable of handling infection without
requiring extra treatments and xk j is changed with the xin fk j
in order to support the immune memory for the subsequent
encountering with the same or similar infection. Otherwise,
xk is not changed [4].

xin fk j = xk j + rand(−1, 1)(xk j − xmj ) (2)

IPA continues its operations by determining how many
receivers and donors will be selected. In order to decide
that how many receivers and donors will be selected, IPA
introduces two control parameters called NoR and NoD [4].
While the NoR is abbreviation for the number of receivers
and the worst NoR individuals (or individual) are chosen as
the receivers (or receiver), the NoD is abbreviation for the
number of donors and the best NoD individuals (or individ-
ual) are chosen as the possible donors (or donor) [4]. When
the k indexed receiver showed by xrcvk is decided to be treated
with the plasma from the randomly assigned xdnrm donor indi-
vidual, the IPA uses the Eq. (3) where j ranges from 1 to D.
In Eq. (3), xrcv−p

k shows the plasma transferred xrcvk receiver.

xrcv−p
k j corresponds to the j th parameter of the plasma trans-
ferred xrcvk receiver and the value of the j is set sequentially
to the elements of {1, 2, . . . , D} [3]. If the newly calculated
immune response showed as the f (xrcv−p

k ) for the xrcvk after
the first plasma dose is better than the response showed as
the f (xdnrm ) for the xdnrm , the xrcvk is updated with the xrcv−p

k
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and second does of plasma from xdnrm is prepared for the
next transfer. Otherwise, all of the parameters belonging to
the xrcvk are changed with the corresponding parameters of
the xdnrm in order to ensure that one dose of plasma is trans-
ferred and the treatment is completed for xrcvk . When the IPA
decides to continue plasma treatment for the xrcvk with the
second dose, the Eq. (3) is used again. However, for mak-
ing a decision about the transfer of the third or more dose
of plasma, a comparison between f (xrcv−p

k ) and f (xrcvk ) is
carried out [4].

xrcv−p
k j = xrcvk j + rand(−1, 1)(xrcvk j − xdnrmj ) (3)

The immune memory controlling how quickly antibodies
of a plasmadonorwill be synthesized can changewith time or
incidence of infection. The IPA manages this type of change
on the immune memory of a donor with a mechanism that
utilizes from the ratio between tcr and tmax [3]. While the
tcr shows the current evaluation number, tmax corresponds
to the maximum evaluation number. If tcr/tmax is equal or
less than the random number generated between 0 and 1, the
xdnrm or its immune memory is re-organized by using Eq. (1).
Otherwise, the xdnrm donor is modified slightly with the Eq.
(4) where j ranges from 1 to D [3].

xdnrmj = xdnrmj + rand(−1, 1)xdnrmj (4)

3 Regional immune plasma algorithm

An infection for which a well known treatment method does
not exist as in the initial stage of the ongoing COVID-19
pandemic can spread easily among the population members
and lead to dramatic changes on our daily routines. After
detecting the spread of an infection, governments must take
measures to control the infection and protect the health of
their citizens. One of the most common and effective pre-
cautions is applying external and internal border restrictions.
While external border restrictions try to control infection by
limiting travels between countries, internal border restric-
tions help to decrease active cases within a country by
limiting the free movements of citizens between states, cities
or regions. Moreover, if a specialized treatment method is
applied and the distribution of the infection is suppressed in
a region, other regions are informed about the used medical
method or methods and the distribution of the infection is
also controlled for these regions. The Fig. 1 illustrates how
the transitions between the regions named A, B, M and N are
restricted with the start of the infection and each region tries
to control infection by using their local capabilities. Each
region shares the information about the successful treatment
methods with other regions and guides them for controlling
the infection.

Fig. 1 Border restrictions between A, B, M and N regions

The positive effect of the border restrictions on the man-
agement of a pandemic can be modeled appropriately and
integrated into the workflow of the IPA for further improv-
ing the solving capabilities of it. Assume that PS individuals
of the IPA are related with a state for which the external bor-
der restrictions are maintained. In addition to this, mentioned
state is tried to be divided randomly into RG different regions
(or cities) each containing at least two or more individuals
and sum of the individuals in all of the RG regions is equal
to the PS. In the Algorithm 1, it is described how the sizes
of the RG different regions are determined randomly and
initialization of the other control parameters is conducted.

Algorithm 1 Sizes of the RG different regions
1: Assign initial values to PS, D and RG
2: Set xbest as the best individual of the population
3: Select tmax and set tcr to PS
4: rgSi zes[1 . . . RG] ← 2
5: for k ← 1 . . . RG do
6: sumO f rgSizes = sum(rgSi zes[1 . . . RG])
7: if k == RG then
8: rgSi zes[k] = rgSi zes[k] + (PS − sumO f rgSizes)
9: else
10: const = �rand(0, 1) × (PS − sumO f rgSizes)�
11: rgSi zes[k] = rgSi zes[k] + const
12: end if
13: end for

The IPA that uses the internal border restrictions described
above is named as the regional IPA (rIPA). In the rIPA,
the whole population is distributed between RG different
regions by considering that each region contains at least two
individuals. After generating isolated regions and determin-
ing number of individuals for them, rIPA utilizes from the
fundamental operations of the IPA about the distribution of
infection between individuals of each region. However, it
should be considered that the interactions between individu-
als must be limited by considering the number of individuals
in a region and individuals in a region. TheAlgorithm2below
describes how the infection distributes between individuals
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of a region and interactions between them are specialized for
a region.

Algorithm 2 Distributing infection in rIPA
1: for i ← 1 . . . RG do
2: if i == 1 then
3: l Bound ← 1 and uBound ← regions[i]
4: else
5: sumO f rgSizes = sum(rgSi zes[1 . . . (i − 1)])
6: l Bound = sumO f rgSizes + 1
7: uBound = sumO f rgSizes + rgSi zes[i]
8: end if
9: for k ← l Bound . . . uBound do
10: if tcr < tmax then
11: tcr ← tcr + 1
12: select xm randomly between l Bound and uBound

13: xin fk ← infect xk with xm using Eq. (2)

14: if f (xin fk ) < f (xk ) then

15: Update xk with xin fk
16: if f (xk ) < f (xbest ) then
17: Update xbest with xk
18: end if
19: end if
20: end if
21: end for
22: end for

When the regions complete the distribution of infection,
each region determines the worst individual as a receiver
and the best individual as the donor candidate. From the RG
donor candidates, rIPA selects the best one as the main donor
and RG receivers are treatedwith themaindonor as described
by the Eq. (3). Even though the infection still continues to
spread, each region gets a chance of evaluating their own
status, determining, isolating and treating critical individu-
als more quickly. For accessing the details of the plasma
transfer operations of the rIPA, the Algorithm 3 should be
investigated. As stated earlier in the standard implementa-
tion of the IPA, the immune memory of the individuals who
are also helped treatment operations of the critical patients
as plasma donor can change with time. For the rIPA, there
is only one donor and its immune memory is updated by
guiding the workflow of the IPA.

4 Comparison of rIPA with other
meta-heuristics on classical problems

The performance investigation of the rIPA was started by
solving the classical benchmark problems ranging from f1
to f12 [3]. When solving these classical benchmark prob-
lems, number of parameters was set to 100 and population
size of the rIPA was taken equal to 30 [3]. While the maxi-
mum evaluation number was 30,000, the RG parameter was
set to 2, 3, 4, 5, 6, 7 and 8 for understanding the change trends
of the final solutionswith the different number of regions. For
each combination of benchmark function and RG parameter,
rIPAwas tested 30 timeswith random seeds and the best solu-

Algorithm 3 Applying plasma transfer in rIPA
1: doseControl[1 . . . RG] ← set each element to 1
2: treatmentControl[1 . . . RG] ← set each element to 1
3: xdnr ← get the best individual as donor from RG regions
4: r I ndexes[1 . . . RG] ← get indexes of receivers from RG regions
5: for i ← 1 . . . RG do
6: k ← r I ndexes[i] and xrcvk ← get the receiver from i th region
7: while treatmentControl[i] == 1 do
8: if tcr < tmax then
9: tcr ← tcr + 1
10: xrcv−p

k ← treatment to xrcvk with xdnr using Eq. (3)
11: if doseControl[i] == 1 then
12: if f (xrcv−p

k ) < f (xdnr ) then

13: Update xrcvk with xrcv−p
k

14: doseControl[i] ← doseControl[i] + 1
15: else
16: Update xrcvk with xdnr

17: Set treatmentControl[i] to 0
18: end if
19: else
20: if f (xrcv−p

k ) < f (xrcvk ) then

21: Update xrcvk with xrcv−p
k

22: else
23: Set treatmentControl[i] to 0
24: end if
25: end if
26: if f (xrcvk ) < f (xbest ) then
27: Update xbest with xrcvk
28: end if
29: end if
30: end while
31: end for

tions and corresponding objective function values obtained
were recorded. For the f6, f9, f10 and f11 functions, the RG
parameter can be chosen equal or higher than 5. While the
appropriate RG parameter value is 8 for the f2, f3, f4 and
f7 functions, the appropriate RG parameter is 7, 4 and 1 for
the f1, f8 and f12 functions, respectively. Only for the f5
function, the values assigned to the RG does not generate
dramatic changes on the qualities of the final solutions of
the rIPA. However, it should be stated that the value being
assigned to the RG for f5 function can be less than 6.

The validation of the results found by the rIPA requires a
comparison with the other meta-heuristics. For this purpose,
the results of the rIPA were compared with the results of the
different meta-heuristics including IPA [3], MFO [14], PSO
[6,14], GSA [14,24], BA [13,14], FPA [1,14], SMS [7,14],
FA [10,14] and GA [12,14]. In order to guarantee that all of
these algorithms obtain their final solutions under the same
conditions, population sizes were set to 30 and maximum
evaluation number was taken equal to 30, 000 [14]. The RG
parameter of rIPA was 7 for the f1 and 4 for the f8. Also, it
was set to 8 for the remaining functions. When the mean best
objective function values and standard deviations calculated
after 30 independent runs given in the Table 1 are analyzed,
it is understood that rIPA outperforms its competitors for ten
of twelve benchmark functions. Only for the f8 and f12 func-
tions, rIPA lags slightly behind some of the tested algorithms.
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5 Comparison of rIPA with other
meta-heuristics on signal decomposition

Thebigdata concept that differs fromaconventional database
or dataset has changed the current status of the data-
dependent real world or complex optimization problems into
another stage [9]. One of these data-dependent real world
optimization problems has been introduced by Abbass and
Goh recently [9]. They measured electroencephalography
(EEG) signals and used them for generating different prob-
lem instances. While the problem instances named D4 and
D4N are related with four time series each containing 256
samples, D12 and D12N instances are related with twelve
time series each containing 256 samples [9]. EEG signals
can be employed for determining brain or non-brain activ-
ities, mental disorders, abnormalities and should be filtered
before further processing [17,18]. The problem introduced
by Abbass and Goh mainly depends on splitting a matrix
formed EEG signal into noise and noise-free compartments
[9]. Given that X is an N × M dimensional matrix where
N shows the number of time series and M shows the length
of time series or number of samples and used on behalf of
the transformed problem instance with the A matrix of size
N × N . Also, S is another matrix of size N × M and it is
multiplied with the A transformation matrix for obtaining X
[9]. If the S matrix is appropriately splitted into S1 and S2
matrices where S1 represents the noise-free part of the orig-
inal S matrix and S2 represents the noise part of the original
S matrix, the X matrix is calculated simply with the A, S1
and S2 matrices by using Eq. (5).

X = A × S = A × (S1 + S2) = A × S1 + A × S2 (5)

Although the relationship between X , A, S, S1 and S2
matrices is represented by utilizing from relatively simple
equations, a straightforwardmethod for dividing the Smatrix
into noise-free and noise compartments or in other words
obtaining S1 and S2 matrices from the S does not exist.
However, Abbass and Goh stated that the Pearson Corre-
lation Coefficients abbreviated as C and calculated by using
Eq. (6) in which var(X) and var(A× S1) correspond to the
variance matrices and covar(X , A × S1) corresponds to the
covariance matrix can be guided [9]. For a proper division,
the diagonal elements of the C should be maximized and
remaining elements of it should by minimized [9]. By con-
sidering the minimization and maximization purposes about
the C matrix, an objective function showed with f1 can be
defined as given in Eq. (7).

C = covar(X , A × S1)

var(X) × var(A × S1)
(6)

f1(C) = 1

(N 2 − N )

∑

i �= j

(Ci j )
2 + 1

N

∑

i

(1 − Cii )
2 (7)

Another important situation that should be considered for
a proper division is the similarity between the S1 and Smatri-
ces. Because of the S1 matrix represents the original Smatrix,
S1 should be determined relatively close to the S. In order to
decide that how the obtained S1 matrix is similar to the S, an
objective function showed with f2 can be defined as given
in Eq. (8) [9]. If it is assumed that both f1 and f2 objectives
are weighted equally and their sum is tried to be minimized,
a challenging optimization problem is described.

f2(S, S1) = 1

N × M

∑

i j

(Si j − S1i j )
2 (8)

When the noise-free parts of the D4, D4N, D12 and D12N
instances were tried to be determined with the rIPA, the pop-
ulation size and number of maximum evaluations were set
to 100 and 10, 000, respectively [3]. The lower and upper
bounds of the elements belonging to the S1 were −8 and
+8 [3]. As in the previous experimental scenarios, seven dif-
ferent values including 2, 3, 4, 5, 6, 7 and 8 were assigned
to the RG parameter. For each combination of the problem
instance and value of the RG parameter, rIPA was tested
30 times with random seeds and best solutions of runs were
recorded. From the recorded results, it can be roughly gener-
alized that the qualities of the solutions obtained by the rIPA
for the D4 and D12 instances are getting better with the RG
increasing from 2 to 6. Moreover, same generalization can
be extended for the D4N and D12N instances. The qualities
of the solutions obtained by the rIPA for D4N and D12N
instances are getting better with the RG increasing from 2 to
7.

In order to evaluate the status of the rIPA within other
meta-heuristics for thementioned realworld problem, a com-
parative study has been carried out. The results obtained by
the rIPA for which the RG is 6 for D4 and D12 instances
and 7 for D4N and D12N instances were compared with
the results obtained by the IPA, GA [3,12], PSO [3,22], DE
[3,8], ABC [2,3], GSA [3,24],MFO [3,14], SCA [3,15], SSA
[3,16] and HHO [11] under the same conditions as seen in
the Table 2. In the experiments, the NoR and NoD param-
eters of the IPA were set to 1. When the results given in
the Table 2 are controlled, it is seen that rIPA outperforms
selected competitors for all of the four test instances. The
difficulty of the problem increasing with the number of time
series leads to trapping initial localminimums for some of the
tested meta-heuristics including PSO, DE, ABC and MFO.
However, rIPA has different implicit or explicit mechanisms
that manage converging to the optimum solutions and escap-
ing local minimums. The division of the population in the
rIPA allows the interactions between the individuals of the
same region. This type of mechanism increases the interac-
tion probability between the qualified individual and other
members of same region and contributes to the convergence
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speed of the algorithm. Moreover, if the members of a region
get stuck of a local minimum because of the density of the
interaction, the newly proposed approach can help to these
trapped individuals for escaping by applying a plasma treat-
ment with a donor of different region.

The comparative studies between rIPA and other meta-
heuristics for the noise minimization problem are ended with
the Wilcoxon signed rank test. The significance level (p) of
the test was set to 0.05 and its results were summarized in
the Table 3. When the results given in the Table 3 are con-
trolled, it is decided that the results obtained by the rIPA are
enough to generate statistical difference in favor of the same
algorithm for all of the four problem instances. While the p
values calculated between rIPA and its nearest competitor are
equal to 0.00298 and 0.00016 for the D4 and D4N instances,
they are equal to 0.00022 and 0.00010 for the D12 and D12N
instances. Small p values for the D12 and D12N instances
compared to theD4andD4N instances also indicate that solv-
ing capabilities of the rIPAbecomemore dominant compared
to the tested meta-heuristics with the increasing number of
time series.

6 Conclusion

The COVID-19 has changed the working routines of the
researchers from different disciplines and focused their inter-
ests on the diagnosis approaches, medical techniques or
governmental measures taken to control and manage the
pandemic. In this study, border restriction based pandemic
control precaution was modeled and and then a new ver-
sion of the Immune Plasma algorithm (IPA) named regional
Immune Plasma algorithm (rIPA) was introduced. In order
to analyze the capabilities of the rIPA, a set of numerical and
engineering problems was solved by assigning different val-
ues to the algorithm-specific control parameters. The results
obtained by the rIPA were also compared with the various
meta-heuristics.

The comparative studies helped to state that the region
based restriction model significantly improves the perfor-
mance and rIPA outperforms its competitors for most of the
tested problems. rIPA manages donor and receiver selec-
tion operations without requiring extra control parameters
used by the standard IPA. However, it should be noticed that
distributing the individuals of the population into different
regions as in the rIPA can limit the overall solution diversity
and decrease the exploration capability. In future, different
pandemic management approaches by referencing the pos-
itive contribution of the introduced restriction approach on
the performance of the algorithm and qualities of the solu-
tions can be modeled and used with the IPA when solving
various numerical or discrete optimization problems.
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