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Abstract
With the rapidly increasing of automobiles, traffic accidents are gradually becoming more frequent. This creates a great need
for effective traffic anomaly detection algorithms. Existing methods shed light on directly inferring the abnormalities from
traffic flow, which is short in features extraction and representation of traffic flows. In this paper, we propose three new traffic
flow features, namely the road congestion, the traffic intensity, and the traffic state instability, for more comprehensive traffic
status representation and anomaly detection. Residual analysis, quadratic discrimination, multi-resolution wavelet analysis
are integrated for the extraction of the aforementioned features, which will be applied for the downstream tasks of traffic
anomaly detection. Experimental results reveal that accident identification based on the proposed features is more effective
than the raw traffic flow, which is supposed to provide an alternative approach for further applications and studies.

Keywords Traffic accident detection · Machine learning · Feature extraction · Traffic flow features

1 Introduction

In modern transport systems, various detectors provide
actionable information in critical situations, which enable
us to automatically discover the abnormality of the traffic
stream in time. However, due to the complexity and variabil-
ity in mass traffic behavior, it is difficult to directly identify
abnormal traffic events from raw observed flow measures.
Therefore, more sophisticated approaches that can extract
features with clean meaning and effective representation are
necessary for the automatic analysis of traffic flow data.

The detection of abnormal traffic accidents has already
been realized based onmachine learning algorithms, artificial
intelligence [27] and deep learning [10]-related technolo-
gies. Xia [28] proposed an unsupervised method based
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on the sparse topic model to capture motion patterns and
detect anomalies in traffic surveillance. Elizabeth Hou [12]
addressed the problem of detecting anomalous activity in
traffic networks where the network is not directly observed
based on the Bayesian hierarchical model. Ronald D. Hagan
[9] presented a case study on the analysis of New York
City taxi traffic using the compound analytics framework.
Silva Nuno [24] used PCA to analyze the attributes com-
plexity of traffic features. Cuadra-Sanchez [4] focused on
longitudinal traffic analysis, namely detecting sudden peak
changes. Takahiro Kudo [14] detected traffic anomalies for
every period of measured traffic via PCA. Youcef Djenouri
[6] reviewed the use of outlier detection approaches in urban
traffic analysis. RupamDeb [5] presented a correlation-based
imputation method to improve the quality of traffic flow.
Shu-Bin Li [15] realized accident detection by taking into
account the traffic ratio at the entrances and crossways. Seyed
Hessam-Allah [11] provided a novel rule-based method to
predict traffic accident severity according to user’s prefer-
ences.

Recently, Zheng Zhao [31] discussed a novel traffic
forecast model based on long short-term memory (LSTM)
network.Meanwhile, Mehrannia and BagiSiamese, et al [18]
also investigate the deep representation of loop detector data
using LSTM for automatic detection of freeway accidents.
To deal with scenarios where only small datasets are avail-
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Fig. 1 A visual statement of the vehicle collision accident, the normal
condition (top) vs abnormal condition (bottom) after accident

able for training, Sabour and Rao, et al. [22] further develop
the Siamese neural network-based DeepFlow to automati-
cally analyze traffic flow data. Meanwhile, XGBoost [21],
ensemble support vector machine [26], isolation forest [17],
and other machine learning algorithms [23] are also applied
for flow data-based abnormal traffic status detection.

In this study, we focus on the feature extraction of traffic
flow data for more effective abnormal traffic events identi-
fication. Here the term abnormal traffic event refers to an
exception point in time that the traffic system behaves abnor-
mally and is significantly different from the previous normal
behavior. This can be caused by natural factors (heavy rain-
fall in short-terms for example), or human factors such as
traffic accidents. Fig. 1 shows the abnormal scene of vehicle
collision. Since traffic flow parameters often show a signifi-
cant trend under normal circumstances, the abnormal vehicle
collision will cause a significant impact on traffic parameters
[7] [20].

However, the occurrence of traffic accidents is real-time,
complex, and sporadic. Meanwhile, relationships between
these accidents and their reflection on raw traffic flow param-
eters are hard to be summarized as clear rules. This brings
great difficulties to automatic anomaly detection of traffic
status. Based on the I80-E highway traffic flow data and
accident records provided by the US PeMS system [30],
we propose three new traffic flow features, namely the road
congestion, the traffic intensity, and the traffic state instabil-
ity, for more comprehensive traffic status representation and
anomaly detection. Our study is executed according to the
flowchart shown in Fig. 2.

2 Methodology

2.1 Road congestion features

Road congestion refers to the traffic phenomenon caused by
the traffic vehicle surge. McMaster algorithm is an algorithm
based on the theoretical model of highway traffic [29] state
catastrophe. However, during our application of the McMas-
ter algorithm to the I80-E highway data, we find there are
three limitations in the McMaster algorithm: (1) The critical

Fig. 2 Flowchart of traffic accident detection with the proposed feature
extraction method

Fig. 3 Scatter plot of the traffic flow data

values of occupancy and volume greatly depend on human
analysis. (2) The parameter and configuration of different
traffic detector/detectors are diverse, which needs us to ana-
lyze case-by-case. (3) The McMaster algorithm ignores the
observed traffic parameters of speed. Meanwhile, it lacks
consideration of other kinds of anomalies.

Therefore, we develop a new method to eliminate the
above limitations. Fig. 3 demonstrates the traffic flow data
of the detector S400430, where the X-axis represents the
flow, Y-axis is the occupancy, and the color illustrates the
speed. When the speed is faster than 50, the road is in the
non-congestion state, and the flow is linear related to the
occupancy. On the contrary, in the state of road congestion
(speed is lower than 50), the flow and occupancy no longer
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satisfy the simple linear relationship, which forms several
clusters away from the linear normal trends.

According to the above characteristics of road conges-
tion, we design road congestion identification features based
on the Quadratic Discrimination Analysis (QDA) algorithm
[3]. We utilize the following linear basis function model to
map the flow X f low into the occupancy Xocc for the non-
congestion state:

Xocc = a + bXflow (1)

where the constant a represents the vertical intercept, and b
represents the slope of the linear basis function. Then, the
residual Eocc between the predicted occupancy Xocc and the
ground truth X∗

occ is adopted to measure the state of from the:

Eocc = X∗
occ − Xocc. (2)

Then, the non-congestion occupancy of each point can
be estimated by the linear relationship, while these observa-
tions are roughly labeled by the 3σ criterion [25] according
to the residual difference with the real occupancy. Substitut-
ing each point flow X f low into the above linear relationship,
it can be found that the Eocc basically satisfies the Gaus-
sian distribution with a mean of 0. Since the residual of the
data points in the uncongested state is basically in the normal
range, the residual value in the congestion state is obviously
large. According to the 3σ criterion, the point of Eocc > 3σ
can be considered to be in a road congestion state, where σ

is the standard deviation of Eocc. Finally, the Quadratic Dis-
criminationAnalysis (QDA) algorithm is used for supervised
learning to predict congestion probability. The conclusion
based on the 3σ criterion is only a rough discriminant con-
clusion, whether it is crowded or not. In order to obtain more
accurate conclusions, theQDAalgorithm [3] is used to obtain
a classification prediction model. Applying the model to the
detector data, the congestion probability of each point can be
achieved, indicating the degree of road congestion.

2.2 Traffic intensity features

Traffic intensity refers to the number of vehicles detected by a
detector per unit time. Since traffic patterns for working days
and holidays are different, therefore, traffic data of Saturdays,
Sundays, and legal holidays in the United States are marked
for further analysis. Then, the short-term historical data of
flow data are collected for the forecast of trend values in
each day. The median of non-holiday traffic intensity in the
first two weeks (about 10 days) is used as the trend values
for working days. Meanwhile, the median of holidays traffic

Fig. 4 Histogram of Docc and Dspeed for partial detectors

intensity in the first four weeks (about 8 days) is used as the
trend values for holidays.

We take the following approach for the extraction of traffic
intensity anomaly features. Firstly, the differences between
actual and predicted occupancy and speed are calculated
for each moment. Assuming that Xocc and Xspeed repre-
sent actual data values of occupancy and speed at a certain
time, respectively, while Tocc and Tspeed indicate their corre-
sponding predicted values. When there is no anomaly, Docc

and Dspeed tend to 0. When abnormalities occur and traffic
increases, Docc will be far greater than 0, and Dspeed will be
far less than 0. In contrast, Docc will be far less than 0, and
Dspeed will be far greater than 0 if traffic decreases.

Then, the cumulative probability density functions of
Dspeed and Docc according to normal distribution are esti-
mated.As can be observed in Fig. 4,wefind that the empirical
distribution of Docc and Dspeed of each detector is quite
similar with the probability density curves of correspond-
ing normal distribution. To further validate this observation,
we performed the Kolmogorov–Smirnov normal likelihood
test [16] for Docc and Dspeed , while the testing results are
presented in Table 1.

It is confirmed that the distribution of Docc and Dspeed

on each detector obey the normal distribution (with expec-
tation 0 and statistic variances, respectively) with large
confidence values. Therefore, the abnormal traffic inten-
sity features Pmore and Pless can be calculated from the
cumulative probability function of approximated normal
distributions. According to the definition of cumulative
probability function of normal distribution, the cumulative
probability density functions of Docc and Dspeed are:

Pocc (Docc) = 1

2

(
1 + erf

(
Docc√
2δocc

))
(3)

Pspeed
(
Dspeed

) = 1

2

(
1 + erf

(
Dspeed√
2δspeed

))
(4)
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Table 1 Kolmogorov–Smirnov
normality test result of Docc
and Dspeed for partial detectors

Detector The normal confidence coefficient of Docc The normal confidence coefficient of Dspeed

S400027 0.656 0.683

S400430 0.772 0.705

S401895 0.719 0.715

S400770 0.703 0.658

S401195 0.801 0.794

S401892 0.693 0.644

S408632 0.614 0.696

S401269 0.678 0.712

where δ2occ and δ2speed are the statistic variances of Docc and
Dspeed , respectively. Then, the abnormal traffic intensity fea-
tures Pmore and Pless are defined as:

Panorm = Pocc (Docc ) ∗ (
1 − Pspeed

(
Dspeed

))
(5)

Pmore =
{
2.0 ∗ (Panorm − 0.5) ; Panorm > 0.5
0.0; Panorm ≤ 0.5

(6)

Pless =
{
2.0 ∗ (0.5 − Panorm ) ; Panorm ≤ 0.5
0.0; Panorm > 0.5

. (7)

The value ranges of Pmore and Pless are both (0,1). A
high Pmore value indicates an abnormal increase in traf-
fic intensity, while a higher Pless indicates an abnormal
decrease. Compared with directly using Docc and Dspeed for
the abnormal traffic intensity representation, Pmore and Pless
effectively eliminate the magnitude differences of Docc and
Dspeed among different detectors.

2.3 Traffic state instability features

We also develop awavelet analysis-based approach to extract
features for the representation of traffic state instability. This
approach is applied to the series of three raw observed traffic
parameters (flow, speed, and occupancy), and the corre-
sponding local activity and fluctuation intensity features are
obtained for the representation of overall and local variations
of traffic flows.

The traffic state instability features are extracted based on
the multi-resolution wavelet analysis framework. It is nec-
essary to eliminate local fluctuations in the flow data that
are independent of the overall trend changing. Therefore,
we calculate the overall trend of traffic flow through a dis-
crete binary wavelet transform [19]-based frequency domain
smoothing algorithm. In our approach, the Daubechies

wavelet basis is applied. According to Daubechies wavelet
function ψ(t) and scale function φ(t):

{
ψ j,k(t) = 2− j/2ψ

(
2− j t − k

)
φ j,k(t) = 2− j/2φ

(
2− j t − k

) . (8)

Then, the trend f j
a (t) and detail f j

d (t) on the j-th scale
can be constructed step by step:

{
f j
a (t) = ∑

k c j,kφ j,k(t); c j,k = ∫
f (t)φ j,k(t)dt

f j
d (t) = ∑

k d j,kψ j,k(t); d j,k = ∫
f (t)ψ j,k(t)dt

(9)

In the above definition, c j,k is the scale expansion coef-
ficient and d j,k is the wavelet expansion coefficient. Setting
J as an arbitrary scale, traffic flow data can be reconstructed
by:

f(t) =
J∑
j

∑
k

d j,kψ j,k(t) +
∑
k

cJ ,kφJ ,k(t). (10)

The multi-resolution wavelet algorithm can be applied
for band-pass filtering of traffic flows. We will decompose
the raw signal f (t) with J -level multi-resolution wavelet
transform at first, while scale expansion coefficients c j,k and
wavelet expansion coefficients d j,k at all levels are obtained.
By thresholding c j,k and d j,k , the corresponding coefficients
of components outside the band-pass region are assignedwith
0. Then, the modified coefficients c j,k and cd,k are used for
wavelet reconstruction to obtain the overall trends of traf-
fic flows. According to the above multi-resolution wavelet
filtering method, 8-level Daubechies wavelet transform is
performed on the road occupancy data of detectors from low
to high, while the high-frequency part of each level is elim-
inated step by step. We retain 4 to 8 wavelets to smooth the
series of flow, speed, and occupancy, which means the time-
domain resolution of estimated overall trends is about half
an hour.
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Finally, we calculate the mean absolute difference (fluc-
tuation intensity) between traffic flow data and overall trend
within a given range to indicate the local fluctuation. Traffic
flow data are obtained from PeMS System every 5 minutes.
At the current time point, 13 points (about one hour) are taken
forward and backward, respectively, to calculate the local
activity and fluctuation intensity. Assuming that the value of
traffic flow data at time t is Xt and the corresponding overall
trend value is Tt , the formula for calculating local activity At

and fluctuation intensity Ft at that time is as follows:

At = 1

13

t+6∑
i=t−6

(
Ti − 1

13

t+6∑
i=t−6

Ti

)2

(11)

Ft = 1

13

t+6∑
i=t−6

|Xi − Ti | . (12)

According to the above formulas, six values can be calcu-
lated from three raw observed traffic parameters. We name
themwith the terms of local activity and fluctuation intensity
for flow, speed, and occupancy, respectively.

3 Experiment

3.1 Dataset collection and feature extraction

Our experiments are based on the traffic data of the I80-
E highway in 2016 from the US PeMS system [30]. The
spatiotemporal features (location, date, and time) of traffic
detectors and their three kinds of series data, namely speed,
flow, and occupancy are collected for feature extraction.
1524 traffic records with categories Collision Enrt, Collision
Minor Injuries, Collision No Injuries, Collision Unknown
Injuries, Hit and Run With Injuries, and Hit and Run No
Injuries are selected to form the positive sample set for vehi-
cle collision accidents. Meanwhile, 5000 negative samples
are also randomly collected from normal time without any
traffic event records (the workflow for negative sample col-
lection is presented in Fig. 5). These 6524 samples form
the experimental dataset for our following study. Then, we
use the proposed methods (refer to Sect. 3) to extract 60
input features. 48 upstreamand downstream state features are
extracted at first. These traffic accident identification features
are extracted from series data of upstream and downstream
detectors, within 15 minutes before and after the vehicle col-
lision records. They are all basic mean statistics of the raw
traffic flows and the extracted feature flows. The meanings
and definitions of the 48-dimensional upstream and down-
stream features are listed in Table 2. Then, 12 California

Fig. 5 Flowchart for negative sample collection workflow

algorithm features are also extracted referring to the Califor-
nia algorithm [13]:

OCCDF = OCCS1,t − OCCS2,t (13)

OCCRDF = OCCS1,t − OCCS2,t

OCCS1,t
(14)

DOCCT D = OCCS2,t−2 − OCCS2,t

OCCS2,t−2
. (15)

In the above definition, S1 represents the upstream detec-
tor and S2 is the downstream detector. We simply extend
the California algorithm to other traffic flow parameters (not
only the occupancy flow data), while names and definitions
of these features are presented in Table 3.

3.2 Vehicle collision accidents detectionmodeling

Based on the collected 6524 samples and 60 input features,
we view the detection of vehicle collision accidents as a
binary classification task, and learn classification models
withmachine learning algorithms for further accidents detec-
tion:

1) Feature Analysis & Selection: To overcome the
“dimension disaster” problem, the importance of 60 fea-
tures is evaluated by theMDA (Mean Decrease in Accuracy)
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Table 2 Features based on the mean of upstream and downstream states

Traffic flow data A B C D

flow FLOW.MBF1 FLOW.MAF1 FLOW.MBF2 FLOW.MAF2

occupancy OCC.MBF1 OCC.MAF1 OCC.MBF2 OCC.MAF2

speed SPEED.MBF1 SPEED.MAF1 SPEED.MBF2 SPEED.MAF2

Pmore MORE.MBF1 MORE.MAF1 MORE.MBF2 MORE.MAF2

Pless LESS.MBF1 LESS.MAF1 LESS.MBF2 LESS.MAF2

congestion SATU.MBF1 SATU.MAF1 SATU.MBF2 SATU.MAF2

flt.flow FLT.FLOW.MBF1 FLT.FLOW.MAF1 FLT.FLOW.MBF2 FLT.FLOW.MAF2

flt.occ FLT.OCC.MBF1 FLT.OCC.MAF1 FLT.OCC.MBF2 FLT.OCC.MAF2

flt.speed FLT.SPEED.MBF1 FLT.SPEED.MAF1 FLT.SPEED.MBF2 FLT.SPEED.MAF2

act.flow ACT.FLOW.MBF1 ACT.FLOW.MAF1 ACT.FLOW.MBF2 ACT.FLOW.MAF2

act.occ ACT.OCC.MBF1 ACT.OCC.MAF1 ACT.OCC.MBF2 ACT.OCC.MAF2

act.speed ACT.SPEED.MBF1 ACT.SPEED.MAF1 ACT.SPEED.MBF2 ACT.SPEED.MAF2

A: Mean value of the upstream detector before accidents occur. B: Mean value of the upstream detector after accidents occur. C: Mean value of the
downstream detector before accidents occur. D: Mean value of the downstream detector after accidents occur.

Table 3 Features based on
generalized California algorithm

Traffic flow data R1 R2 R3

flow FLOW.CLF1 FLOW.CLF2 FLOW.CLF3

occupancy OCC.CLF1 OCC.CLF2 OCC.CLF3

speed SPEED.CLF1 SPEED.CLF2 SPEED.CLF3

R1: California algorithm features referred to Eq (13). R2: California algorithm features referred to Eq (14).
R3: California algorithm features referred to Eq (15)

method of random forest [8]. Its core idea is to investigate
the influence of the random disturbance of each feature on
the prediction accuracy [1], which is evaluated on the OOB
(OutOfBagging) test sets through though ensemble learning.
Through our analysis, 7 features are reserved for further clas-
sification modeling, namely SATU.MAF1, SATU.MBF1,
MORE.MAF1, F -LT.OCC.MAF1, LESS.MAF2, MORE.
MAF2, and LE -SS.MBF1. In addition to these filtered fea-
tures, the spatial and temporal information (represented by
the hour and related detector positions) are included in the
inputs.

2) Algorithm Parameters Tuning: Six classification
algorithms including the linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), neural network
(NNET), classification support vector machine (CSVM),
classification and regression trees (CART), and classifica-
tion random forest (CRF) are applied. These algorithms take
the above 9 dimensional features as inputs, while directly
output whether a vehicle collision accident happens for this
moment. According to the normal range of each algorithm,
we use grid search [2] to evaluate the accuracy of model
generalization under various parameter combinations and
then determine the optimal parameter combinations. The
best algorithm parameter combination and its generalization
accuracy evaluation are shown in Table 4.

3) Algorithm Evaluation & Selection: We use 20-fold
cross-validation to validate the generalizationperformanceof
established models. The evaluated results are shown in Table
5, while the best performance is highlighted with bold text.
It is easy to see that the accuracy of the CRF model is 0.911,
which is significantly higher than other models. The pre-
diction accuracy and precision of CRF are both above 0.85.
Because of the serious imbalance of sample data, the recall
rate of CRF is only 0.655. However, it is also significantly
higher than other models. Therefore, the CRF algorithm is
finally selected formodeling. Then, the final vehicle collision
detection model is constructed with all 6234 samples.

4 Application and comparison

We further applied the proposedmethod to traffic data of I80-
Ehighway in2017.Table 6 shows theperformance evaluation
results of various baseline models [4,17,22,22,31], while the
better performances in each pair are highlighted with bold
texts. CRF is short for the supervised random forest approach
we used in the previous section, SPC represents the sud-
den peak change-basedmethod proposed byCuadra-Sanchez
[4], iForest is the isolation forest-based unsupervised abnor-
mal analysis approach, which has been applied in [17] and
[22], LSTM is the supervised LSTM-based method [31],
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Table 4 The result of
hyper-parameter tuning

algorithm Optimal parameter Accuracy estimate

NNET size = 1 , decay = 0.1 0.888

CSVM cost = 3.0, sigma = 0.2 0.886

CART maxdepth = 15, minsplit = 20 0.901

CRF ntry= 7, minsplit = 3 0.910

The best results are highlighted in bold

Table 5 Performances of Candidate Algorithms

Algorithm Accuracy Precision Recall Rate

LDA 0.858 0.876 0.452

QDA 0.873 0.894 0.540

NNET 0.889 0.888 0.496

CSVM 0.885 0.883 0.472

CART 0.904 0.912 0.618

CRF 0.911 0.920 0.655

The best results are highlighted in bold

Table 6 Detection Performances of Compared Algorithms

Algorithm Accuracy Precision Recall Rate

SPCRTS 0.611 0.638 0.654

SPCRAW 0.604 0.622 0.602

iForestRTS 0.694 0.702 0.644

iForestRAW 0.601 0.607 0.617

CRFRTS 0.851 0.857 0.670

CRFRAW 0.750 0.741 0.488

LSTMRTS 0.901 0.874 0.657

LSTMRAW 0.850 0.844 0.660

DeepFlowRTS 0.914 0.886 0.691

DeepFlowRAW 0.867 0.865 0.688

The best results in each pair are highlighted in bold

while the idea of DeepFlow [22] is also applied to further
improve the performance of LSTM-basedmethods. The sub-
script RAWrepresents that these algorithms are applied to the
raw observed traffic flow data, while RTS means that these
algorithms are applied to the further extracted features. It is
easy to see that the comprehensive features indeed improved
the detection of vehicle collision accidents. Besides, the
performance of the CRFRTS model is even slightly better
than LSTMRAW. Meanwhile, extracted feature flows-based
LSTMRTS and DeepFlowRTS are also more accurate than
LSTMRAW and DeepFlowRAW. These phenomena further
confirmed the advantages of the proposed feature extraction
methods.

In fact, the feature selection approach in Sect. 3 also
reveals the effectiveness of the comprehensive features.
Among 7 selected features with high MDA feature impor-

tance scores, SATU.MAF1 and SATU.MBF1 are based
on road congestion, MORE.MAF1, LESS.MAF2, MORE.
MAF2, and LESS.MBF1 are based on traffic intensity,
while FLT.OCC.MAF1 is obtained based on the fluctuation
strength of occupancy. In contrast, the importance scores of
raw traffic data (speed, flow, and occupancy)-based classifi-
cation features (including these generic California features)
are relatively low.

5 Discussion and limitation

The above application and comparison confirmed the advan-
tage of extracted comprehensive features for abnormal traffic
events identification. In this section, we will further discuss
why the proposed flow features are superior to the raw traffic
flow data.

(1) Due to differences in road conditions and traffic envi-
ronments at their locations, as well as the sensors themselves,
traffic flows measured by different detectors show signif-
icant differences in the magnitude and response patterns,
which means the distribution of them is diverse. However,
statistical abnormal identification assumes that all the sam-
ples involved obey the same distribution. The extracted flow
features adaptively eliminate distribution diversion between
detectors by statistical modeling on the flow data of each
detector, respectively. For example, based on the flow pat-
terns of each detector, the road congestion features use the
QDA to automatically model and convert the raw traffic
flow data into congestion probability values, which approx-
imately obey the same Bernoulli distribution. Meanwhile,
the cumulative probability functions (with parameters estab-
lished from flow data of each detector, respectively) also
effectively eliminate the magnitude differences of Docc and
Dspeed among different detectors. Through our extraction
approach, irrelevant responses due to detectors or their loca-
tions are suppressed,while features associatedwith abnormal
traffic states are retained. This greatly reduces the difficulty
and robustness of the subsequent traffic events identification.

(2) The proposed flow features effectively highlight the
responses of abnormal traffic states. The commonality of
extracted features is that they all reflect the deviation of
current states from normal states. For example, the road
congestion features automatically identify the occ-flow rela-
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tionship for normal non-congestion situations, while indi-
cating the degree of road congestion based on the deviation
from the normal occ-flow relationship. Traffic intensity fea-
tures take the median daily trends of working and holidays
as the normal states, respectively, and measure the abnor-
mal degree of current states by statistical residual modeling.
Meanwhile, traffic state instability features separate the trend
(normal status) and local details (abnormal variation) through
multi-resolution wavelet analysis, which also highlights the
possibly abnormal fluctuation intensity of raw flow data.
Since the occurrence of traffic accidents often causes traf-
fic flows to deviate from normal statuses, flow features that
highlight abnormal responses of traffic flows will effectively
improve the identification of traffic events.

However, the proposed traffic flow feature extraction
method still has its limitations. The studied traffic data are
observed from an ideal closed highway system without hori-
zontal crossing. This enables us to assume that the road traffic
is only affected by the upstream and downstream. Therefore,
for a more complicated traffic system, especially for road
systems with many intersections, the changes in traffic status
can be influenced by more factors. In this case, it is not cer-
tain whether the anomalous response exhibited on the traffic
flow data is caused by traffic events on this road. It can be
expected that the accuracy of the proposed method, in this
case, will be greatly reduced. Moreover, all the proposed fea-
ture extraction methods adopt a data-driven approach. Even
though this facilitates the adaptability of extracted features
on specialized traffic data, it also means that the established
feature extraction and accident detection models can only
be applied to the studied road. If the traffic system or traffic
patterns change significantly, we need to conduct the whole
workflow again for updating. For example, due to the impact
of COVID-19 on the frequency of people traveling, traffic
conditions on the I80-E freeway may change dramatically,
while the validity of the model learned from previous data
cannot be guaranteed further.

6 Conclusion

In this manuscript, we proposed three new traffic flow fea-
tures, namely the road congestion, the traffic intensity, and the
traffic state instability, for more comprehensive traffic status
representation. Based on the I80-E highway traffic flow data
provided by the US PeMS system, we illustrate the appli-
cation of using the extracted traffic flow features for vehicle
collision accident detection. Comparative experiments reveal
that the proposed comprehensive traffic features can effec-
tively improve the performance of abnormal traffic events
identification, which is worth further application. However,
the proposed trafficflow feature extractionmethod still has its
limitations. For a more complex traffic system, whether the

proposed method still works well still needs more investiga-
tion. Meanwhile, all the proposed feature extraction methods
adopt a data-driven approach. This also assumes that the traf-
fic system or traffic patterns should not change significantly.
Therefore, How to adaptively update the established models
for dynamically changing traffic systems is still worth more
study.
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