
Cascade Watchdog: A Multi-tiered Adversarial Guard for

Outlier Detection

Glauco Amigo1*, Justin M. Bui1*, Charles Baylis1 and Robert J. Marks1

1 Baylor University, Waco, TX, United States.

*Corresponding author(s). E-mail(s): Glauco Amigo1@Baylor.edu;
Justin Bui@Baylor.edu;

Abstract

The identification of out-of-distribution content is critical to the successful implementation of neural
networks. Watchdog techniques have been developed to support the detection of these inputs, but the
performance can be limited by the amount of available data. Generative adversarial networks have
displayed numerous capabilities, including the ability to generate facsimiles with excellent accuracy.
This paper presents and empirically evaluates a multi-tiered watchdog, which is developed using GAN
generated data, for improved out-of-distribution detection. The cascade watchdog uses adversarial
training to increase the amount of available data similar to the out-of-distribution elements that are
more difficult to detect. Then, a specialized second guard is added sequentially. The results show a
solid and significant improvement on the detection of the most challenging out-of-distribution inputs.

Keywords: Machine Learning, Cascade Watchdog, Autoencoder, GAN, Outlier Detection, Convolutional
Neural Network

1 Introduction

Data augmentation is described as imagination or
dreaming by C. Shorten and T. M. Khoshgoftaar
[13]. They survey different methods of image data
augmentation for deep learning, including adver-
sarial training and generative adversarial networks
(GANs) [5]. Adversarial training can be used to
attack or defend systems, as well as to increase
the amount of available training data. The goal of
data augmentation is to create new data samples
from the existing training set. This new data is
obtained according to the purposes of the applica-
tion [12]. In this work, data augmentation serves
to supplement the kind of out-of-distribution out-
lier data that resides closest to the distribution
manifold.

In previous work [2, 3], the autoencoder watch-
dog is introduced to identify outliers in classifica-
tion neural networks. The autoencoder watchdog
measures an error function, such as the root mean
square error (RSME), between the network’s input
and output. This is a measure of the distance
between the autoencoder input and the training
data manifold manifest in the latent space.

Data samples distant from the manifold are
out-of-distribution. The closer the data gets to
the manifold, the more fuzzy the classification
becomes. The work presented in this paper spe-
cializes in identifying outliers that are close to the
manifold of the distribution. This is achieved in
two steps. First, generating an augmented train-
ing data set that lies close to the boundary
of the distribution manifold. Second, creating a
binary classifier neural network that specializes on

1

ar
X

iv
:2

10
8.

09
37

5v
3

 [
cs

.L
G

]
 1

4
Ju

n
20

22

differentiating between in-distribution data and
on-the-boundary data.

The resulting cascade watchdog is comprised
of two layers of defense against outliers. The first
layer of defense of the cascade watchdog is the
autoencoder layer, and the second layer of defense
is a binary classifier layer.

2 Background

GANs are effective tools for data augmentation.
Since the first publication, where Goodfellow et
al. introduced GANs in 2014 [5], a variety of
techniques and applications have been developed
across diverse fields. Yi et al. [15] present a review
of adversarial training in medical imaging, one of
the most prolific fields of application of GANs on
data augmentation.

The basic structure of a GAN consists of a
generator and a discriminator. The generator is
trained to fool the discriminator, while the dis-
criminator is trained to differentiate between real
and fake inputs. After a GAN has been trained,
it provides a source of freshly generated data
samples which resemble real system inputs. Once
the generator of the GAN is trained, it produces
in-distribution samples from noise. Variations of
GANS and their many applications are available
in the literature [4, 17, 18].

This paper presents a method of adversarial
training inspired by the GAN model. The main
contrast between the generative adversarial train-
ing method presented here and other widespread
applications of GANs resides in the different tar-
get. Normally, the goal of a GAN is to generate
data in the distribution of the dataset. However, in
this paper, the goal is to obtain out-of-distribution
samples within a certain distance of the distribu-
tion.

This is work based on autoencoder watch-
dog neural networks for outlier identification in
classification networks [2, 3]. The cascade watch-
dog improves upon the precision of the outlier
identification task. It is capable of both identify-
ing more outliers and reducing misidentification
significantly. In a nutshell:

1. The autoencoder serves as the discriminator
of the GAN module,

2. The GAN module generates out-of-
distribution data samples close to the
distribution manifold, and

3. A combination of in-distribution and gener-
ated out-of-distribution data is used to train
the binary classifier.

The binary classifier specializes in identifying
outliers that are closer to the distribution man-
ifold. Data far within the manifold are easy to
classify. Classification of data close to the manifold
surface is more difficult. Applying the autoen-
coder and the binary classifier in sequential order
improves outlier identification, while preventing
the network from discarding in-distribution ele-
ments by mistake.

Other approaches are available for outlier iden-
tification. Atlas et al. [1] and Hwang et al. [6, 7]
identified manifold boundary points using neural
network inversion [8, 9, 14]. Yu et al. [16] pro-
pose a method that identifies outliers that are only
far from the distribution. Lee et al. [11] use a
generator component to produce data samples on
the boundary of the distribution. They train the
classifier to assign less confidence to the classifica-
tion of inputs on the boundary of the distribution.
In order to obtain less confidence at the output
of the classifier for ’boundary’ inputs, they set
the output target as the uniform distribution for
’boundary’ inputs during the training process.

3 Methodology

The distribution manifold lies is a small portion of
the input space. The autoencoder layer is capable
of identifying many outliers, covering a signifi-
cant portion of the input space. To determine
the boundary between in-distribution and out-
of-distribution, the autoencoder uses a threshold
hyperparameter. When selecting the threshold,
there is a trade-off between false negatives (out-of-
distribution data samples that are not identified
as outliers) and false positives (in-distribution
data samples that are classified as outliers). A
large threshold reduces the false positive rate but
also increases the false negatives rate. Whereas a
small threshold reduces the false negative rate but
increases the false positive rate.

The second layer of the cascade watchdog is
a fine grained binary classifier that complements
the autoencoder layer. The binary classifier spe-
cializes in identifying outliers that reside close to
the distribution. The threshold of the autoencoder
can be increased to reduce the false positive rate
relying on the additional layer of defense provided

by the binary classifier, which decreases the false
negative rate safely. At the end of this process,
both the false positive and false negative rates
are reduced. More outliers are identified and less
in-distribution data are erroneously discarded.

3.1 Adversarial Watchdog

The autoencoder also supports the development of
a GAN, which generates out-of-distribution data
samples close to the autoencoder threshold. For
training the GAN, two goals are necessary to
generate a rich dataset:

1. Producing data samples where the autoen-
coder produces an error similar to the thresh-
old.

2. Distributing the generated data samples
across the boundary of the manifold. To avoid
the collapse of the GAN, each generated out-
put depends on a point on the manifold taken
from the in-distribution training set. Each
generated data sample comes from one input
on the training data. The distance between
generated outliers and inputs must be simi-
lar to the threshold of the autoencoder. The
same error function between the input and
output of the autoencoder is used to measure
the distance between the generated out-of-
distribution data sample and the original
in-distribution data sample.

The combination of these two targets generates
a dataset that is spread through the space near the
boundary of the distribution manifold, preventing
the collapse of the GAN.

The sequence of steps to produce the second
layer of the cascade watchdog is:

1. Train the autoenoder.
2. Train the GAN and generate the dataset on

the boundary of the distribution.
3. Create a fine grained binary classifier.

The last step consist of training the binary
classifier in two categories: in-distribution and
out-of-distribution. The original training dataset
is labeled as in-distribution while the dataset on
the boundary of the distribution generated with
the GAN is labeled as out-of-distribution.

After both the autoencoder and binary classi-
fier are trained, they combine sequentially to form
the cascade watchdog, as seen in Figure 1. First,
the input is analyzed using the autoencoder layer,
which identifies whether the input is an outlier

Autoencoder

- outlier?

Input

Binary

classifier

- outlier?

Outlier

In-distribution

No

Yes

Yes

No

Fig. 1: Flowchart of the cascaded watchdog.
An input that passes both layers of defense is
considered as pertaining into the distribution.

or not. If the autoencoder does not identify the
input as an outlier, the input is then analyzed by
the binary classifier. If neither the autoencoder
nor the binary classifier identifies the input as
an outlier, then the input is considered to be an
in-distribution element.

The performance of the binary classifier is eval-
uated with a ten-fold bias-variance analysis. The
quality of the binary classifier is measured by
observing the false and true negatives. Figure 2
shows a Venn diagram of the cascade watchdog
formed by the autoencoder and the binary clas-
sifier. The domain of the autoencoder is the full
input space and the outliers that are farther from
the manifold are detected, while the domain of the
binary classifier is only the space that the autoen-
coder does not filter. Ideally, all of the outliers are
detected while all in-distribution data is permit-
ted. Observe that Figure 2 does not contain false
positive outliers (i.e. no part of the manifold is
marked as out-of-distribution), but has false neg-
ative outliers (outliers that are very close to the
manifold are not detected).

4 Experimentation

The first step of the experiments is to train the
autoencoder with the MNIST dataset1. Examples
of the MNIST dataset are shown in Figure 3a.
The GAN is trained to generate data samples
close to the boundary of the distribution (see some
examples on Figure 3b).

1The MNIST dataset is available on TensorFlow: https://
www.tensorflow.org/datasets/catalog/mnist

https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist

Input space
Autoencoder layer

Manifold
Binary classifier layer

Fig. 2: Venn diagram dividing the input space.
The biggest area is the set of outliers detected by
the autoencoder, inside are those filtered by the
binary classifier, and the bold “M” is the manifold
with some false negatives around.

The boundary of the distribution is approx-
imated by the threshold error function between
the input and the output of the autoencoder.
The error function chosen for the threshold of
the autoencoder is the RMSE. For the experi-
ments a value of 5 is selected for the autoencoder
threshold.

The loss function of the GAN has four compo-
nents:

GAN loss function =
(a) + (b) + (c) + (d)

4
(1)

where:
(a) =|threshold - RMSE(input, GAN output)|
(b) = max{0, RMSE(input, GAN output) -

threshold}
(c) =|threshold - RMSE(GAN output, autoen-

coder(GAN output))|
(d) = max{0, RMSE(GAN output, autoen-

coder(GAN output)) - threshold}
and:
• “|·|” is the absolute value.
• Each “input” is a data sample from the

MNIST training dataset.
• The “GAN output” is the data sample on the

boundary of the distribution generated by the
GAN from the current “input” that is being
used for training.

• “autoencoder(GAN output)” is the recon-
struction that the previously trained autoen-
coder produces from the “GAN output”.

Note that the threshold hyperparameter in the
loss function of the GAN is a different variable
from the autoencoder threshold, even when they
are technically related.

The loss function in (1) penalizes manifold
distances that are greater or smaller than the
threshold —the GAN hyperparameter threshold.
The distances to the manifold that are greater
than the threshold (included on (a),(b),(c), and
(d)) are penalized double than those that are less
than the threshold (only included on (a) and (c)).

The experiments reveal that to generate
images with a specific RMSE value on the
autoencoder, the training of the GAN requires a
smaller value for the threshold hyperparameter.
For instance, the GAN needs a threshold hyper-
parameter of approximately 0.2 to obtain results
with a RMSE of approximately 5.25; a GAN
threshold of 0.05 produces images with autoen-
coder RMSE values of about 1.3. Setting the
hyperparameter of the GAN threshold about 0.3
or larger makes the GAN collapse.

Using grid search [10], the optimal value for the
threshold parameter of the GAN is 0.1375. With
this threshold, the GAN produces images with an
average autoencoder RMSE of 4.14. Even when
the average RMSE of 4.14 is below the threshold
of the autoencoder value, set as 5, GAN generated
images using this threshold as the distance to the
manifold produce better results at the end of the
experimentation pipeline.

After training the GAN, one data sample on-
the-boundary of the distribution is obtained for
each input of the original dataset (see Figure
3). The training dataset of the fine grained
binary classifier layer consist of both the original
in-distribution data and the generated on-the-
boundary data.

The training of the autoencoder is excluded
from the bias-variance analysis. Once trained, the
autoencoder is used for the 10 experimental runs.
On each run, the GAN is trained reinitialized,
allowing it to generate a fresh on-the-boundary
dataset, then the binary classifier is zeroed and
then retrained. 50 000 data samples from the
MNIST dataset are used in this process.

In order to characterize the performance of
the cascade watchdog, 10 000 samples from the
MNIST dataset and 10 000 outlier samples are
used. The outlier samples are taken from the

(a) Original data samples from the MNIST dataset.

(b) GAN generated on the boundary samples.

Fig. 3: Illustration of the boundary of the distribution. Each column corresponds to the input and the
corresponding output of the GAN.

Fashion MNIST dataset2. Samples of the Fash-
ion MNIST dataset can be seen in Figure 7. The
in-distribution samples from the MNIST dataset
used for testing are separate from the samples used
for training.

The architecture of the autoencoder (see
Figure 4) has an encoder and a decoder connected
sequentially. In between, the latent space has 16
features. The architecture of the GAN is the same
as the autoencoder. Transfer learning is applied
for the encoder block of the GAN by copying
the weighs from the autoencoder. The encoder of
the GAN is then frozen during the training and
only the decoder block of the GAN is trained. In
essence, the autoencoder latent representation of
the MNIST training dataset is used as input for
the GAN decoder. Or, in other words, the genera-
tive component of the GAN is trained to produce
on-the-boundary data samples from the autoen-
coder latent representation of the in-distribution
data samples.

Finally, the architecture of the binary classifier
is shown in Figure 5. The binary classifier is a
standard convolutional neural network classifier.

5 Analysis

The workflow of the cascade watchdog (see Figure
1) has two steps:

1. Autoencoder outlier detection.
2. Binary classifier outlier detection.

2The Fashion MNIST dataset is available on TensorFlow:
https://www.tensorflow.org/datasets/catalog/fashion mnist.

(a) Encoder architecture.

(b) Decoder architecture.

Fig. 4: Architecture of the autoencoder. The same
structure is used for the autoencoder and for the
GAN. Also the GAN uses transfer learning from
the autoencoder for the encoder and only trains
the decoder.

https://www.tensorflow.org/datasets/catalog/fashion_mnist

Fig. 5: Architecture of the binary classifier used as
the second layer defense of the cascade watchdog.

In the first step, the autoencoder detected 9347
outliers out of 10 000 data samples taken from
the fashion MNIST dataset. In the second step,
the remaining 653 outliers not detected by the
autoencoder are tested on the binary classifier.
The results of the ten fold bias-variance analysis
are shown in Table 1 and in Figure 6. In Figure 6,
the true positive rate accounts for the fraction
of the outliers that the binary classifier detected,
while the false positive rate corresponds to the
in-distribution samples that the binary classifier
layer classifies as outliers. The ROC curve char-
acterizes a very good performance of the binary
classifier, where the true positive rate increases to
about 3

4 while the false positive rate stays low. The
specific values used to create this ROC curve are
shown in Table 1. The binary classifier has a true
positive rate of 39.8% with 9.5% standard devi-
ation while preserving a zero false positive rate.
The false positive rate is 0 until the threshold of
the binary classifier certainty is raised. Approach-
ing the certainty threshold to the limit (certainty
greater than 0%) produces a small value for the

Fig. 6: ROC curve for outlier detection by the
binary classifier (see Table 1). The point (1, 1) and
the diagonal, that would represent random guess,
are not included because they do not fit into the
plot.

Table 1: Ten-fold bias-variance analysis for out-
lier detection of the binary classifier. Note: The
first column corresponds to the threshold applied
to the output of the softmax function on the
binary classifier.

false positive rate (3%) while the true positive rate
improves from 40% to 77% in average.

In Figure 7, observe the differences between
true positive outliers filtered by the autoencoder
and by the binary classifier. Also compare the
detected outliers with the false negatives (unfil-
tered outliers). The outlier images not detected by
the cascade watchdog, such as those seen in Figure
7c, resemble features from the in-distribution
MNIST data: Angles, ovals, and writing strokes
(see Figure 3a). Between the detected outliers in
Figures 7a and 7b, the differences with the MNIST
data are more evident. The outliers detected by
the binary classifier (see Figure 7b) are visu-
ally different from the MNIST data, but they

(a) Outliers detected by the
autoencoder layer.

(b) Outliers detected by the
binary classifier layer.

(c) Outliers not detected.

Fig. 7: Examples of Fashion MNIST outliers
detected by the autoencoder (Subfig. 7a), the
binary classifier with a certainty threshold of 0.5
(Subfig. 7b), and not detected (Subfig. 7c).

also can be perceived as having some subtle fea-
tures in common. On the other hand, between the
outliers detected by the autoencoder (see Figure

7a) it is rare to observe features similar to the
in-distribution MNIST dataset.

6 Conclusion

The cascade watchdog improves the trade-off
between true and false negatives of the stand-
alone autoencoder. Adding the binary classifier
improves the true positive rate while reducing the
false positive rate. The enhancement of the out-
lier detection is possible due to the production
of an augmented dataset by means of adversar-
ial training. The autoencoder, the GAN, and the
binary classifier, work in conjunction to produce
successful results.

The results of the experiments show that the
binary classifier constitutes a significant contribu-
tion for out-of-distribution identification, encour-
aging the application of the binary classifier
together with the autoencoder in future imple-
mentations. The high true positive rate obtained
in the experiments, combined with the low false
positive rate, confirms that the idea of split-
ting the out-of-distribution space into different
subsets is a good approach for the detection of
outliers. While the first layer defense (autoen-
coder) is capable of detecting most of the out-
liers, the second layer defense specializes in the
out-of-distribution subspace that is closer to the
manifold of the distribution. Adversarial training
is capable of generating an augmented dataset to
train the binary classifier. The cascade watchdog
multi-tiered adversarial guard passes the proof of
concept stage successfully and has the potential
to be applied more broadly to real world clas-
sification problems, which require the system to
identify out-of-distribution inputs.

References

[1] Atlas LE, Cohn DA, Ladner RE (1990) Train-
ing connectionist networks with queries and
selective sampling. In: Advances in neural
information processing systems, pp 566–573

[2] Bui J, Marks R (2021) Autoencoder watch-
dog outlier detection for classifiers. Proceed-
ings of the 13th International Conference on
Agents and Artificial Intelligence https://doi.
org/10.5220/0010300509900996

https://doi.org/10.5220/0010300509900996
https://doi.org/10.5220/0010300509900996

[3] Bui J, Marks R (July 18-22, 2021) Symbiotic
hybrid neural network watchdog for outlier
detection. 17th International Conference on
Machine Learning and Data Mining, MLDM
20, New York pp 171–180

[4] Frid-Adar M, Diamant I, Klang E, et al
(2018) Gan-based synthetic medical image
augmentation for increased cnn performance
in liver lesion classification. Neurocomput-
ing 321:321–331. https://doi.org/10.1016/j.
neucom.2018.09.013

[5] Goodfellow IJ, Pouget-Abadie J, Mirza M,
et al (2014) Generative adversarial nets. In:
Proceedings of the 27th International Confer-
ence on Neural Information Processing Sys-
tems - Volume 2. MIT Press, Cambridge, MA,
USA, NIPS’14, p 2672–2680

[6] Hwang JN, Choi JJ, Oh S, et al (1990)
Query learning based on boundary search and
gradient computation of trained multilayer
perceptrons. In: 1990 IJCNN International
Joint Conference on Neural Networks, IEEE,
pp 57–62

[7] Hwang JN, Choi JJ, Oh S, et al (1991) Query-
based learning applied to partially trained
multilayer perceptrons. IEEE Transactions
on Neural Networks 2(1):131–136

[8] Jensen CA, Reed RD, El-Sharkawi MA, et al
(1997) Location of operating points on the
dynamic security border using constrained
neural network inversion. In: Proc. Int. Conf.
Intelligent Systems Applications to Power
Systems,(ISAP’97)

[9] Jensen CA, Reed RD, Marks RJ, et al (1999)
Inversion of feedforward neural networks:
Algorithms and applications. Proceedings of
the IEEE 87(9):1536–1549

[10] LaValle SM, Branicky MS, Lindemann SR
(2004) On the relationship between classical
grid search and probabilistic roadmaps. The
International Journal of Robotics Research
23(7-8):673–692

[11] Lee K, Lee H, Lee K, et al (2018) Training
confidence-calibrated classifiers for detecting

out-of-distribution samples. 1711.09325

[12] Reed R, Marks R (1995) An evolution-
ary algorithm for function inversion and
boundary marking. In: Proceedings of 1995
IEEE International Conference on Evolution-
ary Computation, pp 794–797 vol.2, https:
//doi.org/10.1109/ICEC.1995.487487

[13] Shorten C, Khoshgoftaar T (2019) A sur-
vey on image data augmentation for deep
learning. Journal of Big Data 6:1–48

[14] Thompson BB, Marks RJ, El-Sharkawi MA,
et al (2003) Inversion of neural network
underwater acoustic model for estimation
of bottom parameters using modified par-
ticle swarm optimizers. In: Proceedings of
the International Joint Conference on Neural
Networks, 2003., IEEE, pp 1301–1306

[15] Yi X, Walia E, Babyn P (2019) Generative
adversarial network in medical imaging: A
review. Medical Image Analysis 58:101,552.
https://doi.org/10.1016/j.media.2019.101552

[16] Yu Q, Aizawa K (2019) Unsupervised out-
of-distribution detection by maximum classi-
fier discrepancy. In: 2019 IEEE/CVF Inter-
national Conference on Computer Vision
(ICCV), pp 9517–9525, https://doi.org/10.
1109/ICCV.2019.00961

[17] Zhang H, Huang Z, Lv Z (2020) Medi-
cal image synthetic data augmentation using
gan. In: Proceedings of the 4th Inter-
national Conference on Computer Science
and Application Engineering. Association
for Computing Machinery, New York, NY,
USA, CSAE 2020, https://doi.org/10.1145/
3424978.3425118

[18] Zhu X, Liu Y, Li J, et al (2018) Emotion
classification with data augmentation using
generative adversarial networks. In: PAKDD

https://doi.org/10.1016/j.neucom.2018.09.013
https://doi.org/10.1016/j.neucom.2018.09.013
1711.09325
https://doi.org/10.1109/ICEC.1995.487487
https://doi.org/10.1109/ICEC.1995.487487
https://doi.org/10.1016/j.media.2019.101552
https://doi.org/10.1109/ICCV.2019.00961
https://doi.org/10.1109/ICCV.2019.00961
https://doi.org/10.1145/3424978.3425118
https://doi.org/10.1145/3424978.3425118

	Introduction
	Background
	Methodology
	Adversarial Watchdog

	Experimentation
	Analysis
	Conclusion

