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Abstract
This work investigates the significance of the voiced and unvoiced region for detecting common cold from the speech signal.
In literature, the entire speech signal is processed to detect the common cold and other diseases. This study uses a short-time
energy-based approach to segment the voiced and unvoiced region of the speech signal. Then, frame-wise mel frequency
cepstral coefficients (MFCC) features are extracted from the voiced and unvoiced segments of each speech utterance, and
statistics (mean, variance, skewness, and kurtosis) are calculated to get the feature vector for each speech utterance. The
support vector machine (SVM) is utilized to analyze the performance of features extracted from the voiced and unvoiced
region. Result shows that the feature extracted from voiced segments, unvoiced segments, and complete active speech (CAS)
gives almost similar results using the MFCC features and SVM classifier. Therefore, rather than processing the CAS, we
can process the unvoiced speech segments, which have fewer frames compared to CAS and voiced regions of speech. The
processing of solely unvoiced segments can reduce the time and computation complexity of a speech signal-based common
cold detection system.
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1 Introduction

The speech signal contains the linguistic information that
the speaker wants to transmit and paralinguistic information
such as emotional and health state, age, and gender of the
speaker [1]. Current research efforts are being conducted to
reliably and correctly identify a person’s health and emo-
tional state [2,3]. Computational paralinguistic analysis is
gaining interest in evaluating various health conditions from
the speech signal. Due to the intricacy of the speech pro-
duction system and the involvement of physiological and
cognitive systems, such as the respiratory system and the
brain, slight changes in a speaker’s physical and mental con-
dition impact their ability to control their vocal apparatus [1].

B Pankaj Warule
d20ec007@eced.svnit.ac.in

Siba Prasad Mishra
ds20ec005@eced.svnit.ac.in

Suman Deb
sumandeb@eced.svnit.ac.in

1 Department of Electronics Engineering, Sardar Vallabhbhai
National Institute of Technology, Surat 395007, India

Such adjustments may significantly affect the acoustic prop-
erties of the produced speech. Furthermore, since speech can
be readily recorded, transmitted, and stored, speech-based
analytic paradigms have the potential to become a new kind
of non-invasive technology for a wide variety of health issues
in the future. Cold speech is a sort of pathological speech
produced by someone with a common cold or flu. The typ-
ical cold affects both the nasal and the esophagus. Speech
is produced as a consequence of the vocal tract’s linear fil-
tering of stimulation source data. Because the vocal tract is
engaged during speech production, the acoustic properties of
cold speech vary from those of normal speech. The average
amplitude of cold speech is higher than that of normal speech
and the duration of cold speech is shorter than normal speech
[4].

Upper Respiratory Tract Infections (URTIs) such as the
Common Cold and flu are major public health problems,
causing approximately 3 to 5 million cases of severe illness
[1,5]. Social isolation and early diagnosis are two of the most
effective strategies for reducing the spread of infectious dis-
eases [1]. The analysis and classification of cold speech may
be useful in the diagnosis of common cold and other related
illnesses to stop the spread of these viral infections. The
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recent epidemic caused by the Covid-19 virus has brought
to light the necessity of remote digital healthcare systems
[6,7]. Diagnosing the common cold from a patient’s speech
may be beneficial for remotely monitoring patients’ health.
Speech-based screening system for the common cold and
associated illnesses can be embedded into smart gadgets like
smartphones and smart watches to monitor a person’s health.
Generally, speech recognition and speaker recognition sys-
tems are trained using normal speech. If these systems are
tested using cold speech, system performance may degrade.
Therefore, analysis of cold speech can be used to improve
the performance of speech/speaker recognition and man–
machine interaction [8–10].

In this study, we have analyzed the significance of voiced
and unvoiced regions of speech for the classification of cold
and healthy speech. Common cold symptoms include stuffy
noses, hoarseness, coughing, or sneezing, which alter the
speech signal by affecting the vocal cords andvocal tract [11].
Voiced and unvoiced regions of speech have distinct speech
production processes and energy patterns [12]. We hypoth-
esized that common cold affects both voiced and unvoiced
speech segments. This motivates us to use the voiced and
unvoiced regions independently to detect the common cold
from the speech signal.

2 Database

This investigation makes use of the Upper Respiratory Tract
Infection Corpus (URTIC) database, made available by the
Institute of Safety Technology at the University ofWuppertal
inGermany [13]. It comprises voice recordings from630 par-
ticipants, 111 of whom had a common cold and 519 healthy.
The mean and standard deviation of the age of participants
are 29.5 and 12.1 years, respectively. These speech samples
are downsampled to 16 kHz after being recorded at 44.1 kHz.

Each participant completed a binary one-item measure
based on theWisconsin Upper Respiratory Symptom Survey
(WURSS-24) in German throughout the recording process to
assess their health state and rate their common cold symp-
toms. The global illness severity item was binarized at a
threshold of 6 on a scale from 0 for not sick to 7 for very ill.
The participants had to performnumerous activities thatwere
shown on a computer monitor. The subjects were advised to
read widely used phonetics short stories, such as The North
Wind and the Sun, as well as a typical German reading pas-
sage,Die Buttergeschichte. In addition, the participants were
instructed to provide voice instructions for the driving assis-
tance control system as well as numbers ranging from 1 to
40. The spontaneous narrative speech was captured in addi-
tion to the scripted speech. Each participant was instructed to
describe a picture or tell a story about their recent weekend,
best vacation, etc. The number of tasks are not similar for

Table 1 The number of speech samples per class in the train, develop
and, test partition of the URTIC database

Partition Cold Healthy Total

Train 970 8535 9505

Develop 1011 8585 9596

Test 895 8656 9551

all subjects. Recording session for each subjects is varying
from 15min to 2h.

The recordingswere subdivided into 28 652 samples rang-
ing in length from 3 to 10s. The total duration of the database
is about 45h.The number of segments per subject is not the
same. The 28 652 samples were divided into three speaker-
independent partitions (train, develop, and test) that were
balanced by gender, age, and experimenter. Table 1 shows the
details of the URTIC database. Each partition (train, develop,
and test) contains recordings of 210 speakers, 37 of whom
had a common cold and 173 healthy. The train partition has
9505 samples, the develop partition has 9596 samples, and
the test partition has 9551 samples. There are a total of 25,776
samples of healthy speech and 2876 samples of cold speech.

3 Related work

A number of studies have been conducted on the impact
of cold speech on the performance of the speaker recog-
nition system, as well as the classification of cold speech
and healthy speech. Tull and Rutledge [14] noticed that the
formant frequency was significantly lower in cold speech
compared healthy speech. Tull et al. [15] examined the com-
mon cold’s effect on mel frequency cepstral coefficients
(MFCC). Ai et al. [10] proposed a dual model updating
strategy for speaker recognition in cold speech for home
assistants. This method combined time domain and fre-
quency domain features to classify cold and healthy speech.
Then, corresponding Gaussian mixture model (GMM) was
selected from two separate models, one trained using cold
speech and another using healthy speech for speaker recog-
nition. The INTERSPEECH 2017 Computational Paralin-
guistics Challenge ComParE-2017 addressed the cold and
healthy speech classification task using the URTIC database
[13]. The baseline of the ComParE-2017 challenge utilized
an end-to-end learning strategy using a convolutional neu-
ral network (CNN) and long short-term memory (LSTM),
a 6373-dimensional ComParE-2013 feature set, and a 130-
dimensional bag-of-audio-words (BoAW) features. Cai et al.
[16] used perception-aware MFCC, and constant Q cepstral
coefficients (CQCC) features to detect the common cold.
Suresh et al. [17] used phoneme state posteriorgram (PSP)
features for classifying cold and healthy speech. Wagner
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Fig. 1 Flowchart for the segmentation of the voiced and unvoiced region

et al. [18] investigated the effect of common cold at pho-
netic level. Author derived a phonetic transcription from an
automatic speech recognizer (ASR), and based on phonetic
transcription, the author trained a classification model for
each phonetic class using different low-level features such as
MFCC, invariant-integration features (IIF), and constrained
maximum likelihood linear regression (CMLLR). Deb et al.
[4] used variational mode decomposition approach to extract
various statistics, entropy, and energy features from a voice
signal. For classification, a mutual information-based weight
assignment technique and the SVM classifier were used. Kao
et al. [19] utilized discriminative autoencoders and MFCC
features for cold and healthy speech classification. Vicente
et al. [20] developed a Fisher vector for identifying cold
speech usingMFCC features and a generative Gaussian mix-
ture model. In our previous study [21], we have utilized only
vowel-like region segments of speech for cold and healthy
speech classification. Vowel-like regions (VLR) were sepa-
rated from speech signals by identifying vowel-like region
onset points and endpoints using the Hilbert envelope of lin-
ear prediction residual signal and zero-frequency filtering
methods. Then, MFCC features are extracted from vowel-
like regions of speech signals.When only a vowel-like region
is considered, the number of frames reduced dramatically
during feature extraction. Deb et al. [22] employed MFCC
and linear predictive coding (LPC) features and a deep neural
network classifier to classify cold and healthy speech.

4 Segmentation of voiced and unvoiced
region

Speech comprises various phonemes, which are produced by
the vocal cords and the vocal tract. The state of the vocal
cord, as well as the positions, shape, and size of various
articulators, determine which phonemes are produced [12].
There are several methods to categorize events in a speech.
The most straightforward method is to use the state of the
source of speech production (vocal cord). In this method,
the speech signal is categorized into voiced, unvoiced, and
silence regions. The voiced sounds are produced when the
vocal cord vibrates, and unvoiced sounds are produced when
the vocal cord does not vibrate. During the silence, speech

is not produced. Voiced and unvoiced speech may be distin-
guished because voiced speech waveform is quasi-periodic,
and unvoiced speech waveform is aperiodic or random in
nature [12].

Segmentation of voiced and unvoiced speech is a funda-
mental and important process for various speech processing
applications. Cai [23] proposed a method based on the
wavelet-based frequency distribution of the average energy,
zero-crossing rate (ZCR), and short-time energy (STE) of the
speech signal. Atal and Rabiner [24] utilized ZCR, STE, the
correlation between adjacent speech samples, LPC analysis,
and LPC error for the segmentation of voiced and unvoiced
speech. Ijitona et al. [25] proposed a method based on the
combinationof linear prediction error variance (LPEV), STE,
and ZCR for the segmentation of voiced, unvoiced, and
silence regions. In this study, we employed STE to categorize
each speech frame into voiced and unvoiced frames. If the
STE of a speech frame is greater than the threshold energy, it
is considered a voiced frame; otherwise, it is considered an
unvoiced frame. Figure 1 shows the flowchart for segmen-
tation of voiced and unvoiced region of speech signal. First,
each Speech signal is segmented into small frames of 20ms
duration and 10ms overlapping. Then, STE is calculated for
each speech frame. The STE of kth speech frame is given by

Ek =
N∑

n=1

s2k (n) (1)

where N is the total number of samples in each speech frame.
The average energy for all speech frames in an utterance is
calculated as

Eavg = 1

K

K∑

k=1

Ek (2)

where K represents the total number of frames in an utter-
ance. Then, global thresholds are decided for silence region
(EST) and unvoiced region (EUT). The thresholds (EST &
EUT are calculated as

EST = α ∗ Eavg (3)
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Fig. 2 Segmentation of voiced
and unvoiced region of speech
using STE. a Speech signal
devel_0015.wav form the
URTIC database. b STE of
speech signal. c Detected voiced
region. d Detected unvoiced
region
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EUT = β ∗ Eavg (4)

where α and β are the constants. To select the values of
α and β, we have analyzed the segmentation of 50 (25 cold
and 25 healthy) randomly chosen utterances from the URTIC
database. The analysis shows that α = 0.02 and β = 0.12
give more accurate segmentation of voiced and unvoiced
regions. Hence, we have selected EST = 0.02 ∗ Eavg and
EUT = 0.12 ∗ Eavg for the segmentation of voiced and
unvoiced regions.

The speech frame having STE less than EST is consid-
ered as a silence frame and discarded. The resultant speech
segments after removing silence is known as complete active
speech (CAS). It comprises both voiced and unvoiced speech
regions.

The speech frame having STE greater than EUT is con-
sidered as a frame from the voiced region and the speech
frame having an energy between EST and EUT is consid-
ered as a frame from the unvoiced region of speech. We
have also tried to detect voiced and unvoiced regions using
zero-crossing rate (ZCR) and zero-frequency filtered signal
(ZFFS) approaches [26]. The highest segmentation perfor-
mance is achieved using STE-based detection of voiced and
unvoiced regions.

Figure 2 shows the segmentation of voiced and unvoiced
regions for speech sample devel_0015.wav from the URTIC
database. Figure 2a shows the input speech signal. Figure 2b
shows the STE for the speech signal with threshold levels
EST and EUT for voiced and unvoiced region segmentation.
Figure 2c shows the voiced regions, and Fig. 2d shows the
unvoiced regions of speech signal.

5 Classificationmethod

In the previous section, we have segmented the speech signal
into voiced and unvoiced regions using STE-based method.

This section will analyze the significance of the voiced and
unvoiced regions for classifying cold and healthy speech.
Figure 3 shows the block diagram of proposed system for
classification of cold and healthy speech using voiced and
unvoiced speech regions. First, the speech signal is seg-
mented into voiced andunvoiced regions, andMFCCfeatures
are extracted from them. Also, MFCC features are extracted
from the CAS before segmenting it into voiced and unvoiced
regions.

5.1 Feature extraction

This study employs MFCC features to classify cold and
healthy speech. The MFCC features have been employed for
detection of various pathological conditions [1,16,27,28].

In this study, 13 MFCC coefficients, 13 deltas, and 13
delta-delta coefficients are extracted from each overlap-
ping speech frame. Then, these frame-level MFCC features
extracted from voiced, unvoiced, or CAS regions of each
speech utterance are converted into utterance-level features
by calculating four statistics (mean, variance, skewness,
and kurtosis) to form 156-dimensional feature vector per
utterance. These 156-dimensional utterance-level feature
vectors are utilized for training and testing the support vector
machine (SVM).

5.2 Support vector machine (SVM)

The SVM is commonly utilized in speech pathology and
emotion detection [29–34]. The SVM is amathematical tech-
nique for maximizing a certain mathematical function with
respect to a given set of data [35]. It makes use of kernel
functions to map the original feature space into a space with
a higher dimension so that it can be separated linearly. SVM
employs convex optimization, which is useful for achieving
a globally optimum solution. In this investigation, we have
used SVMwith radial basis function (RBF) kernel for binary
(cold and healthy speech) classification.
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Fig. 3 Block diagram of proposed voiced and unvoiced speech-based classification system

Table 2 Performance ofMFCC feature statistics extracted fromvoiced,
unvoiced and CAS for classifying cold and healthy speech

Speech segment % UAR

Develop Test

CAS 66.12 64.92

Voiced 65.98 64.85

Unvoiced 66.15 64.69

Table 3 Performance comparison of proposed frameworkwith the clas-
sification results reported using phoneme segmentation on the URTIC
database

Speech segment Feature % UAR

Vowel [18] IIF 60.8

Glide [18] IIF 60.3

Consonant [18] IIF 62.7

Liquid [18] IIF 62.3

Stops [18] IIF 62.2

Fricative [18] IIF 62.2

Nasal [18] IIF 59.6

Vowel-like Region [21] MFCC 61.93

Voiced Region MFCC 65.98

Unvoiced Region MFCC 66.15

The bold values indicate the results achieved in our study

6 Results and discussion

The URTIC database is used in this study to analyze the sig-
nificance of voiced and unvoiced regions to classify cold and
healthy speech. Table 2 shows the performance of MFCC
feature statistics extracted from voiced, unvoiced, and CAS
segments of speech signal for cold and healthy speech clas-
sification. The MFCC feature statistics extracted from the
voiced region give the UAR of 65.98% on the develop parti-
tion and 64.85% on the test partition of the URTIC database.
The MFCC feature statistics extracted from the unvoiced
region achieve the UAR of 66.15% on the develop partition
and 64.69%UARon the test partition of theURTIC database.
Conversely, the MFCC feature statistics extracted from the
CAS achieve UAR of 66.12% and 64.92%, respectively, on
the develop and test partitions of the URTIC database.

The results show that performance achieved using the
statistics of MFCC features gives almost similar results for
voiced, unvoiced, and CAS on both test and develop par-

Fig. 4 Average no. of frames per utterance utilized for features extrac-
tion to classify cold and healthy speech using voiced, unvoiced andCAS
segments

tition of the URTIC database using SVM. For the develop
partition, the highest classification performance of 66.15%
UAR is achieved using theMFCC features extracted from the
unvoiced region of speech, while for the test set, the highest
classification performance of 64.92%UAR is achieved using
the MFCC features extracted from the CAS using SVM.

Limited studies had utilized various speech segments or
phonemes for the detection of the common cold from the
speech signal. Table 3 shows the performance comparison
of the proposed framework with the state-of-the-art meth-
ods using various phoneme segmentation on the URTIC
database. Wagner et al. [18] analyze the effect of common
cold speech on a phonetic level. Phonemes are grouped into
vowel, glide, consonant, liquid, stops, fricative, and nasal
sounds, and the classification performance is evaluated using
MFCC, invariant-integration features (IIF), and constrained
maximum likelihood linear regression (CMLLR) feature.
They achieved the highest score using IIF features, as given in
Table 3. They concluded that consonant articulation is more
impaired than vowel articulation. They achieved the high-
est UAR of 62.70% for the consonants group of phonemes.
In our previous study [21], we achieved 61.93% UAR using
theMFCC features extracted from the vowel-like region seg-
ments of speech for cold and healthy speech classification.

The performance of the proposed framework is compared
with the classification results reported in state-of-the-art
methods on the URTIC database, as shown in Table 4. The
URTIC dataset was utilized in the INTERSPEECH 2017
ComParE Challenge’s Cold Sub-Challenge, and the base-
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Table 4 Performance comparison of the proposed framework with state-of-the-art methods

Research work Speech region %Reduction in frames Feature Feature dimension % UAR

Develop Test

Schuller et al. [13] CAS – ComParE 6373 64.00 70.20

BoAW 130 64.20 67.30

Cai et al. [16] CAS – MFCC 39 64.80 –

CQCC 65.40 –

Suresh et al. [17] CAS – PSP 5160 64.00 61.09

Deb et al. [4] CAS – VMD 50 66.84 –

Kao et al. [19] CAS – MFCC 60 65.81 66.00

Vicente et al. [20] CAS – MFCC 39 63.98 66.12

Warule et al. [21] VLR 50.76 MFCC 39 61.93 –

Deb et al. [22] CAS – MFCC 39 65.64 –

LPC 32 59.78 –

Proposed CAS – MFCC Statistics 156 66.12 64.92

Voiced 17.41 65.98 64.85

Unvoiced 82.59 66.15 64.69

line results are presented in [13]. The UAR achieved using
the proposed methods is greater than the baseline results
for the develop partition of the URTIC database. The pro-
posed framework is not as good as the baseline results
on the test partition. Here, we wish to emphasize that the
baseline findings were obtained using a 6373-dimensional
ComParE-2013 feature set. Conversely, we have used only
156-dimensional features in the proposed framework to
achieve comparable results with the baseline. The proposed
framework gives higher results than state-of-the-art methods
on the develop partition and is much in line with the results
of the test partition of the URTIC database. In this study, the
results achieved only using the unvoiced region of speech
give higher UAR compared to the results of state-of-the-art
methods on the develop partition of the URTIC database.
Compared to the CAS segments, the number of frames uti-
lized for feature extraction from the voiced and unvoiced
regions is reduced by 17.41% and 82.59%, respectively. The
results achieved only using the unvoiced region of speech
give higher UAR and 82.59% reduction in the total number
of frames. Figure 4 shows the average number of frames that
need to be processed during feature extraction of training par-
tition to classify cold and healthy speech using the voiced,
unvoiced, and CAS speech segments.

The unvoiced region of speech signal has very few frames
compared to the CAS and voiced regions of speech. We have
used a simple STE-based approach for the segmentation of
voiced, unvoiced, and silence regions of speech. In state-
of-the-art methods, all the frames of CAS are processed for
feature extraction. In our previous study [21], we used a VLR
of speech which reduces the number of frames by 50.76%
for the classification of cold and healthy speech. But UAR

achieved using MFCC features extracted from VLR is low
compared to the state-of-the-art methods. Wagner et al. [18]
examined the effects of common cold on phonetic level. They
concluded that phoneme-level cold and healthy speech clas-
sificationwas notworthwhile. Compared to the segmentation
of various phonemes and vowel-like regions, segmentation
of voiced and unvoiced regions is simple and quick. Also, the
performance achieved for classifying cold andhealthy speech
using the voiced and unvoiced segments is high compared to
the performance achieved using vowel-like regions segments
and a group of phonemes. In this study, the results achieved
only using the unvoiced region of speech give higher UAR
and 82.59% reduction in the total number of frames com-
pared to the results of state-of-the-art methods on the develop
partition of the URTIC database. So, if someone is merely
interested in common cold detectionwith theminimumeffort
and complexity, they can evaluate only the unvoiced por-
tion of the speech. This system can be implemented in smart
devices with limited memory to detect and monitor common
cold and related disorders, which may be useful for remotely
monitoring the patient’s health and preventing the spread of
these illnesses.

7 Conclusion

In this work, we have investigated the significance of the
voiced and unvoiced speech segments for detecting the com-
mon cold. A short-time energy-based approach is used for
segmenting speech signals into the voiced and unvoiced
regions. After segmentation, 39-dimensionalMFCC features
are extracted from the voiced and unvoiced segments, and
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statistics (mean, variance, skewness, and kurtosis) are cal-
culated to get a 156-dimensional feature vector for each
speech utterance from the all frame-wise MFCC features of
that utterance. The SVM classifier is used to analyze the
performance of MFCC features extracted from the voiced
and unvoiced speech region. The results show that the fea-
ture extracted from voiced and unvoiced segments shows the
same discrimination capability for cold and healthy speech.
The processing of only unvoiced segments to detect the com-
mon cold can also serve the purpose. The processing of the
only unvoiced frame for common cold detection reduced the
number of frames by 82.59% without significant change in
the system performance compared to CAS. This study con-
cludes that unvoiced speech segments include pathological
information and can be utilized to diagnose common cold
and associated disorders.
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