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Abstract
Nowadays, accurate and fast vehicle detection technology is of great signi�cance for the construction of
intelligent transportation systems in the context of the era of big data. This paper proposes an improved
lightweight YOLOX real-time vehicle detection algorithm. Compared with the original network, the
detection speed and accuracy of the new algorithm have been improved with fewer parameters. First,
referring to the GhostNet, we make a lightweight design of the backbone extraction network, which
signi�cantly reduces the network parameters, training cost, and inference time. Furthermore, by
introducing the α-CIoU loss function, the regression accuracy of the bounding box(bbox) is improved
while the convergence speed of the model is also accelerated. The experimental results show that the
mAP of the improved algorithm on the BIT-Vehicle dataset can reach up to 99.21% with 41.2% fewer
network parameters and 12.7% higher FPS than the original network and demonstrate the effectiveness
of our proposed method.

1 Introduction
ITS (intelligent transportation system) [1] is the future direction of the transportation system, which
integrates advanced information technology, communication technology, sensing technology, control
technology, and computer technology into the transportation system to effectively monitor the
transportation system, improve the transportation system's e�ciency, and provide a guarantee for the
safe operation of the transportation system. However, extracting information effectively from massive
multimedia data is a great challenge. How to use computers to automatically process valid video and
image information from thousands of cameras is the top priority in realizing an intelligent transportation
system.

Computer vision technology can effectively understand video data and extract useful information, which
can detect motor vehicle attributes, such as color, type, vehicle brand, license plate information, etc., and
help tra�c departments grasp real-time road conditions. For example, by using this information, the
supervisory department can accurately identify the motor vehicle models on the road, which helps in
dangerous vehicle monitoring, such as muck trucks or hazardous chemical vehicles. Moreover, accurate
identi�cation and positioning of these speci�c vehicles can help prevent tra�c accidents or crime.

To obtain useful information, many researchers have used different methods to achieve vehicle detection
and classi�cation. Navastara et al. [2] used Histogram of Oriented Gradients(HOG) and Local Binary
Patterns (LBP) to extract the features of vehicle, and then input them into Hierarchical Multi-SVM
(HMSVM) to distinguish vehicle categories. Wei et al. [3] propose a two-step detection algorithm based on
combining the features of Harr and HOG, which has higher detection accuracy and time e�ciency than
traditional methods. Guo et al. [4] adopted HOG method to extract vehicle type features in images, and
then used Support Vector Machine (SVM) to classify these features to achieve vehicle detection.
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Traditional vehicle detection methods need to manually design feature extraction methods based on
experience, and this process is complicated. In addition, most of the extracted features are edge features,
which cannot effectively re�ect the semantic information of vehicles. With the development of deep
learning, these traditional methods have been gradually replaced by deep learning techniques. Deep
learning has been widely used in image processing due to its solid �tting ability and has made signi�cant
progress in recent years. The researchers have applied the object detection algorithm of deep learning to
the �eld of vehicle detection. Object detection can be divided into two-stage detection algorithms and
single-stage detection algorithms. Two-stage detection algorithms such as R-CNN [5], Fast R-CNN [6], and
Fast R-CNN [7] need to generate candidate frames of the target area �rst and then classify and regress
the candidate frames. Single-stage detection algorithms such as YOLO [8] and SSD [9] can directly predict
the class and location of the object from the extracted features. In contrast, single-stage detection
algorithms are fast but less accurate.

At present, many scholars apply target detection algorithms to vehicle detection. Yang et al.[10] proposed
a pedestrian and vehicle detection algorithm based on the improved YOLOv2 [11]. The authors analyze
the labels of the dataset to set a priori box that is more in line with pedestrians and vehicles and combine
multi-scale training to improve the detection accuracy. Yang et al. [12] improved Mask R-CNN to detect
pedestrians and vehicles, and built a real-time vehicle identi�cation system. Wang et al. [13] proposed a
soft-weighted method that fused RetinaNet [14] and Cascade-RCNN [15], and the results proved that this
ensemble model has an excellent detection ability for overlapping objects. Alireza et al. [16] corrected the
wrong labeling and unclear labels in the BITvehicle dataset and veri�ed the higher accuracy after �xing
these problems on Tiny-YOLOv3. Wang et al. [17] used Faster R-CNN in NVIDIA Jetson TK1 to realize real-
time detection of vehicle type. The above detection algorithms are based on the anchor-based algorithm,
which requires manual setting of the size of the prior boxes. Zheng et al. [18] introduced a version of
YOLO: YOLOX, which used anchor-free algorithm and outperformed the previous versions of YOLO in both
detection speed and accuracy on the coco dataset. There is currently less work associated with using
YOLOX to detect vehicles.

Existing models have achieved good results in vehicle type detection, but they do not consider both
detection accuracy and inference speed. This paper proposes an improved YOLOX-S detection model.
The main work is as follows:

(1) Lightweight optimizations are made for the two CSPnet modules in the feature extraction network,
which can improve the model accuracy and reduce the amount and complexity of model parameters.

(2) To obtain more accurate bbox regression, a new loss function, α-CIoU, is introduced. By adjusting the
power of IoU and the penalty term, the YOLO detector can be more �exible to achieve different levels of
the bbox regression accuracy.

2 Methodology
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In recent years, various image classi�cation methods have achieved very high accuracy on ImageNet, but
the number of parameters is huge, such as Vision Transformer [19] and model soup [20]. In addition to
accuracy, computational complexity is also an important indicator for evaluating models. Too complex
neural networks cannot be deployed on convenient mobile devices. So more lightweight models have
been proposed, such as Shu�eNetv2 [21], which summarizes four light network design guidelines. This
paper aims to design a lightweight and easy-to-deploy model, so the four guidelines of Shu�eNetv2 are
used as a reference when creating the network.

2.1 YOLOX algorithm
The original intention of YOLO design is for faster inference speed. The real bboxes in the previous
generations of YOLO are based on regression of the priori boxes, and the setting of the priori boxes cause
the generated pre-selected boxes to perform IoU with the real boxes during the training phase, which will
take up a lot of memory space and time cost. In order to speed up the calculation, YOLOX adopts the
anchor-free method, and selects the positive sample anchor frame through the SimOTA method, which
greatly reduces the number of candidate frames and speeds up the inference speed. The current
detection heads of YOLO series may lack the expressive ability. Therefore, the target classi�cation and
bbox regression information of outputs are separately through the decoupled head which not only
improves the detection accuracy, but also speeds up the convergence speed of the network.

The YOLOX network can be divided into three parts: Backbone, Neck, and Head. Assuming that the input
image has a size of 416×416 after the resize operation, three different sizes of feature maps will be
generated: 52×52, 26× 26, and 13×13 with downsampling in backbone, and these three feature maps can
detect objects of different sizes. Furthermore, the three feature layers are decoupled after FPN and PANet.

2.2 Improverd method

2.2.1 The improved network structure of YOLOX-S
Aiming at the problem that the original YOLOX-S has a large amount of network parameters and
computation, which is not conducive to the deployment of terminal equipment, we have carried out a
lightweight design for the backbone extraction network. The structure of the improved YOLOX-S is shown
in Fig. 1.

We propose two feature extraction modules, which reduce the parameters for feature extraction and
increase information fusion of the network model. Since the focus layer makes it more di�cult to deploy
the network on edge computing devices, it is replaced by a convolutional layer. Then the neck part is used
to strengthen network feature extraction and multi-scale feature fusion, and the structure of FPN and
PANet are also used in our work.

MobileNet [22] proposed the concept of depthwise separable convolution. First, feature extraction is
performed by 3×3 group convolution and then 1×1 convolution is used to change the channel. Compared
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with ordinary convolution, parameters can be greatly reduced. However, the introduced 1×1 convolution
will still generate a certain amount of calculation. The equation for the calculation amount of convolution
is as follows:

Among them,  represents batch-size,  and  represent the height and width of the feature map
separately,  represents the channel number, and  represents the kernel-size. It can be seen from the Eq.
(1) that when b and c are relatively large, it will still bring a large amount of calculation. In addition,
GhostNet [23] points out the output feature maps exist redundance after convolution, and there is a
signi�cant similarity between most of the feature maps, as shown in Fig. 2. When the feature maps of 16
channels are generated by convolution, it can be seen two similar feature map pair examples are
annotated with same color boxes.

Therefore, GhostNet proposes Ghost Module(GM) to avoid generating these redundant feature maps, so
that the amount of model parameters can be reduced while ensuring good detection accuracy. GM is the
basic unit of GhostNet network, and its main function is to replace ordinary convolution. First, the
channels of the original feature maps were compressed by 1×1 convolution, then GM utilizes cheap linear
operations to get more feature maps. In addition, the identity mapping [24] and linear transformations are
preserved in GM. After that the output feature maps has the same shape as the input feature maps, as
shown in Fig. 3.

1) CSPGM module: The YOLOX network structure uses a lot of standard convolution, which brings about
the problem of large computation. Therefore, this article introduces the GM, which is capable of
generating feature maps with fewer amounts of parameters and calculations through e�cient operation.
So, referring to the GhostNet, two improved network modules are proposed: CSPGhost Module (CSPGM)
and Changed Ghost Module (CGM).

The CSPGM structure is shown in Fig. 4. First, feature maps of input layer is divided into two parts, and
the left part goes through the GM stacked to continue feature extraction, and then merges them through
the cross-stage, which reduces the amount of computation. At the same time, the accuracy of the model
can be guaranteed.

2) CGM module: In order to further fuse multi-scale global overall information and local detailed
information, we use the CGM module to enhance feature extraction, which is helpful for local cross-
channel information interaction and improves the accuracy of the model. The CGM structure is shown in
Fig. 5, which divides the input feature maps into two branches. The left branch adjusts the output
channel to half of the input through 1×1 convolution, then extracts features through 3×3 depthwise
convolution, and last passes through lightweight effective channel attention module (ECA) [25], which
can obtain cross-channel interaction information by increasing a few parameters and improve the
network's attention to channel information. The right branch is derived from the splitting of input feature
map and �nally the two branches are spliced as shown in Fig. 5.

b h w

c k
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The feature maps of these two improved methods, in which input channels and output channels are
equal, conform to the G1 guideline proposed by Shu�eNetv2 Among them, the Channel-split in CGM
divide the feature maps into two groups, which does not increase the number of groups during
convolution and conforms to the G2 guideline. The G4 guideline points out that although element-wise
operators such as ReLU and Add have small FLOPs, they require a large MAC. Therefore, operations such
as Add should be avoided as much as possible when designing a network.

2.2.3 The improved loss function
Bbox regression is a mainstream technique in object detection, which uses a rectangular bbox to predict
the location of the target object in the image, aiming to re�ne predicted bboxes location. And bbox
regression uses the overlap area between the predicted bboxes and the ground truth bboxes as the loss
function. When the overlap doesn’t exist, the gradient of loss function will disappear, which affects the
model convergence speed and detection accuracy. The original model used GIoU as a positioning loss
function for bbox.

GIoU introduces the minimum circumscribed rectangle of the predicted bboxes and the ground truth bbox
as a penalty term. However, GIoU will degenerate to IoU when two boxes belong to the containment
relationship. In order to solve the shortcomings of GIoU, this paper introduces the α-CIoU [26] loss
function, which retains all the properties of the CIoU [27–29], while paying more attention to high IoU
goals, and creates more space for optimizing all levels of goals, achieving different levels of detection
frame regression accuracy. The formulas are as follows:

In Eq. (2),  and represent the center points of the detection bbox and the ground truth bbox,
respectively,  represents the Euclidean distance between the two center points, and  represents the
diagonal distance of the smallest closure region that can contain both the predicted bbox and the ground-
truth bbox.  and  are respectively:

b b
gt

ρ c

v β
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It can be seen from Eq. (3) that when α > 1, the loss will decrease with the increase of IoU, which improves
the model convergence speed and is more conducive to the target with larger IoU.

3 Experiments

3.1 Dataset
We use a public dataset made by the Beijing Institute of Technology: BITvehicle [30], which includes 9850
images, and most images have only one or two vehicles. These images are divided into Bus, Microbus,
Minivan, Sedan, SUV, and Truck. The number of each label category and corresponding example picture
are shown in Fig. 6 and Fig. 7, respectively.

3.2 Experimental environment & hyperparameter setting
The platform for our experiments is shown in Table 1: 

Operating System Ubuntu 18.04 LTS

CPU Intel(R) Xeon(R) E5-2620

GPU NVIDIA GeFore TITAN X

Memory 16G

Framework Tensor�ow, CUDA10.1

We divided the images into the training set and testing set in a ratio of 9:1, resulting in 8865 and 985
images, respectively. We adopt SGD as the optimizer, with a weight decay of 5e-4 and momentum of
0.937 as default. At the same time, the CosineAnnealing method was used to update learning rate. Due to
the constraint of the memory, the batch size was set at 32.

3.3 Experimental environment & hyperparameter setting
This experiment uses Parameters, Size (MB), FPS, and mAP@0.5 as model metrics. Parameters can be
used to measure the complexity of the model, and FPS is used to measure the real-time inference speed
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of the model. Also, mAP@0.5 means the average AP of each category when the IoU is set to 0.5, and AP
is the mean precision value on the precision-recall curve. Their calculation formulars are shown in
Eqs. (6)–(8):

3.4 Result
This paper introduces different innovative strategies for YOLOX-S. In order to explore the impact of these
strategies on the model, the above-mentioned methods are used for ablation experiments on the
previously divided BIT vehicle dataset, as shown in Table 2.  

Table 2
Test results after different improvement strategy combinations

Improvement
stategy

Different YOLOX-S algorithm models

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

Experiment
6

Alpha-CIoU   √       √

CSPGM     √   √ √

CGM       √ √ √

The above experimental performances are shown in Table 3. Obviously, it can be seen that the accuracy
of the α-IoU model is improved by 0.67%, and the FPS is slightly decreased, but this decrease is
acceptable from the perspective of the improvement effect, indicating that the loss function can more
accurately distinguish various types of vehicles. With the addition of CSPGM, the number of model
parameters is slightly reduced, but the mAP is increased by 0.42, which indicates that the CSPGM
structure has stronger feature extraction capabilities. As shown in Table 5, the amount of parameters is
greatly reduced with adding CGM to the model, and the accuracy is almost unchanged, which shows that
the CGM structure integrates the original feature information well. It can be clearly seen that adding all
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the innovation points to the model at the same time performed well, improving both accuracy and speed.
 

Table 3
Comparison of overall detection performance.

Model Input_size Params(M) Size(M) mAP@0.5(%) FPS

Experiment 1 416×416 8.96 34.7 98.22 56.5

Experiment 2 416×416 8.96 34.7 98.99 56.4

Experiment 3 416×416 8.28 32.1 98.64 58.4

Experiment 4 416×416 5.94 27.1 98.28 63.6

Experiment 5 416×416 5.26 20.6 98.54 65.7

Experiment 6 416×416 5.26 20.6 99.21 65.2

The P-R curves obtained by the model in this paper for detecting various types of vehicles are shown in
Fig. 8, where the abscissa is the recall rate (Recall), the ordinate is the accuracy rate (Precision), and the
shaded area is the detection accuracy (AP) of this type of defect.

This paper focuses on the realization of the light weight vehicle type detection algorithm, which provides
the possibility for practical application. To demonstrate the advantages of the algorithm, we compared it
with several object detection algorithms including CenterNet, YOLOv4-tiny, YOLOv5-S, and the original
YOLOX-S algorithm. All experiments' training and test sets are the same, and the comparison results are
shown in Table 4.  

Table 4
Comparison with other detection algorithms

  mAP(%) FPS Size(MB) AP(%)

Bus Microbus Minivan Sedan SUV Truck

CenterNet 95.5 29.5 125.2 99.1 96.4 89.7 98.9 92.5 98.0

YOLOv4-
tiny

93.7 95.3 22.6 99.4 91.6 90.4 86.1 98.3 92.9

YOLOv5-S 96.9 53.6 27.5 99.7 96.8 95.37 99.1 95.8 95.0

YOLOX-S 98.2 56.5 34.7 99.9 96.9 96.4 99.2 97.6 99.2

ours 99.2 65.2 20.6 100 99.1 99.5 99.2 97.6 99.9

As shown in Table 4, YOLOv4-tiny has the fastest detection speed but the lowest detection accuracy.
CenterNet is an anchor-free detection algorithm with the largest weight �le and the slowest detection
speed. The mAP of YOLOv5-S is 98.2%, maintaining good accuracy and speed. Our proposed method
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based on YOLOX-S has better detection accuracy almost in all categories and inference speed also faster
than the other algorithm. It shows that it still has better performance under the condition of hardware
constraints.

4 Conclusion
In this paper, we have proposed a lightweight network Ghost-YOLOX based on YOLOX-S algorithm model.
On one hand, we have improved the network structure of YOLOX-S which includes two modules referring
to GhostNet and proposed SPPFblock. On the other hand, α-CIoU is introduced to improve the
convergence speed of the model and the regression accuracy of the bboxes. The experiments’ result
show that the mAP value and inference speed of the Ghost-YOLOX algorithm in BIT dataset are 0.99%
and 12.7% higher than the original YOLOX-algorithm model. Meanwhile, the amount of parameters has
been reduced by 41.2%. At tra�c intersections, the algorithm can accurately identify the vehicles, but the
types of identi�cation are limited. In the future we will pay more attention to expand the number of
samples in the dataset, including enriching road scenes.
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Figure 1

Improved YOLOX-S network structure
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Figure 2

Redundant feature maps

Figure 3
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The Ghost Module (GM)

Figure 4

The CSPGhost Module (CSPGM)
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Figure 5

The Changed Ghost Module (CGM)
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Figure 6

The number of labels

Figure 7

Some examples of the dataset
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Figure 8

P-R curve


