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Abstract—In recent years, the development of deep learning has led to some advances in 
face synthesis approaches, but significant pose is remains one of the factors that is 
difficult to overcome. Benefiting from the proposal and development of generative 
adversarial network, the level of face frontalization technology has reached new heights. 
In this paper, we propose a deep generative adversarial network based on 
multi-attention mechanism (DMA-GAN) for multi-pose face frontalization. Specifically, 
we add a deep feature encoder based on the attention mechanism and residual block in 
the generator, which can deepen the network to extract more detailed features and make 
full use of the long-range dependencies between local features to generate better 
identity-preserving faces. Meanwhile, to carry the global and local facial information, 
the discriminator of our model consists of four independent discriminators. The 
self-attention mechanism is also added to these discriminators to provide more accurate 
synthesized details. The results from quantitative and qualitative experiments on 
CAS-PEAL-R1 dataset show that our model proves effective. 
Index Terms—Face Frontalization, Generative Adversarial Network, Deep Feature 
Encoder, Attention Mechanism 

 

I. INTRODUCTION 

With the rapid development of deep learning, the performance of face recognition 
techniques has improved significantly [1] [2]. However, in practical applications (such as 
surveillance video), face images are often affected by multiple poses. The pose variation in 
face images greatly reduces the accuracy of most face recognition algorithms, especially in 
extreme angles, pitches and yaws situations. 

At present, multi-pose face recognition methods for multi-pose are divided into two 
categories. One category entails learning pose-invariant features from original face images [3] 
[4] [5]. Due to the deletion of features in large pose cases and the variety of postures that may 
be included, this category has some limitations. The other category involves synthesizing an 
identity-preserved frontal-view face image from a face image in a specific pose, which is 
called face frontalization. Then it uses the generated face images to extract features and 
recognize the face. Previous works [6] [7] [8] all show strong face recognition performance 
using this method. Since Goodfellow et al. [9] proposed the generative adversarial networks, 
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GAN has been widely used in the field of image generation and has greatly improved the 
quality of generated images. In recent years, many face frontalization methods based on GAN 
have been proposed [10] [11] [12] [13] [14] [15] [16] [17] [18]. The generator of GAN 
extracts the features of the non-normal face (source) and synthesizes the normal face (target). 
The discriminator of GAN authenticates the synthetic face images and encourages the 
generator to synthesize more realistic images. In recent years, many studies have proven that 
the attention mechanism can improve the performance of the network. Attention mechanisms 
have been widely used in the field of image processing and achieve satisfactory performance 
[19] [20] [21] [22]. Inspired by these methods, we propose a deep generative adversarial 
network based on multi-attention mechanism (DMA-GAN). The visualization of generated 
results by our model is shown in Figure 1.  

In our model, the generation network is based on U-net architecture and is combined with a 
deep feature encoder (DFE). The deep feature encoder model is grounded on four residual 
attention modules, and each residual attention module is composed of a residual block and 
dual-attention module (Fig. 2). Using the residual block can deepen the network to fully 
extract the deep features on the premise of maintaining good model performance. The DFE 
can help synthesize frontal face images that better preserve more geometric structural 
information about the face. The discriminator part consists of a global discriminator and three 
local discriminators, which serve as a facial attention mechanism. According to facial 
characteristics, we crop the input face images to three different regions (eyes, nose, and 
mouth), which have the most discriminative features. Additionally, we add the self-attention 
block to the uppermost and second-uppermost layers in each discriminator. This, can help 
capture long-distance dependencies between image features. Moreover, multiple loss 
functions are exploited in the training process to help synthesize frontal face images that are 
more similar to the real images.  

The main contributions of this paper can be summarized as follows. 
• We propose a face frontalization model based on GAN (DMA-GAN), which can 

synthesize identity-preserved frontal-view face images from multi-pose face images and does 
not require the input of other prior knowledge of the face, such as the type of pose being 
captured. 

• We combine the residual block with the attention mechanism to form a deep feature 
encoder, which can deepen the network layers and extract more abstract facial details. We also 
add the attention mechanism in the discriminator. 

• Compared with some existing advanced methods, our model is simpler and achieves 
higher recognition rates for some angles. The results from quantitative and qualitative 
experiments prove the effectiveness of the proposed method. 
 

II. RELATED WORK 

A. Generative Adversarial Networks 

Goodfellow et al. [9] first proposed the generative adversarial networks (GANs). The 

min-max two-player game provides a simple yet powerful way to estimate target distribution 

and generate novel image samples [23]. Due to its excellent performance, it has drawn 

substantial attention and has been widely used in deep learning and computer vision. In order 

to improve some problems with GAN, such as training instability, researchers have made 



various modifications to GANs from the perspective of architecture or loss function. DCGAN 

[24] applies deep convolution to GAN and achieves significant improvement. WGAN [25] 

and WGAN-GP [26] use the Wasserstein distance instead of KL-divergence in GAN, which 

improves the stability of GAN training. BEGAN proposes a new equilibrium enforcing 

method paired with a loss derived from the Wasserstein distance for training auto-encoder 

based generative adversarial networks [27]. These methods greatly advance in various 

generation tasks. 

 

Fig. 1: The synthesized face frontalization results of DMAGAN. The first column of each face pair 

displays real multi-pose faces from CAS-PEAL-R1, and the second column displays synthesized 

frontal faces. The ground truth frontal face is shown on the right side. 

B. Face Frontalization 

Face frontalization is a computer vision task that synthesizes identity-preserved 

frontal-view faces from various viewpoints. Existing methods addressing the face 

frontalization problem can be divided into two categories: 2D-based methods [6] [7] [8] and 

3D-based methods [28] [29]. Hassner et al. [28] use an unmodified 3D surface as an 

approximation for all input surface shapes to produce frontal faces images. Zhu et al. [29] 

propose a pose-adaptive 3DMM-fitting algorithm. The synthetic 3D-based images are not 

often realistic, and performance deteriorates for large poses. In recent years, the development 

of GAN has greatly improved the visual effect of the two-dimensional image generation task. 

Many face frontalization methods based on GAN have been proposed. For instance, Huang et 

al. [10] propose a deep architecture with two pathways (TP-GAN) focusing on global 

structure and local texture respectively, for frontal view synthesis. Qian et al. [17] propose a 

face normalization model (FNM) to synthesize frontal, neutral expressions and photorealistic 

face images in the condition of an unconstrained environment. Tran et al. [11] propose 

DR-GAN to solve the face frontalization problem faces by extending GAN with an 

encoder-decoder structured generator and pose code.  

In view of the effectiveness of GAN, our model is also based on GAN. 

C. Attention Mechanism 

Recently, many researchers have improved the expression of features by adding attention 

mechanisms to the network. The attention mechanism serves as a way of making the network 

emphasize regions of interest and suppress regions of irrelevant background through 



self-learning, which is essentially similar to the way humans observe things. In 2014, Mnih et 

al. [30] first used attention in recurrent neural nets for image classification. Then the attention 

mechanism became widely used in various natural language processing tasks [31] [32]. In 

recent years, attention mechanisms have also played an important role in computer vision. In 

particular, the DA-Net [21] aggregates the position attention module and the channel attention 

module to capture long-range relationships for accurate segmentation. Han et al. [22] 

introduce the self-attention to GAN (SAGAN), which could produce a more detailed and 

vivid visualization. For face frontalization tasks, DA-GAN [13] and GSP-GAN [14] place the 

self-attention module in the generator and discriminator respectively. In our model, we 

combine and stack the position attention module and channel attention module to produce 

more abstract features. 

 

Fig. 2: Framework of DMA-GAN. The generation network is based on U-net architecture and is 

added with a deep feature encoder (DFE). The discriminator part consists of four independent 

discriminators. 

 

Figure3: The processing flow of the deep feature encoder module. The DFE in the network consists of 

four stacked modules as shown in this figure. “ ” represents the matrix element-wise sum, and “ ” 

represents matrix multiplication. 

 

III. METHOD  

The structure of our model is shown in Fig. 2. The input multi-pose image is denoted as 
P

I , the corresponding frontal image is denoted as 
F

I , the synthesized frontal image is 

denoted as F
Î . The encoder, deep feature encoder and decoder are denoted as 𝐺𝐸, 𝐺𝐷𝐹𝐸, 



𝐺𝐷. The frontal face is cropped into three regions: eyes 
EI ; nose NI

;
 mouth 

MI . The 

corresponding three synthesized regions are denoted as 
EÎ , NÎ

 and
 

MÎ . The discriminators 

are denoted as 
FD , 

ED , ND
 and MD . 

A. Generator 

The generator of our model, shown in Fig. 2 is based on U-net architecture that consists of 

an encoder-decoder structure for image synthesizing. Skip connections are used between the 

encoder and decoder to enable multi-scale feature fusion. Inspired by [33], we add a deep 

feature encoder (DFE) behind the encoder. The generation process can be described as: 

   P

EDFED

F
IGGGI ˆ                         (1) 

The DFE consists of four stacked modules, as shown in Fig. 3. The deep feature encoder 

module comprises composed two parts: a residual block and dual-attention module. He et al. 

[34] propose ResNet, which is easier to optimize and can gain accuracy from increased depth. 

In order to extract more abstract facial features, we stack up basic residual blocks to deepen 

the generation network. Inspired by [21], we combine position self-attention and channel 

self-attention into a dual-attention module to capture long-range relationships and model 

interdependencies between channels. Detailed architecture is shown in Table I. 

The input feature map X firstly goes through a basic residual block. The position and 

channel self-attention modules are parallel. As follows, we describe the flow of the two 

modules respectively. 

(1) Position Self-attention Module 

Given a feature map 
WHC

RY
 , we first generate three new feature maps A, B and C by 

feeding Y into three different 1×1 convolutional layers, where   WHC
RCBA

,, . Then, we 

reshape A and B to 
NC

R


, where WHN  . Then we perform matrix multiplication 

between 𝐴𝑇and B and apply a softmax layer to obtain the spatial feature map 
NN

RD
 : 
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                            (2) 

where 𝑑𝑗𝑖  indicates the degree of position i‘s impact on position j. The two positions have 

more similar feature, which indicates they are more highly correlated. 

Meanwhile, we reshape C to 
NC

R


. Then, we perform matrix multiplication between 𝐶𝑇 

and D and reshape the result to 
WHC

R


. Finally, we multiply the result by a scale parameter 

α and perform an element-wise sum operation with the original feature Y, obtaining the 

final-position self-attention distribution feature map 
WHC

RM
 :  



 
j

N

i

ijij YCdM  
1

                         (3) 

where the value of α is initialized to 0 and adapted during training. From Equation 3, we can 

infer that the feature M of each position is the weighted sum of the features of all positions 

and the original feature. Therefore, it provides a global contextual view that can help 

aggregate the feature information of contexts selectively. 

(2) Channel Self-attention Module 

Given a feature map 
WHC

RY
 . Unlike with calculating the position attention map, we 

can directly obtain the channel attention map CC
RE

  from the original feature map Y 

without convolutional layers. To do so, we first reshape Y to 
NC

R


 and perform matrix 

multiplication between Y and 𝑌𝑇. After that, we apply a softmax layer to obtain the channel 

attention map 
CC

RE
 : 
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where 𝑒𝑗𝑖  indicates the degree of the 𝑖𝑡ℎ channel’s effect on the 𝑗𝑡ℎ channel. Additionally, 

we perform matrix multiplication between E and Y and reshape the result to 
WHC

R


. Finally, 

we multiply the result by a scale parameter β and perform an element-wise sum operation 

with the original feature Y, obtaining the final channel self-attention distribution feature map 

WHCRN  : 

 
j

N

i
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1

                           (5) 

where β starts at 0 and learns weight gradually during training. It can be inferred from 

Equation 5 that the final feature of each channel is the weighted sum of all channel features 

and the original feature. Therefore, it can enhance the model’s ability to distinguish features. 

After obtaining position self-attention feature map M and channel self-attention feature 

map N, we feed them into a 3×3 convolutional layer and perform an element-wise sum 

operation to obtain feature map F. Finally, we apply a 1×1 convolution operation for F and 

add the result with the original feature Y to obtain the final feature map Z. 

B. Discriminator 

Yin et al. [13] parse the frontal face image into three predefined regions (skin, keypoints, 

and hairline) and assign each region to a regional discriminator. GSP-GAN [14], FR-DVF 

[16], and FNM [17] use segment strategy in the discriminator by cropping different facial 

patches. In our model’s discriminator, we also use segment strategy to implement a facial 

attention mechanism by cropping the face image into three regions-eyes, nose, and 

mouth-which are the most discriminative areas in face recognition. The whole image and 

these three regions are fed into four independent discriminators ( FD , ED , ND , MD ), as 



shown in Fig. 2. This strategy can increase the punishment on the generator in order to gain a 

more realistic frontal face image. 

 
Table 1. Architectures for deep feature encoder (behind the original encoder). The second column 

presents the structure of the residual block. The third column shows the number of input and output 

channels of the attention module. 

Layer name Residual block Attention module channels 

Conv5_x 










512,51233

512,51233
 512 

Conv6_x 










1024,102433

1024,51233
 1024 

Conv7_x 










1024,102433

1024,102433
 1024 

Conv8_x 










2048,204833

2048,102433
 2048 

 

Inspired by the use of self-attention in SA-GAN [21], we also add the self-attention block 

to the uppermost and second-uppermost layers in each discriminator. The self-attention block 

is the position self-attention block shown in Fig. 3. In addition, we add the residual block after 

the fourth convolutional layer to deepen the network, so as to extract more abstract facial 

detail features and improve the discriminant ability. 

C. Loss Function 

The loss function is a weighted sum of five individual loss functions. 

(1) Global-Local Adversarial Loss 

The loss for distinguishing real images from synthesized images is the sum of a global loss 

and three local losses. Mathematically speaking, it is phrased as follows: 

 

       
 





MNEFj

jjIjjIadv IDEIDEL
jj

,,,

ˆ
ˆ1loglog               (6) 

where subscript j represents the facial region and the corresponding label of the discriminator. 

(2) Identity Preserving Loss 

Preserving the identity is a critical part of synthesizing the frontal face image. We exploit 

the pre-trained 29-layer LightCNN [35] to give our model the ability to preserve identity. 

LightCNN is trained on a large-scale face dataset to enable it to extract more general and 

more significant facial features. The identity-preserving loss is denoted as: 

   
2

2

2

1

ˆ



i

F

i

F

iip IIL                         (7) 



where    is the output feature from the fully connected layers of pre-trained Light CNN 

and 
2
 is the L2-norm. 

(3) Multi-scale Pixel-wise Loss 

Following [12], we employ a multi-scale pixel-wise loss to constrain the content 

consistency between the synthesized F
Î  and the corresponding frontal image 

F
I . 

Mathematically speaking: 
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where C is the channel number, and iW , iH  are the corresponding width and height of the 

thi  scale. The scales are image size: 128×128, 64×64, 32×32. 

(4) Perceptual Loss 

 Because pixel-level errors can not capture the perceived difference between the real image 

and the synthesized image, Johnson et al. [36] propose using perceptual loss to measure the 

similarity between images. We use pre-trained vgg19 [37] as the feature extractor to gain 

feature maps of the real image and the synthesized image. This technique can help the image 

to be generated in a way that is more semantically similar to the target image by comparing 

the feature maps. Mathematically speaking, this can be expressed as follows: 

    2

2

ˆ1 FF

percep II
HWC

L                         (9) 

where C is the channel number, and W, H are the width and height of the feature map. 

(5) Total Variation Regularization 

We introduce the total variation regularization [36] to remove artifacts and improve the 

synthesis quality of images, this is written as:  
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           (10) 

where C, W and H are the channel number, width and height of the synthesized image F
Î . 

(6) Overall Objective Function 

The final objective loss function is a weighted sum of all the aforementioned losses: 

tvperceppixelipadvsyn LLLLLL 54321                 (11) 

where 1 , 2 , 3 , 4  and 5  are hyper-parameters corresponding to each loss term.  

 

IV. EXPERIMENT 

A. Experiment Settings 

(1) Datasets 



The CAS-PEAL-R1 dataset [38] is a large public released Chinese face database. It 

contains 1040 subjects, including 595 males and 445 females, and it includes more than 

30000 grayscale images under pose, expression and lighting variations. We only use images 

with various poses to verify the performance of our face frontalizaiton model. Variations of 

pose encompass 21 yaw-pitch rotations, including 6 yaw angles (i.e., α = {0◦, ±15◦, ±30◦, 
±45◦}), 3 pitch angles (i.e., β = {0◦, ±30◦}). In our work, the first 600 subjects are used for 

training and the remaining 440 subjects are used for testing. 

CASIA-FaceV5 [39] is a large colorful Asian face database collected by the Chinese 

Academy of Sciences’ Institute of Automation. It contains 2,500 color facial images of 500 

subjects. The intra-class variations include illumination, pose, expression, eye-glasses, 

imaging distance differences. We use images of poses for the testing experiment. 

(2) Implementation Details 

In the training process, we use pairs of frontal and non-frontal face images  PF
II ,  from 

CAS-PEAL-R1 dataset for input. We reshape all images to a canonical view of size 128×128, 

and both real and generated images are grayscale images. The identity-preserving network is 

pre-trained on grayscale images from MS-Celeb-1M. In the training process, we use the 

Adam optimizer to train the generator and the discriminators, and the parameters of the 

network are updated alternately. In our experiments, we set the hyperparameters of the 

objective function as: 0.11  , 01.02  , 103  , 01.04  , 01.05  . We implemented 

our network with PyTorch. 

(3) Qualitative Results 

To verify the performance of our model, we conduct test experiments on two datasets 

respectively. For the CAS-PEAL-R1 dataset, Fig. 4 shows the DMA-GAN’s ability to 

synthesize frontal identity-preserving face images from various perspectives. In multi-pose 

face recognition tasks, a wide-angle pose presents a very challenging problem. DMA-GAN 

can synthesize high-quality frontal face images that maintain clarity of facial features and 

stable facial structure, even when much semantic information is lost due to wide-angle 

perspectives (β = -30°, α = 45°).  

To further demonstrate the high performance of our model, we also visually compare 

synthesized images produced by CAS-PEAL-R1 with state-of-the-art methods (TP-GAN [10], 

CR-GAN [18], M2FPA [12], DA-GAN [13]), as shown in Fig. 5. These synthesis images 

qualitatively demonstrate the effectiveness of our model (DMA-GAN). These synthesized 

images qualitatively demonstrate the effectiveness of our model (DMA-GAN). We can 

observe that DMA-GAN displays strong performance in both facial texture detail and 

geometric shape.  

 



 

Figure 4: Synthesis results by DMA-GAN for various poses. The first line of labels are pitch angles 

(i.e., β = {0◦, ±30◦}), and the second line of labels are yaw angles (i.e., α = {0◦, 15◦, 30◦, 45◦}). We 

display a group of images for the same person in 11 poses and the synthesized frontal images are 

presented below. 

 
Figure 5: Synthesis results. Comparison with several popular methods on yaw (α) and varying pitch 

(β) angles. 
To demonstrate our model’s generalization ability, we use images from CASIA-FaceV5 

dataset to test our model trained solely on CAS-PEAL-R1. Because our model is trained with 

grayscale images, we first convert images from CASIA-FaceV5 to grayscale. The synthesis 

results, shown in Fig. 6, reveal that our model can faithfully synthesize frontal-view face 

images. 



 
Figure 6: Synthesis results on CASIA-FaceV5 dataset. DMA-GAN is trained on CAS-PEAL-R1. 

 

(4) Quantitative Results 

We conduct face recognition with the CAS-PEAL-R1 dataset to quantitatively verify the 

identity-preserving ability of DMA-GAN. We follow the open evaluating protocol, and use a 

pre-trained 29-layer Light-CNN [35] to extract deep features and cosine-distance metric to 

calculate similarity. We test the rank-1 recognition rate on the CAS-PEAL-R1 dataset. Table 

II shows the recognition rate of our model and some popular methods.  

 

Table II : Rank-1 recognition rates (%) across yaw (α) and pitch (β) pose variations under CAS-PEAL-R1. 

 

It can be observed that DMA-GAN outperforms CR-GAN and has the highest recognition 

rate at some angles (in bold within Table II). In contrast to TP-GAN, M2FPA and DA-GAN in 

network structure, TP-GAN uses a two-pathway generative adversarial network which greatly 

reduces the training efficiency. M2FPA and DA-GAN use a pre-trained model as a face parse 

to generate masks which are used as inputs to complete the attention mechanism of the 

discriminator. However, our model uses a single generation path and does not require 

 
Pitch(-30°) Pitch(0°) Pitch(+30°) 

Yaw ±0° ±15° ±30° ±45° Avg_1 ±15° ±30° ±45° Avg_2 ±0° ±15° ±30° ±45° Avg_3 

TP-GAN 98.86 98.94 98.89 97.62 98.58 100.00 99.94 98.71 99.55 97.68 97.73 97.45 95.83 97.17 

CR-GAN 83.98 83.91 83.17 80.38 82.86 97.61 95.80 89.73 94.38 89.74 89.44 87.95 83.90 87.76 

M2FPA 99.38 99.42 99.30 98.53 99.16 100.00 99.94 99.36 99.77 98.60 98.69 98.58 97.84 98.43 

DA-GAN 99.71 99.72 99.65 98.99 99.52 100.00 100.00 99.70 99.90 98.96 98.88 98.86 98.13 98.73 

DMA-GAN 96.55 95.59 94.91 91.53 94.65 100.00 99.89 97.16 99.02 99.78 98.98 96.59 93.18 97.13 



additional input except pairs of frontal and non-frontal face images PF
II , . Thus, we achieve 

not the best but also very efficient performance through a simpler network. 

(1) Ablation Study 

To verify the superiority of DMA-GAN as well as the contributions of various components, 

we remove each component individually and test the synthesis performance. The process of 

training is the same. Our baseline model only has two single parts: a generator based on U-net 

and an ordinary face discriminator. So we train four partial variants of DMA-GAN: one 

without deep feature encoder (DFE); one without three discriminators that are used as facial 

attention mechanism (sub-D); one without self-attention in discriminators (D-att); and one 

without identity preserving loss (id). The synthesis results of the ablative comparison are 

shown in Fig. 7. Table III shows the quantitative comparison. 

First, the synthesis images without 
ipL  can not maintain the identity-preserved feature 

well. Second, the model without sub-D and D-att can hardly capture the details of facial 

features, especially for the eyes, nose and mouth regions, which are the most discriminative 

areas in face recognition. Moreover, the comparison between the third column and the sixth 

column demonstrates that the deep feature encoder (DFE) we designed displays notable 

performance in perceiving local texture and synthesizing more vivid facial details. 

 
Figure 7: Synthesis results of ablative comparison for DMA-GAN. 

 

Table III: Ablation study: quantitative results. Rank-1 recognition rates (%). 

 
Pitch(-30°) Pitch(0°) Pitch(+30°) 

Yaw ±0° ±15° ±30° ±45° Avg_1 ±15° ±30° ±45° Avg_2 ±0° ±15° ±30° ±45° Avg_3 

w/o DFE  88.81 86.61 83.22 75.25 83.45 91.78 89.75 81.78 87.77 86.69 85.17 81.78 75.17 82.20 

w/o sub-D 76.95 75.59 72.20 70.34 73.77 81.69 79.66 77.28 79.54 75.25 76.61 76.44 72.37 75.17 

w/o D-att 86.95 84.24 83.56 75.59 82.59 95.42 93.90 86.10 91.80 90.85 86.44 80.85 73.56 82.93 

DMA-GAN 96.55 95.59 94.91 91.53 94.65 100.00 99.89 97.16 99.02 99.78 98.98 96.59 93.18 97.13 



 

V. CONCLUSION 

In this paper, we propose a deep GAN-based model which combining multi-attention 

mechanisms (DMA-GAN) can be effectively used for face frontalization. The proposed 

model can synthesize high-quality frontal-view face images from multi-pose face images and 

does not require inputs of other prior knowledge of the face, such as the type of pose 

represented in the image. For the generator based on U-net, we introduce a depth feature 

encoder composed of residual-blocks dual-attention modules to capture more abstract detailed 

features. The discriminator combines the facial attention mechanism and self-attention 

module. Quantitative and qualitative results demonstrated the validity of our model. The 

synthesized results are compelling, showing that our model has practical significance. 

Recently, many methods have attempted to address the problem of face frontalization in the 

wild. For instance, CCFF-GAN [15] uses semi-supervised learning to improve the capacity 

for generalization ability in the unconstrained environment. This is a challenging area that we 

need to investigate further. 
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