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ABSTRACT： Aiming at the problem of image motion blur caused by hand-held camera jitter and object motion in the 

process of collecting photos, a generative adversarial network (GAN) based on feature fusion of back projection is proposed 

for blind image deblurring. Firstly, the generator network is established by using U-Net structure, and a feature fusion residual 

block based on back projection is designed according to the error feedback principle, which solves the problem of saving 

spatial information in U-Net structure. Secondly, the self-attention module is introduced into the generator network to extract 

the feature map that pays more attention to detail. Finally, the combination of perceptual loss, mean square error loss and 

relative generative adversarial loss effectively alleviates the mode collapse problem of traditional GAN and improves the 

stability of model training. The experimental results show that the peak signal to noise ratio (PSNR) and structural similarity 

(SSIM) of this method on GoPro data set are 30.183dB and 0.941 respectively, and 26.962 and 0.837 on the Kohler dataset, 

with the shortest running time, which are better than the existing mainstream methods. The restored image is clearer in 

subjective vision and richer in texture details, which can effectively improve the image deblurring effect. 

Key words：image deblurring; u-net network; generative adversarial networks; back projection; self-attention mechanism; 

relative discriminator

1 Introduction 

Image blur, caused by many factors like camera shake, 
object movement and so on, is one of the important factors 
affecting image quality. Blurred images have poor usabil-
ity and cause great difficulties for subsequent tasks like 
target detection and image seg-mentation. 

The task of image deblurring is to recover the corre-
sponding sharp image from the blurred image. It has been 
applied to various fields such as medical imaging, criminal 
case detection, and remote sensing images [1] in recent 
years. According to whether the blur kernel is known, it 
can be generally divided into two types: non-blind deblur-
ring and blind deblurring. Early researches [3] mostly fo-
cused on non-blind deblurring, such as the Lucy-Richard-
son algorithm, which is based on Bayesian theory and as-
sumes that the blur image satisfies the Poisson distribution, 
and deblurring by iteratively seeking maximum likelihood, 
however, due to the interference of noise factors, a reason-
able number of iterations is the key to determine the qual-
ity of the restored image.  

The research of blind deblurring becomes necessary be-
cause the blur kernel is mostly unknown in practice. Find-
ing a blur function for each pixel is an ill-posed problem, 
and most of the existing algorithms [4] rely on heuristics, 
image statistics. These methods first obtain the prior infor-
mation of the image, model the information and fit a func-
tion that is consistent with the prior information distribu-
tion of the sharp image, and use the fitted function as the 

blur kernel to estimate the sharp image. These methods run 
faster on a single image, but these priors can only deal with 
a limited type of blur image. If prior knowledge is invalid, 
the deblurring effect will be significantly reduced, so the 
generalization performance of the method is poor. Huang 
et al. [7] proposed a matrix variable optimization method 
to obtain latent sharp images. That is to carry out singular 
value decomposition of the fuzzy kernel matrix and mini-
mize the matrix variable optimization problem with blur 
kernel constraints, so as to better estimate the blur kernel 
and clear image. 

With the rapid development of deep learning, deblurring 
algorithms based on deep learning have been proposed. 
Sun et al. [8] used convolutional neural network (CNN) to 
predict the probability distribution of motion blur and then 
estimated the image blur kernel, Chakrabarti et al. [9] pre-
dicted the Fourier coefficient of the blur kernel and then 
deblurred in the Fourier space, but these methods are too 
time-consuming and the deblurring results rely too much 
on blur kernel estimation. Nah et al. [10] proposed a multi-
scale neural network called Deep-Deblur. It adopts an end-
to-end method from coarse to fine, and does not need to 
estimate the distribution of the blur kernel, greatly im-
proves the performance and effect of deblurring. However, 
because the parameters of different scales of the model are 
independent of each other, problems such as excessive 
model parameters, unstable training, and easy overfitting 
occur. Tao et al. [11] proposed the scale recurrent network 



  

  

 

(SRN), which combines multi-scale and recurrent net-
works to share parameters between modules at different 
scales, which greatly improves the deblurring performance, 
but trains a multi-scale model still requires a lot of 
memory and also very time-consuming. 

Generative adversarial networks (GAN) [12] are widely 
used in computer vision because they can generate high-
quality images. Kupyn et al. [13] proposed the Deblur-
GAN algorithm, which realizes end-to-end image deblur-
ring based on conditional GAN; then the team proposed 
the Deblur-GANv2 [14] algorithm, which uses the pyra-
mid model for image deblurring to generate high-quality 
images while greatly improving computational efficiency; 
Wu et al. [15] proposed a circular prior GAN and used a 
stacked estimation residual network for blind deblurring, 
and obtained high-quality deblurring. However, the re-
stored images generated by these methods still have prob-
lems such as texture details and unclear edge structures.  

In this paper, we take GAN as the basic framework and 
propose a blind image deblurring network based on multi-
scale feature fusion. We make three contributions. 

1) We use U-Net [16] as the generator framework, and 
design a back-projection-based feature fusion residuals 
block (FFRB) according to the principle of error feedback, 
which effectively fuses features of different levels and 
solve the problem of spatial information preservation in U-
Net structure, and preserve the spatial information of high-
resolution features. It is suitable for methods with less 
training data, and can extract feature maps with more de-
tailed information. 

2) The convolutional block attention module (CBAM) 
[17] is introduced into the generator, which make the fea-
ture map pay more attention to the specific details of the 
target in the image and highlight the features of the im-
portant target in the image. 

3) Use the idea of adversarial learning to generate 
deblurred images with more natural details and textures. 
In terms of loss function, we use the relative average dis-
criminator [18] to determine the probability that the real 
image is more realistic than the fake image. And using per-
ceptual loss, mean square error loss and relative generative 
adversarial loss to seek joint minimization and effectively 
alleviate the problems of gradient disappearance and mode 
collapse in standard GAN. Make the training process more 
stable and efficient. 
2 Model structure 

In this paper, the network framework is based on GAN 
[12], is to define a game between two competing net-
works: the discriminator and the generator. The generator 
receives noise as an input and generates a sample. A dis-
criminator receives a real and generated sample and trying 
to distinguish between them. The goal of the generator is 
to fool the discriminator by generating perceptually con-
vincing samples that can’t be distinguished from the real 

one. The goal of the discriminator is to receive real data 
and generated data, and make a distinction. 
2.1 Generator network 

In this paper, the generator network uses U-Net as the 
framework to build a simple, robust and computationally 
efficient network model for the single image deblurring 
problem, as shown in Fig. 1. It consists of three modules: 
encoder module, attention module called CBAM and de-
coder module. In this paper, in order to ensure that the im-
ages generated by the network achieve the best visual 
quality, we not only perform end-to-end residual learning 
for the generator network, but also performs skip connec-
tions between the encoding layer and the decoding layer 
with the same number of feature channels, so that the en-
coded information is passed to the decoder, allowing the 
network to retain more detailed information. 

Encoder: in order to obtain sufficient feature infor-
mation, the blurred image is input into the encoder for 
learning. To obtain a larger receptive field, the first layer 
of the encoder uses a 7×7 convolution kernel to convolve 
the 256×256 sized input map into 32 feature maps of the 
same size. Features are then extracted through a dense re-
sidual block. Then, we sequentially stack four down-sam-
pling blocks to achieve gradual dimensionality reduction 
and increase of feature channels, all of which consist of a 
convolutional layer with stride 2, a FFRB module, and a 
dense residual block [20]. The final output is 256 feature 
maps of size 16×16. The FFRB module will be discussed 
in sections 2.1.1. 

CBAM module: in order to make the learned features 
pay more attention to the details of the target object in the 
image, generate a picture with clearer details. We add a 
lightweight attention module CBAM to the generator net-
work. Since CBAM is a lightweight module, it can be in-
tegrated into any CNN architecture with negligible over-
head. The CBAM module will be discussed in Section 
2.1.2. 

Decoder: once the required hidden encoded features are 
learned, the decoder needs to up-sample these feature 
maps to size 256×256. The input of size 16×16 is sequen-
tially passed through four up-sampling blocks to achieve 
gradual dimensionality upscaling and feature channel re-
duction, all of which consist of a stride 2 deconvolutional 
layer, a dense residual block, and an FFRB module. Finally, 
a 3×3 ordinary convolutional layer is further used to out-
put the deblurred image.  

2.1.1 FFRB module 

The U-Net architecture encoder lacks spatial infor-
mation during down-sampling and lacks sufficient connec-
tions between features in non-adjacent layers. The back-
projection [19] technique in the image super-resolution 
task is an effective feature fusion method. First, the high-
resolution input is down-sampled to obtain low- resolution 
feature map and then the error is calculated with the real 



   

  

 

low-resolution feature map, and an efficient iterative 
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Fig.1 Generator network in this paper 

 

process minimizes the error, based on which the high-res-
olution output is optimally reconstructed to achieve en-
hanced feature maps. 

Inspired by the back-projection algorithm, we propose 
the FFRB module. This module uses the generator network 
to enhance the extracted feature map through the error 
feedback mechanism, effectively repairing the missing in-
formation caused by the cross-scale operation of the net-
work and making full use of the features of non-adjacent 
layers. The positions of the modules in the generator are 
shown as the yellow modules in Fig. 1. In the encoder and 
decoder, the FFRB module performs feature fusion before 
and after the dense residual block, respectively. The FFRB 
module of the encoder is defined as follows. 
scale up：        

0 2( * )t t

t s
H L p   (1) 

residual：    0h t
e H H   (2) 

scale residual down：
1 2( * )t h

t s
L e q   (3) 

output：  
1 0

t t t
L L L   (4) 

where '*' represents the convolution operation, '↑s2' and 
'↓s2' represent s times of up and down-sampling operations 
with a step size of 2, respectively. And pt and qt represent 
t times of transposed convolution and convolution opera-
tion, respectively. t represents the number of network lay-
ers. 

As shown in the upper part of Fig. 2, the low-resolution 
feature map Lt 

0 is used as the input of the encoder FFRB 
module, and the 256×256 high-resolution feature map t

H

is obtained through up-sampling operation, Then, eh, the 
residual between t

H and feature graph 0H at i0 layer of en-
coder network is calculated. The error feature map Lt 

1 is 
obtained by down-sampling the residual, where the dimen-
sion of Lt 

1 is the same as that of Lt 
0. Finally, the enhanced 

feature map Lt is obtained by summing the two low-reso-
lution feature maps. 

The FFRB definition of the decoder is similar to that of 
the encoder, as shown in the lower half of Fig. 2, That is, 
the high-resolution feature map 0

tH is down-sampling to a 
size of 16 × 16 and named Lt, then el is the residual be-
tween Lt and the output feature map L3 of the decoder net-
work j3 layer, and the residual feature is up-sampling and 

summed with the input feature map of this module to ob-
tain the enhanced feature map t

H . 
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Fig.2 FFRB modular in this paper 

scale down：     0 2( * )t t

t s
L H q   (5) 

residual： l 3t
e L L   (6) 

scale residual up： 1 2( * )t l

t s
H e p   (7) 

output： 1 0

t t t
H H H   (8) 

Compared with serial fusion method, FFRB can better 
extract high-dimensional information from high-resolu-
tion features on the encoder module due to the applied er-
ror feedback mechanism. By fusing these feature differ-
ences back to down-sampled low-dimensional features, 
the lost spatial information can be better repaired. On the 
other hand, the module uses these feature differences to 
enhance the input feature map to a certain extent. In order 
to obtain more sufficient feature information and better 
deblurring results. 
2.1.2 CBAM module 

The CBAM [17] module includes a channel attention 
module and a spatial attention module. This module ena-
bles the network to pay more attention to the specific de-
tails of the target in the image while learning the image 
features, and highlights the characteristics of the important 



  

  

 

target in the image, thereby generating higher-quality pic-
tures. The network structure of the module is shown in Fig. 
3. 
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Fig.3 CBAM modular 

The channel attention module aims to pay attention to 
what is meaningful in the input feature maps, that is, to 
judge the importance of the input feature channels, and 
then assign appropriate weights, so that the network can 
extract more useful and detailed feature maps. The spatial 
attention module complements the channel attention mod-
ule and aims to focus on which are the most informative 
parts of the feature map. 
2.2 Loss function 

There are also many problems with the standard GAN, 
such as gradient vanishing, mode collapse [21]], etc. In the 
standard GAN, the role of the discriminator is to determine 
the probability that the input image is real, and the training 
process only continuously increases the probability that 
the fake data is real, which will lead to the scores of the 
real data and the generated data approaching 1. And cannot 
account for a prior knowledge that half of the discrimina-
tor input samples are fake. 

With the emergence of the relative GAN [18], this prob-
lem is well solved. Use a relative discriminator to calculate 
the probability that the given real data is more real than the 
fake data generated by the generator. The final score of the 
discriminator converges to 0.5, which is in line with the 
prior knowledge and increase training stability. In this pa-
per, a relative average discriminator (RaD) is used to re-
place the discriminator loss of the traditional GAN, which 
makes the model training more stable and efficient.  

We modify the loss function of the generator and the 

discriminator. The calculation formulas are shown in 
equations (9) and (10) respectively: 

 
[log( ( , ))]

[log(1 ( , ))]
r

f

Ra

D X Ra r f

X Ra f r

L E D x x

E D x x

 
 

 (9) 

 
2

[log(1 ( , ))]

[log( ( , ))]

r

f

Ra

G X Ra r f

X Ra f r per

L E D x x

E D x x L L



 

 

  
 (10) 

Ra

DL is the discriminator loss function, Ra

GL is the genera-
tor loss function, where Xr represents the real sharp image, 
Xf represents the generated deblurred image, and E repre-
sents the mathematical expectation. Lper is the perceptual 
function, and L2 is the Mean Square Error (MSE) loss. In 
our experiment, λ is 0.01, η is 0.006, and μ is 0.5. L2 is the 
average of the sum of squares of the difference between 
the predicted value and the target value. We no longer use 
the L2 loss alone, because the loss function is averaged 
over the pixel space, and as the only optimization, the im-
age is still blurred in detail. we use perceptual loss [24] 
Lper add L2 loss and seeks joint minimization as content 
loss. Makes the restored image better in detail. 
2.3 Discriminator network 

The traditional discriminator network scores the authen-
ticity of the entire image, which consumes time and gen-
erates low-quality images. We use PatchGAN [23] as the 
discriminator network, which maps the input image to an 
N×N matrix, it is judged that the image is a real image or 
a generated image through the calculation of the mean 
value of the matrix. Compared with the traditional dis-
criminator, the advantage of the PatchGAN discriminator 
is that its output is a matrix, which can fully consider the 
influence of different areas of the image, so that the model 
pays more attention to the details of the picture, which 
helps the generator to generate pictures with better details 
and sharper edges. The specific structure of the discrimi-
nator is shown in Fig. 4, with a total of 5 layers. Except 
for the first and last layers, the other three layers are added 
with an instantiated normalization layer and an LReLU [24] 
activation function. After the last layer, the Sigmoid func-
tion is used to activate the output, and n represents the 
number of feature maps. s represents the step size.  
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Fig.4 Discriminator structure in this paper 

3 Experiments results with relevant analysis 

In order to verify the efficiency of our method, this sec-
tion discusses the experimental data sets, experimental set-
tings and results analysis, and compares them with the cur-
rent mainstream deblurring methods from the subjective 
visual level and objective evaluation indicators and get 

convincing results. 
3.1 Experimental settings 

Our experiments use the pytorch deep learning open-
source framework, the CPU configuration is Intel Core i7-
7700HQ, the GPU configuration is NVIDIA GeForce 
GTX 2080Ti, the memory size is 12GB, and the operating 



   

  

 

system is Ubuntu18.04 to train the model on the platform. 
The GoPro training set is randomly cropped into a 
256×256 image as the input of the model. The optimizer 
selects Adam optimizer. A total of 400 epochs were trained, 
and the batch size was set to 1. In our experiment, the 
learning rate is set to 0.0001 for the first 120 times, and 
then the learning rate decays to the original 0.75 every 20 
times.  

Our experimental training data uses the GoPro [10] da-
taset, which consists of 2103 pairs of blurred and sharp 
image pairs with a resolution of 720p, and a total of 1100 
pairs of images are used for testing in the test set. 
3.2 Comparative experiment 

3.2.1 Network module effectiveness analysis 

In order to verify the effectiveness of adding related 
modules to the generator network for image deblurring 
tasks. In this section, the convolutional residual block [25], 
dense residual block, CBAM module and FFRB module 
are added to the autoencoder model respectively, and the 
subjective visual effects and objective evaluation indica-
tors are compared respectively. The performance compar-
ison of each module is shown in Table 1. The deblurring 
effect on the GoPro test set is shown in Fig. 5. 

It can be seen from Table 1 that after replacing the re-
sidual block with the dense residual block, the peak signal 
to noise ratio (PSNR) is increased by 0.685, and the struc-
tural similarity (SSIM) is increased by 0.019; on this basis, 
the effect of adding the FFRB module is significantly im-
proved, and the PSNR and SSIM are increased by 1.825dB 
and 0.056 respectively; In order to further improve the 
deblurring effect of the model, the CBAM lightweight at-

tention module is added on this basis, and the optimal in-
dex is reached at this time.  

It can be seen from the restoration of the car and the 
window in Fig. 5 that the effect of adding three modules 
to the autoencoder at the same time is the best, so this pa-
per chooses to integrate three modules into the generator 
network for image deblurring. 

Table 1 Objective comparison of different methods on GoPro  

 PSNR SSIM 

Res-Block 26.957 0.857 

Des-Block 27.642 0.876 

Des + FFRB 29.467 0.932 

Des + FFRB + CBAM 30.183 0.941 

3.2.2 Loss function effectiveness analysis 

In order to verify the effectiveness of the loss function 
in this paper on the image deblurring task, this section uses 
different loss functions to test on the GoPro test set under 
the premise that the generator network is optimal. The ob-
jective evaluation indicators and subjective effects are 
shown in Table 2 and Fig. 6, respectively.  

It can be seen from the Table 2 and the face restoration 
in Fig. 7 that the effect of the loss function using RaGAN 
is better than standard GAN; on this basis, adding L2 loss 
further improves the performance; in this paper, the com-
bination of RaGAN, Lper [26], and L2 losses is used to 
achieve the optimal result, which is improved compared 
with other comparison groups, which proves the effective-
ness of the loss function in this paper. 

Table 2 Performance comparison of different loss function 

 PSNR SSIM 

GAN 28.055 0.904 

RaGAN 29.173 0.923 

RaGAN + L2 29.343 0.931 

RaGAN + L2 + Lper 30.183 0.941 

 
Blur Image                    (a)blur        (b)Res-Block       (c)Des-Block       (d)Des + FFRB       (e)Ours 

Fig.5 Visual comparison of different modules 

 
Blur Image        (a)blur    (b)GAN   (c)RaGAN      (d)RaGAN+L2 (e)Ours 

Fig.6 Visual comparison of different loss function 

3.2.3 GoPro dataset comparison 

We conduct image deblurring experiments on the pro-
posed method and other methods on the GoPro test set. 

The comparison results of the objective evaluation indica-
tors of different method are shown in Table 3, and two im-
ages are selected to show the subjective effects as shown 
in Fig. 7. Among them, although the method of Xu et al. 



  

  

 

[5] and Kim et al. [6] is effective, it is poor in processing 
the edge part of the image. Since the scene and blur degree 
of the GoPro dataset are not the same, the method of Sun 
et al. [8] cannot correctly estimate the blur kernel on the 
GoPro dataset, and the deblurring is completely invalid. 
The image generated by the method of Isola et al. [23] has 
larger noise and part of the image content is lost, so the 
evaluation index is the lowest. Although Deep-Deblur [10] 
has better deblurring effects than the previous methods, 
the details of the recovered images are still blurred. Alt-
hough the Deblur-GAN [13] method is superior to other 
methods, the clarity still needs to be improved; Although 
Wu et al. [30] and the DPPHN [29] method have obvious 
advantages in evaluation indicators, but the images gener-
ated by these two methods have some irregularity, as 
shown in Fig. 7 distorted fonts on license plates and post-
ers. In this paper, this situation is better improved, and the 

best 0.941 is achieved on SSIM, which is 0.017 higher 
than the method of Wu et al; however, because our loss 
function does not directly act on PSNR, so our method is 
suboptimal in PSNR. As can be seen that the deblurring 
model proposed in this paper has obvious advantages over 
other method in the image deblurring task.  

For the single image deblurring task, the running time 
of each method is also an important indicator to measure 
the method. The shorter the running time, the smaller the 
algorithm complexity of the model. This paper selects two 
blurred images in the test set to test the processing time of 
the above algorithms and compare them. The tests are 
based on GPU acceleration on the same platform. Each 
method is run 5 times for each image, and the average of 
the 5 running times is taken as the final result. It can be 
seen that our method has the fastest processing time for a 
single image.  

Table 3 Objective comparison of different methods on GoPro 

 Xu et al Kim et al Cnn-Deblur Isola et al Deep-Deblur Deblur-GAN DPPHN  Wu et al  Ours 

PSNR 24.813 23.641 23.328 21.619 29.085 28.726 29.826 30.25 30.183 

SSIM 0.884 0.842 0.823 0.805 0.903 0.917 0.909 0.923 0.941 

Times/s 13.413 1800 1200 1.483 4.302 1.553 8.578 3.261 1.172 

 
 

 
 

 

 
Fig.7 Comparison of deblur effects of different methods on GoPro data set  

3.2.4 Kohler dataset comparison 

The Kohler dataset [27] is a commonly used dataset for 
evaluating image deblurring methods. It consists of 48 im-
ages, including 4 scenes and 12 blurred images of different 
degrees. First, the camera is used to shoot the moving 
video, and then the video is played back on the machine 
platform to analyze the movement trajectory of the camera 
and obtain the blur kernel to obtain the blurred image. The 
evaluation index adopts PSNR and SSIM. 

The comparison results of the evaluation indicators of 
different methods are shown in Table 4, and the subjective 
effect of deblurring of two blurred images of different 
scenes under the blessing of different algorithms is shown 
in Fig. 8. Since there are as many as 12 blur kernels on the 

Kohler data, the methods of Kim et al. and Sun et al. can-
not estimate all the fuzzy kernels well, which leads to the 
failure of these two methods on the Kohler data set, and 
the evaluation index scores are both low. The method of 
Isola et al. still has problems such as high noise and loss 
of image content, so the performance is poor. Compared 
with the previous ones, the Deep-Deblur method and 
Deblur-GAN have improved significantly, but the details 
are still unsatisfactory. In contrast, our method is visually 
clear and can clearly restore image details such as fonts on 
clocks and patterns on buildings. In terms of evaluation 
indicators, our method achieves the best performance, 
with PSNR and SSIM higher than Wu’s method by 0.131 
and 0.016, respectively. And the running time is also the 
shortest. 

In summary, the restoration performance of our method 

Blur Image (a)Blur (b)Xu et al (c)Sun et al (d)Isola et al (e)Deep-
Deblur 

(f)Deblur-
GAN 

(g) Wu et al (h)Ours 



   

  

 

on the Kohler dataset is overall better than other methods, which also proves the effectiveness of our method. 
 
 

Table 4 Objective comparison of different methods on Kohler 

 Xu et al Cnn-Deblur Isola et al Deep-Deblur Deblur-GAN DPPHN Wu et al Ours 

PSNR 25.684 24.224 22.574 26.487 26.103 26.54 26.831 26.962 

SSIM 0.794 0.773 0.732 0.808 0.816 0.819 0.821 0.837 

Times/s 14.382 840 1.415 5.233 1.652 9.327 4.549 1.366 

 

 

 
(a)Blur Image              (b)Isola et al             (c)Deep-Deblur             (d)Deblur-GAN             (e)Ours 

Fig.8 Comparison of deblur effects of different methods on Kohler data set  

3.2.5 Real dataset comparison 

Most deblurred test image datasets are synthesized us-
ing high-speed cameras and still differ from real blurred 
images. Lai [28] proposed a real blur dataset, which con-
tains 100 blurred images of different qualities and resolu-
tions collected in different types of scenes. There is no cor-
responding clear image corresponding to these blurred im-
ages, so the corresponding objective evaluation index re-
sults cannot be produced.  

In this paper, two images are selected for visual subjec-
tive comparison with the Deep-Deblur method and the 
Deblur-GAN method respectively. The results are shown 
in Fig. 9 and Fig. 10. The real images recovered by the 
Deep-Deblur method and the Deblur-GAN method have a 
high degree of blur, and the small text part in Fig. 9 is al-
most unrecognizable. The method in this paper is optimal 
in the overall and local vision of the image, and can better 
restore the details of the image as shown in the small text 
in Fig. 9 and the word "JOY" in Fig. 10.  

 
(a)Blur Image                   (b)Deep-Deblur                   (c)Deblur-GAN                   (d)Ours 

Fig.9 Comparison of deblur effects of different methods on real blur data set (Image 1) 
 

 
(a)Blur Image                   (b)Deep-Deblur                   (c)Deblur-GAN                   (d)Ours 

Fig10 Comparison of deblur effects of different methods on real blur data set (Image 2)
4 Conclusion Aiming at the problem of image blurring, we propose an 



  

  

 

image deblurring method based on GAN as the basic 
framework and based on back-projection feature fusion, 
which adopts an end-to-end method to perform blind im-
age deblurring in the case of unknown blur kernel. The 
generator of our method is based on the U-Net network, 
which integrates the FFRB module and the attention mod-
ule; uses the PatchGAN model as the discriminator net-
work to speed up network training; uses the relative gen-
erative adversarial loss to better ensure the stability of 
model training, making the model more robust. Finally, 
through experiments, the deblurring effect of this method 
and other classical mainstream methods is visually com-
pared, and through the objective comparison and analysis 
of the three evaluation indicators of PSNR, SSIM and pro-
cessing time, it is proved that the deblurring effect of this 
method in different data sets is significant. It is also supe-
rior to most methods in terms of computational efficiency 
and has high application value.  
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