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Abstract

Restoring images corrupted by noise and blur is a burgeoning subject in image

processing and, despite the large number of proposed restoration algorithms,

the effort to bring about some improvement is always of great interest. The def-

inition of fractional derivatives in recent years has created a powerful tool for

this purpose. In the present paper, using fractional-order total variation and

framelet transform, the nonconvex model for image restoration with impulse

noise problem is improved. Then by alternating direction method of multipliers

(ADMM) and primal-dual problem, the proposed model is solved. The conver-

gence of the proposed algorithm is studied and the proposed algorithm is eval-

uated using different types of tests. The output results show the effectiveness of

the proposed method.

Keywords: Image deblurring; Fractional total variation; Framelet; Nonconvex.

1 Introduction

The image blurring and impulse noise process can be considered by using the fol-

lowing formula

F = Nϵ(h⊛U ),

where F and U ∈Rn×m are observed and original images, respectively, and Nϵ shows

noise. Also, h ∈ Rr×s is blurred kernel and ⊛ denotes two-dimensional convolution

operator. In this type of problem, unlike the blur kernel, the noise effect is severe,

and the noise removal operation must be performed in the image restoration algo-

rithm. The above relation can be rewritten as a linear equation as follows

f = nϵ(Au)

*Corresponding author, Email: reza.parvaz@yahoo.com, rparvaz@uma.ac.ir
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where f and u ∈ Rnm×1 denote the reshaped of observed and original images, re-

spectively. Also A ∈Rnm×nm is obtained according to the blurred kernel and bound-

ary conditions for the blurred process. There are four main boundary conditions

that include zero, periodic, reflexive and anti-reflexive boundary conditions. De-

pending on each of these boundary conditions, the matrix A has a special struc-

ture. For example in the zero boundary condition, A is a block toeplitz with toeplitz

blocks (BTTB) matrix or in the periodic boundary condition, A is a block circulant

with circulant blocks (BCCB) matrix. Due to the noise and large size of the unknown

coefficients and ill-conditioned for this linear equation, it is not possible to solve

this problem directly. The first attempts to solve this problem can be made on SVD

decompositions. But in most cases, this method does not have the desired output.

Other method, that can be used for this problem is the basis pursuit problem [3] by

minimization problem as

min
u

{∥u∥1 : Au = f },

which is studied in many papers as [29, 39]. One of the most popular methods that

has attracted the most attention is the use of total variation (TV) based on regular-

ization scheme (the ROF model). This model is introduced by Rudin, Osher, and

Fatemi [27] as

min
u

λ

2
∥Au − f ∥2

2 +
∫

Ω

|Du|,

where Ω shows a bounded open subset with Lipschitzian boundary in R
2 and Du

denotes the derivative of u. The idea of using total variation has been considered in

recent years and has been used in various articles, for example [15, 20, 25, 12, 30, 36].

One of the most important tools that has improved this method in recent years is

the use of fractional derivatives. Despite the existence of different definitions for

fractional derivatives, such as Riemann-Liouville (R-L) and Caputo definition, the

Grünwald-Letnikov (G-L) definition is often used in image processing due to its

lower computational complexity than other definitions. Based on these types of

derivatives, fractional-order total variation (FTV) is introduced and used in image

and signal processing [17, 23, 5]. With the development of the wavelet and framelet

concept, an efficient tool for image and signal processing is developed that has been

used in various articles as [2, 13, 1, 18]. These concepts are introduced in the fol-

lowing subsections. The reader can find more information about these concepts in

[11, 31, 10]. The l1 norm based on frame transform for restoration problem is in-

troduced by Dong, Ji and Shen [6]. Due to the structure of l1 norm as nonsmooth

and nonseparable, solving a problem that includes these norms is hard. The split

Bregman algorithm is a suitable tool for solving these types of problems [32, 40, 14].

In the proposed model a non-convex (l1 − l2)-norm is considered as regularization

term. (l1 − l2)-norm is studied in many papers as [19, 22]. Also, this norm based on

frame transform is used by Jingjing Liu et al in [19] as following model

min
u

∥Au − f ∥1 +λ1

(

∥W u∥1 −β∥u∥2

)

,

2



where W represent the matrix of framelet transform. As it is clear from this model,

the total variation phrase is not observed in this model. Therefore, adding this ex-

pression can improve the algorithm. Total variation method can preserve edges

very well in the restored image, then this helps to improve the restored image. Al-

though the ordinary method of minimization is slow for this problem [35, 37], the

optimal algorithm based on primal-dual is introduced for solving this problem in

[4, 7, 8, 9, 26, 38].

The organization of this paper is as follows: In Section 2, the tools used in the

proposed algorithm are briefly introduced. The details of the proposed method are

given in Section 3. The convergence analysis of the proposed algorithm is given in

Section 4. Simulation results and algorithm analysis are studied in Section 5. Also

the summary of paper is given in Section 6.

2 Preliminaries

This section introduces some of the basic concepts used in the paper. Also in this

section l2(I ) is considered as a set of all sequences in the complex space as {xi }i∈I

such that
∑

i∈I |xi |2 <∞.

Definition 2.1. Let H be a separable Hilbert space. Then the sequence F = { fi }i∈I ⊆
H is named a frame in H if there exist two constants as ρ1 and ρ2 such that for all

f ∈H

ρ1∥ f ∥2 ≤
∑

i∈I

|〈 f , fi 〉|2 ≤ ρ2∥ f ∥2.

When ρ1 = ρ2 = 1, frame is called a Parseval frame in H = L2(R).

If F be a frame in H , the synthesis operator that is onto and well defined is con-

sidered as

T : l 2(I ) →H , T ({vi }i∈I ) =
∑

i∈I

vi fi .

The adjoint of the synthesis operator is named analysis operator and written as

T ∗ : H → l 2(I ), T ∗( f ) = {〈 f , fi 〉},

where 〈.〉 denotes the inner product. Using these two operators, an operator on the

frame can be introduced as follows

s : H →H , s( f ) =
∑

i∈I

〈 f , fi 〉 fi .

In frame theory, it is proved that f ∈H can written as

f =
∑

i∈I

〈 f , s−1 fi 〉 fi =
∑

i∈I

〈 f , fi 〉s−1 fi .
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This formula provides the main idea of image transfer that is studied in [11, 31, 10]

In this paper, particular Parseval framelet systems in H that are constructed by B-

spline whose refinement mask is h0 = 1
4

[1,2,1], with two corresponding framelet

masks h1 =
p

2
4

[1,0,−1] and h2 = 1
4

[−1,2,−1]. In Fig 1, framelet transform based on

B-splines is shown.

Figure 1: Framelet transform result for Lena (256×256).

The concept of derivative was first introduced for natural numbers, and later

the definition was extended to fractional numbers. Despite the different definitions

that exist for the fraction derivative, due to the computational simplicity, the G-L

fractional-order derivative definition is mostly used for image processing, which is

defined below.

Definition 2.2. The G-L fractional-order derivatives Dα
x and Dα

y for input image u of

order α ∈R+ are defined as

Dα
x ui , j :=

k−1
∑

l=0

φα
l ui−k, j ,

Dα
y ui , j :=

k−1
∑

l=0

φα
l ui , j−k ,

where φα
l
= (−1)l Γ(α+1)

Γ(l+1)Γ(α+1−l )
and k denotes the number of neighboring pixels. Also

the discrete fractional-order gradient is considered as ∇αu = [Dα
x u,Dα

y u]T .
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Definition 2.3. The adjoint operators of the fractional-order derivatives are defined

as

(Dα
x )T ui , j :=

k−1
∑

l=0

φα
l ui+k, j ,

(Dα
y )T ui , j :=

k−1
∑

l=0

φα
l ui , j+k .

Based on above definitions for a vector function p(x, y) =
(

p1(x, y), p2(x, y)
)

the

fractional divergence operator can be obtained as

di vαp = (−1)α(∇α)T p = (−1)α
(

(Dα
x )T p1

i , j + (Dα
y )T p2

i , j

)

.

In the next section, the introduced concepts are used to improve the restoration

algorithm.

3 Proposed minimization model and iterative method

In the first step of this section, the proposed model based on fractional-order total

variation is introduced then a numerical algorithm is obtained for solving this model

and in the last step, the proposed model is used for color image.

3.1 Proposed model

In the proposed model, the following model based on FTV is introduced for restora-

tion of images with impulse noise

min
u

∥Au − f ∥1 +λ1

(

∥W u∥1 −β∥u∥2

)

+λ2∥u∥F T V , (3.1)

whereλ1,λ2 andβ are positive given parameters. Also ∥·∥F T V denotes the fractional-

order total variation norm defined as

∥u∥F T V =
∑

i , j

√

(Dα
x ui , j )2 + (Dα

y ui , j )2.

Adding this sentence improves the edges of the image in the algorithm. This model

contains a nonconvex sentence. There are several methods for solving nonconvex

optimization problems, for example see [24]. In the proposed method, alternating

direction method of multipliers (ADMM) is used for solving this problem. By auxil-

iary variables m = {mi }3
i=1

, (3.1) can be written as

min
u

∥m1∥1 +λ1

(

∥m2∥1 −β∥u∥2

)

+λ2∥m3∥F T V ,

s.t. m1 = Au − f , m2 =W u, m3 = u. (3.2)
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The augmented Lagrangian for (3.2) is obtained as

min
u,m,n

L(u,m1,m2,m3,n1,n2,n3) = min
u,m,n

∥m1∥1 +λ1

(

∥m2∥1 −β∥u∥2

)

+λ2∥m3∥F T V

+µ1〈Au − f −m1,n1〉+
µ1

2
∥Au − f −m1∥2

2 +µ2〈W u −m2,n2〉

+
µ2

2
∥W u −m2∥2

2 +µ3〈u −m3,n3〉+
µ3

2
∥u −m3∥2

2, (3.3)

where n = {ni }3
i=1

and µi > 0, i = 1,2,3 are the Lagrange multipliers and penalty

parameters, respectively. The extended iterative algorithm for solving problem (3.3)

based on ADMM is given as

uk+1 = argmin
u

−λ1β∥u∥2 +µ1〈Au − f −mk
1 ,nk

1 〉+
µ1

2
∥Au − f −mk

1∥
2
2

+µ2〈W u −mk
2 ,nk

2 〉+
µ2

2
∥W u −mk

2∥
2
2 +µ3〈u −mk

3 ,nk
3 〉

+
µ3

2
∥u −mk

3∥
2
2, (3.4)

mk+1
1 = argmin

m1
∥m1∥1 +µ1〈Auk+1 − f −m1,nk

1 〉+
µ1

2
∥Auk+1 − f −m1∥2

2, (3.5)

nk+1
1 = nk

1 + Auk+1 − f −mk+1
1 , (3.6)

mk+1
2 = argmin

m2
λ1∥m2∥1 +µ2〈W uk+1 −m2,nk

2 〉+
µ2

2
∥W uk+1 −m2∥2

2, (3.7)

nk+1
2 = nk

2 +W uk+1 −mk+1
2 , (3.8)

mk+1
3 = argmin

m3
λ2∥m3∥F T V +µ3〈uk+1 −m3,nk

3 〉+
µ3

2
∥uk+1 −m3∥2

2, (3.9)

nk+1
3 = nk

3 +uk+1 −mk+1
3 . (3.10)

3.2 Solve subproblems

In this subsection, the solution to each of the subproblems introduced in the previ-

ous subsection are studied. For (3.4) by using the optimal condition, we get

(

µ1 AT A+µ3I +µ2I −λ1β/∥uk∥2I
)

u

=µ1 AT ( f +mk
1 −nk

1 )+µ2W T (mk
2 −nk

2 )+µ3(mk
3 −nk

3 ). (3.11)

Under the periodic condition for blurred processing, the blurred matrix can be gen-

erated as block circulant with circulant blocks (BCCB) matrix. It is well known in

the field of linear algebra that these types of matrices are decomposed using Fourier

transform. And due to the fast Fourier transform (FFT), the calculation is performed

faster. So by considering the periodic condition, Eq. (3.11) is changed as

(

µ1Λ
∗
Λ+ (µ3 +µ2 −λ1β/∥uk∥2)I

)

Fuk+1

=µ1Λ
∗F ( f +mk

1 −nk
1 )+µ2FW T (mk

2 −nk
2 )+µ3F (mk

3 −nk
3 ), (3.12)
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where ∗ and F denote the complex conjugacy and fast Fourier transform, respec-

tively. Also Λ is a diagonal matrix dependent on the eigenvalues of the blurred ma-

trix. The equation (3.12) can be easily solved using Fourier calculations.

Subproblem (3.5) can be rewritten as

mk+1
1 = argmin

m1
∥m1∥1 +

µ1

2
∥m1 − (Auk+1 − f +nk

1 )∥2
2.

The solution for the above problem based on proximal mapping for l1-norm can be

obtained as

mk+1
1 =Ψ1/µ1 (Auk+1 − f +nk

1 ), (3.13)

where Ψ is defined as

Ψa(x) = sign(x)max(|x|−a,0).

In a similar way, (3.7) can be written as

mk+1
2 = argmin

m2
λ1∥m2∥1 +

µ2

2
∥m2 − (W uk+1 +nk

2 )∥2
2,

and the solution by proximal mapping is earned as

mk+1
2 =Ψλ1/µ2

(W uk+1 +nk
2 ). (3.14)

In order to avoid complex calculations for Eq. (3.9), the dual problem is used to find

the solution. In the first step, Eq. (3.9) is changed as

mk+1
3 = argmin

m3
λ2∥m3∥F T V +

µ3

2
∥m3 − (uk+1 −nk

3 )∥2
2, (3.15)

then in the next step, the dual problem is obtained and solved for this problem.

Lemma 3.1. If we consider J (u) = minu ∥u∥F T V then the dual problem of J (u) is ob-

tained as [7]

J (u) = sup
p

〈p,∇αu〉− J∗(p),

where

J∗(p) =
{

0, if |p| ≤ 1,

∞, if |p| > 1.

Based on Lemma 3.1, the corresponding primal-dual problem of (3.15) is written

as follows

(mk+1
3 ,pk+1) = argmin

m3
max
p∈χ

λ2

µ3
〈p,∇αm3〉+

1

2
∥m3 − (uk+1 −nk

3 )∥2
2, (3.16)
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where χ=
{

p ∈R2nm |pi ∈R2,∥pi∥2 ≤ 1,∀i ∈ {1, . . . ,nm}
}

. By the iterative scheme, the

solution of the primal-dual problem (3.16) can be written as

pk+1 = argmax
p∈χ

λ2

µ3
〈p,∇αm̂k

3 〉−
1

2γ
∥p−pk∥2

2, (3.17)

mk+1
3 = argmin

m3

λ2

µ3
〈pk+1,∇αm3〉+

1

2
∥m3 − (uk+1 −nk

3 )∥2
2, (3.18)

m̂k+1
3 = 2mk+1

3 −mk
3 . (3.19)

After simplifying (3.17)-(3.18), the following statements are obtained

pk+1 =
pk + λ2γ

µ3
∇αm̂k

3

max(|pk + λ2γ
µ3

∇αm̂k
3 |,1)

, (3.20)

mk+1
3 = mk

3 −τ
(λ2γ

µ3
(∇α)T pk+1 +mk

3 − (uk+1 +nk
3 )

)

, (3.21)

where τ is step size and γ is a positive constant.

The general structure of the proposed method for restoration of blurred images with

impulse noise is summarized in Algorithm 1.

Algorithm 1: Restoration proposed algorithm.

Initialization: α,β,τ,γ, {λi }2
i=1

, {µi }3
i=1

,m0,n0,u0.

for k=1,. . . do

Compute uk by solving (3.12),

Compute mk
1 by solving (3.13),

Compute nk
1 by solving (3.6),

Compute mk
2 by solving (3.14),

Compute nk
2 by solving (3.8),

Compute mk
3 by solving (3.19)-(3.21),

Compute nk
3 by solving (3.10),

end for

If the stop condition is met in the above step, stop the loop.

3.3 Restoration algorithm for color image

The proposed restoration algorithm for grayscale image is introduced in the previ-

ous subsection. But this algorithm can be extended to color images. In the following,

the details of the proposed algorithm for color images are explained. The blurred

matrix for color image is given in R3nm×3nm as

A =





Ar r

Ag r

Abr

Ar g

Ag g

Abg

Ar b

Ag b

Abb



 .
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Also, in the calculations related to this subsection, for different layers of the color

image, we expand the values that is calculated in the previous subsection as u =
[ur ;ug ;ub], f = [ fr ; fg ; fb], mi = [mi ,r ;mi ,g ;mi ,b], ni = [ni ,r ;ni ,g ;ni ,b] for i = 1,2,3.

Using the same procedure mentioned in the pervious section the following phrase

is obtained

(

µ1Λ
∗
Λ+ (µ3 +µ2 −λβ/∥u∥2)I

)

F̂ uk+1

=µ1Λ
∗F̂ ( f +mk

1 −nk
1 )+µ2F̂W T (mk

2 −nk
2 )+µ3F̂ (mk

3 −nk
3 ), (3.22)

where F̂ = I ⊗F , here ⊗ indicates the Kronecker product and I denotes the identity

matrix. Moreover, Λ is obtained after the Fourier transform decomposition as

Λ=





Λr r

Λg r

Λbr

Λr g

Λg g

Λbg

Λr b

Λg b

Λbb



 ,

where Λi j , i , j = r, g ,b are diagonal matrices depending on the eigenvalues of the

Ai j , i , j = r, g ,b. Other parts of the proposed algorithm are similar to those de-

scribed in the pervious section, and the calculation details are given in Algorithm

2. The simulation results of the algorithms described in this section are studied in

the simulation results section.

Algorithm 2: Color image restoration proposed algorithm.

Initialization: α,β,τ,γ, {λi }2
i=1

, {µi }3
i=1

,m0,n0,u0.

for k=1,. . . do

Compute uk by solving (3.22),

for l=r,g,b do

Compute mk
1,l

by solving: mk
1,l

=Ψ1/µ1 (Auk
l
− fl +nk−1

1,l
),

Compute nk
1,l

by solving: nk
1,l

= nk−1
1,l

+ Auk
l
− f −mk

1,l
,

Compute mk
2,l

by solving: mk
2,l

=Ψλ1/µ2
(W uk

l
+nk−1

2,l
),

Compute nk
2,l

by solving: nk
2,l

= nk−1
2,l

+W uk
l
−mk

2,l
,

Compute mk
3,l

by solving:

pk
l
=

pk−1
l

+ λ2γ
µ3

∇αm̂k−1
3,l

max(|pk−1
l

+ λ2γ
µ3

∇αm̂k−1
3,l

|,1)
,

mk
3,l

= mk−1
3,l

−τ
(λ2γ
µ3

(∇α)T pk
l
+mk−1

3,l
− (uk

l
+nk−1

3,l
)
)

,

m̂k
3,l

= 2mk
3,l

−mk−1
3,l

,

Compute nk
3,l

by solving: nk
3,l

= nk−1
3,l

+uk
l
−mk

3,l
,

end for

end for

If the stop condition is met in the above step, stop the loop.
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4 Convergence analysis

In this section, the convergence of the proposed method is studied. The conver-

gence analysis for proposed method is based on the described method in [19, 22].

Lemma 4.1. Let the objective function be coercive, that is ∥Au − f ∥1 +λ1

(

∥W u∥1 −
β∥u∥2

)

+λ2∥u∥F T V →∞when ∥u∥2 →∞. Also assume that {uk ,mk
1 ,mk

2 ,mk
3 ,nk

1 ,nk
2 ,nk

3 }

be the sequence generated by the proposed method, then the following statements

hold:

a)

L(uk+1,mk+1
1 ,mk+1

2 ,mk+1
3 ,nk+1

1 ,nk+1
2 ,nk+1

3 )−L(uk ,mk
1 ,mk

2 ,mk
3 ,nk

1 ,nk
2 ,nk

3 )

≤
3

∑

i=1

Ci∥mk+1
i −mk

i ∥
2
2.

b) If there exists a p ∈ ∂uL(uk+1,mk+1
1 ,mk+1

2 ,mk+1
3 ,nk+1

1 ,nk+1
2 ,nk+1

3 ) then

∥p∥2 +
3

∑

i

(∂mi
+∂ni

)L(uk+1,mk+1
1 ,mk+1

2 ,mk+1
3 ,nk+1

1 ,nk+1
2 ,nk+1

3 )

≤
3

∑

i=1

Ci+3∥mk+1
i −mk

i ∥2,

where in conditions (a) and (b), {Ci }6
i=1

are constant.

Proof. a) By problem (3.4), we get

L(uk+1,mk
1 ,mk

2 ,mk
3 ,nk

1 ,nk
2 ,nk

3 )−L(uk ,mk
1 ,mk

2 ,mk
3 ,nk

1 ,nk
2 ,nk

3 ) ≤ 0.

Also by using (3.5)-(3.10), we obtain

L(uk+1,mk+1
1 ,mk+1

2 ,mk+1
3 ,nk+1

1 ,nk+1
2 ,nk+1

3 )−L(uk ,mk
1 ,mk

2 ,mk
3 ,nk

1 ,nk
2 ,nk

3 )

≤ ∥mk+1
1 ∥1 −∥mk

1∥1 +λ1

(

∥mk+1
2 ∥1 −∥mk

2∥1

)

+λ2

(

∥mk+1
3 ∥F T V −∥mk

3∥F T V

)

+
3

∑

i=3

µi

(

∥nk+1
i −nk

i ∥
2
2 −〈nk

i ,mk+1
i −mk

i 〉−
1

2
∥mk+1

i −mk
i ∥

2
2

−〈mk+1
i −mk

i ,nk+1
i −nk

i 〉
)

.

Based on optimality conditions for (3.5)-(3.10), we have ∂m1∥mk+1∥1 = µ1nk+1
1 , λ1

∂m2∥mk+1
2 ∥1 =µ2nk+1

2 and λ2∂m3∥mk+1
3 ∥F T V =µ3nk+1

3 , then by using Lipschitz con-

tinuous gradient and Young’s inequality, the following inequalities for any positive

10



{ci }3
i=1

hold

∥mk+1
1 ∥1 −∥mk

1∥1 −µ1〈nk
1 ,mk+1

1 −mk
1 〉 ≤

L1

2
∥mk+1

1 −mk
1∥

2
2,

λ1

(

∥mk+1
2 ∥1 −∥mk

2∥1

)

−µ2〈nk
2 ,mk+1

2 −mk
2 〉 ≤

L2

2
∥mk+1

2 −mk
2∥

2
2,

λ2

(

∥mk+1
3 ∥F T V −∥mk

3∥F T V

)

−µ3〈nk
3 ,mk+1

3 −mk
3 〉 ≤

L3

2
∥mk+1

3 −mk
3∥

2
2,

−µi 〈mk+1
i −mk

i ,nk+1
i −nk

i 〉 ≤ ciµi∥nk+1
3 −nk

3∥
2
2 +

µi

4ci
∥mk+1

3 −mk
3∥

2
2, i = 1,2,3,

if {ci }3
i=1

is chosen as {µi /2Li }3
i=1

, we get

L(uk+1,mk+1
1 ,mk+1

2 ,mk+1
3 ,nk+1

1 ,nk+1
2 ,nk+1

3 )−L(uk ,mk
1 ,mk

2 ,mk
3 ,nk

1 ,nk
2 ,nk

3 )

≤
3

∑

i

(Li

2
−
µi

2
+

µ1

4ci

)

∥mk+1
i −mk

i ∥
2
2 + (1+ ci )µi∥nk+1

i −nk
i ∥

2
2

=
3

∑

i=1

Ci∥mk+1
i −mk

i ∥
2
2,

where Ci = (3Li −µi )/2+L2
i
/µi . Therefore, the first part of the lemma is proved.

b) By using optimality condition for (3.4), there is a q ∈ ∂u

(

−λ1β1∥u∥2

)

such that

q +µ1 AT
(

Auk+1 − f +nk
1 −mk

1

)

+µ2W T
(

W uk+1 +nk
2 −mk

2

)

+µ3

(

uk+1 +nk
3 −mk

3

)

= 0,

now let

p = q +µ1 AT
(

Auk+1 − f +nk+1
1 −mk+1

1

)

+µ2W T
(

W uk+1 +nk+1
2 −mk+1

2

)

+µ3

(

uk+1 +nk+1
3 −mk+1

3

)

∈ ∂uL(uk+1,mk+1
1 ,mk+1

2 ,mk+1
3 ,nk+1

1 ,nk+1
2 ,nk+1

3 ),

then we obtain

∥p∥2 ≤
3

∑

i=1

ci+3(µi +Li )∥mk+1
i −mk

i ∥2, (4.1)

where {ci }6
i=4

are constant. From the optimality condition of (3.4)-(3.10), the follow-

ing inequalities for i = 1,2,3 are obtained

∥∂mi
L(uk+1,mk+1

1 ,mk+1
2 ,mk+1

3 ,nk+1
1 ,nk+1

2 ,nk+1
3 )∥2 ≤ Li∥mk+1

i −mk
i ∥2,

∥∂ni
L(uk+1,mk+1

1 ,mk+1
2 ,mk+1

3 ,nk+1
1 ,nk+1

2 ,nk+1
3 )∥2 ≤ Li∥mk+1

i −mk
i ∥2.

Therefore, by combining the above inequalities with (4.1), the relation (b) is ob-

tained.

Using the above lemma, the final theorem for convergence is considered as fol-

lows. Due to the similarity of the proof with [22], the proof is omitted.
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Theorem 4.2. Considering the assumptions of Lemma 4.1 and let µi > (3+
p

17)Li /2

for i = 1,2,3, then

a) the sequence
(

uk , {mk
i

}3
i=1

, {nk
i

}3
i=1

)

generated by proposed method is bounded and

has at least one limit point.

b) ∥uk+1 −uk∥2 → 0, ∥mk+1
i

−mk
i
∥2 → 0 and ∥nk+1

i
−nk

i
∥2 → 0 for i = 1,2,3.

c) each limit point (u∗,m∗
1 ,m∗

2 ,m∗
3 ,n∗

1 ,n∗
2 ,n∗

3 ) is a stationary point of L(u,m1,m2,m3

,n1,n2,n3), and u∗ is a stationary point of the proposed model (3.1).

5 Simulation results

The simulation results of the proposed algorithm that we introduced in the previous

sections are studied in this section. For simulation results, a computer based on

Windows 10-64bit, Intel(R) Core(TM) i3-5005U CPU @2.00GHz, by matlab 2014b is

used. Also stopping criterion in this section is considered as

∥uk+1 −uk∥2

∥uk+1∥2

≤ tol ,

where uk is the restored image at the kth iteration. In all examples, the tol equal to

10−4 and 10−3 are selected for grayscale and color images, respectively. In the anal-

ysis of the proposed algorithm various tests including signal-to-noise ratio (SNR),

peak signal to noise ratio (PSNR) which is used to measure the differences and sim-

ilarities between the original and restored image and obtained by

PSN R = 10log10
p2

MSE(uo ,ur )
,

where uo and ur show original and restored image, respectively, p denotes the max-

imum pixel value in an 8-bit grayscale image(i.e, 255). MSE is mean squared error

and find by

MSE =
1

n ×m

n
∑

i=1

m
∑

j=1

|uo
i , j −ur

i , j |
2.

Structural similarity (SSIM) is used to focus on the detail preservation characteristic,

this value is obtained by

SSI M =
(µoµr +C1)(2σor +C2)

(µ2
o +µ2

r +C1)(σo +σr +C2)
,

where µi ,σi , i = o,r are the means and variances of the original and restored im-

ages, respectively, and σor denotes covariance between the original and restored

images. Also C1 and C2 are two variables to stabilize the division with weak denom-

inator. More information on these criteria value can be found in [34, 28, 16]. In the

following examples, M(l en,θ) denotes the linear motion blur of a camera by len

pixels, with an angle of θ degrees in a counterclockwise direction, A([r1,r2]) shows

the average blur with a size [r1,r2], G(hsi ze,σ) denotes the Gaussian blur of size

12



hsi ze with standard deviation σ (positive). The following values are considered

in the simulation results: λ1 = λ2 = {0.005,0.02,0.025},µ1 = {3,20,50,75,100},µ2 =
µ3 = {0.01,0.2,0.7,1.0,1.5},α = {0.25,0.5,0.75,1,1.5},β = {1,1.1,1.3,1.5},τ = 1/40 and

γ= {0.005,0.0005}. After obtaining the results with these values, we consider the best

result.

Example 5.1. (Grayscale images) In this example, Algorithm 1 is used for differ-

ent images from the USC-SIPI images database1, i.e., “5.1.12 (256 × 256)”, “5.2.10

(512×512)”, “4.2.05 (512×512)” and “7.1.09 (512×512)”. Also “7.1.09” and “4.2.05”

are changed to images with size (256×256) and grayscale by Matlab internal func-

tions and used in the simulation. For images “5.1.12” and “5.2.10”, A([11,11]) with

“salt & pepper” and “Random-valued” noise, respectively, with different density are

used, for image “7.1.09”, blur kernel G(7,4) with “salt & pepper” noise with different

densities are used. The blurred and noisy images for “5.1.12”, “7.1.09” and “5.2.10”

are shown in Fig.s 2, 3 and 3, respectively. Also, in these figures, the restored images

corresponding to each image are given below each image. Table 1 compares numer-

ical results for different densities value by proposed algorithm and method in [19].

In the simulation of the algorithm [19], λ = {0.005,0.02,0.025}, α = {1,1.1,1.3,1.5},

µ1{3,20,50,75,100} and µ2 = {0.01,0.2,0.7,1.0,1.5} are considered and after the cal-

culation, the best results are shown in this table. These results indicate an improve-

ment in the output of the proposed algorithm. Also to investigate the effect of the

proposed algorithm on the edges of the image, the restored results for the “Lena”

image (256×256) are given in Fig. 5. In this case, G(7,4) and “salt & pepper” noise

with 0.3 density are used. Based on these results, we can see that the proposed

method has a better effect on restoring the edges of the image. In order to show

the convergence of the proposed method, the output of the absolute error based

on l2−norm and PSNR values for 500 repetitions are given in Fig. 6. Also in order

to show the effect of blurred kernel and noise on the image, in Figure 7 (a-d), each

of the steps of blurring by M(35,135) and adding noise by “random-valued” noise

with 10% density and restoring image are given separately. In this case we have

PSN R = 33.031, SN R = 30.241 and SSI M = 0.92600. The results in this example

show a good representation of the proposed algorithm.

Example 5.2. (Color image) In this example, Algorithm 2 is studied for different

color images. In the simulation results, “Lena” (512× 512) image is blurred by fol-

lowing kernel

A =





0.7A([15,15])

0.1G(21,11)

0.0M(41,90)

0.15G(11,9)

0.8A([17,17])

0.2M(21,45)

0.15G(31,13)

0.1A([13,13])

0.6M(61,135)



 ,

“House” (512×512) image is blurred by

A =
1

3
di ag

(

A([5,5]), A([7,7]), A([9,9])
)

,

1http://sipi.usc.edu/database/
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(a) noise density=10% (b) noise density=20% (c) noise density=30% (d) noise density=40%

(e) (f) (g) (h)

Figure 2: (a-d) Blurred and noisy images, (e-h) restored images for 5.1.12

(a) noise density=10% (b) noise density=20% (c) noise density=30% (d) noise density=40%

(e) (f) (g) (h)

Figure 3: (a-d) Blurred and noisy images, (e-h) restored images for 7.1.09
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(a) noise density=10% (b) noise density=20% (c) noise density=30% (d) noise density=40%

(e) PSNR=29.237 (f) PSNR=27.669 (g) PSNR=26.515 (h) PSNR=25.423

Figure 4: (a-d) Blurred and noisy images, (e-h) restored images for 5.2.10

Table 1: Test results for different grayscale images.

imgae method density PSNR SNR ISNR SSIM

10% 38.55 36.20 24.65 0.9814

Proposed 20% 36.80 34.45 25.54 0.9765

30% 34.73 32.38 25.12 0.9678

40% 31.79 29.44 23.41 0.9973

5.1.12 10% 38.37 36.02 24.55 0.9810

[19] 20% 36.68 34.33 25.43 0.9763

30% 34.52 32.18 24.96 0.9675

40% 31.44 29.09 23.02 0.9466

10% 35.63 29.80 20.15 0.9371

Proposed 20% 32.98 27.16 20.42 0.8868

30% 30.80 24.96 19.96 0.8260

40% 26.61 20.79 16.98 0.6917

7.1.09 10% 35.56 29.73 20.11 0.9362

[19] 20% 32.81 26.98 20.20 0.8843

30% 30.71 24.89 19.83 0.8253

40% 25.76 19.94 16.12 0.6891
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: (a & d) Original image, (b & e) restored image without fractional-order total

variation [19],(c & f)-(g & j)-(h & k)-(i & l) restored images by the proposed method

with α= 0.1, α= 0.75, α= 1 and α= 2, respectively

blurred kernel for “Peppers” image (256×256) is considered as

A =





0.8A([11,11])

0.15A([11,11])

0.2A([11,11])

0.1G(11,5)

0.7G(11,5)

0.2G(11,5)

0.1M(21,135)

0.15M(21,135)

0.6M(21,135)



 ,

and finally blurred kernel A = B ⊗M(41,135) is used for “Plate” with size (256×256),

where

B =





0.8

0.15

0.2

0.1

0.7

0.2

0.1

0.15

0.6



 .
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(a) (b)

Figure 6: (a) Absolute error and (b) PSNR values for 5.1.12 with 0.1 noise density.

Also for the noise process, “salt & pepper” noise is used for “Lena”, “House” and

“Plate” images and “random-valued” noise is used for “Peppers” image. Table 2

compares the results of the proposed method with the results of the algorithms in

[21] and [33]. Other results are also given in Table 3 for test images. The results show

the efficiency of the proposed algorithm in comparison with these algorithms. Also,

the proposed algorithm outputs for different images with different noise densities

are given in Fig.s 7-10. Figure 7 (e-h) shows the effect of the blurred kernel and noise

on the color image. In this results, “salt & pepper” noise with 30% density is used.

Test results for this case are included PSN R = 28.871, SN R = 27.049, I SN R = 20.636

and SSI M = 0.9535. Also, the convergence of the proposed method for color images

can be seen in Fig. 11.

Table 2: Test results for different color images.

density 10% 20% 30% 40%

imgae method SNR SSIM SNR SSIM SNR SSIM SNR SSIM

Proposed 27.23 0.9620 26.83 0.9591 26.04 0.9524 24.04 0.9348

House [21] 25.54 0.9185 24.57 0.9071 23.36 0.9024 22.58 0.8876

[33] 22.70 0.9103 22.33 0.9045 22.08 0.9027 21.61 0.8904

Proposed 25.15 0.9744 24.96 0.9734 24.66 0.9717 24.33 0.9699

Lena [21] 25.12 0.9035 24.48 0.8941 23.88 0.8860 23.90 0.8856

[33] 23.50 0.8831 23.48 0.8841 23.87 0.8907 23.71 0.8864

Proposed 26.34 0.9895 25.80 0.9877 24.49 0.9826 20.43 0.9547

Peppers [21] 23.85 0.8681 22.88 0.8504 21.73 0.8302 20.39 0.7982

[33] 22.34 0.8530 21.79 0.8379 20.88 0.8208 19.88 0.7941
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(a) original image (b) blurred image (c) blurred image+noise (d) restored image

(e) original image (f) blurred image (g) blurred image+noise (h) restored image

Figure 7: (a & e) Original images, (b & f ) blurred images, (c & g) blurred and noisy

images, (d & h) restored images.

(a) noise density=10% (b) noise density=20% (c) noise density=30% (d) noise density=40%

(e) PSNR=30.289 (f) PSNR=30.094 (g) PSNR=29.794 (h) PSNR=29.466

Figure 8: (a-d) Blurred and noisy images, (e-h) restored images for Lena (512×512).
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(a) noise density=10% (b) noise density=20% (c) noise density=30% (d) noise density=40%

(e) PSNR=32.278 (f) PSNR=31.733 (g) PSNR=30.433 (h) PSNR=26.364

Figure 9: (a-d) Blurred and noisy images, (e-h) restored images for Peppers

(256×256).

(a) noise density=10% (b) noise density=20% (c) noise density=30% (d) noise density=40%

(e) PSNR=31.027 (f) PSNR=30.626 (g) PSNR=29.831 (h) PSNR=27.831

Figure 10: (a-d) Blurred and noisy images, (e-h) restored images for Househ

(512×512)..
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(a) noise density=10% (b) noise density=20%

Figure 11: (a) Absolute error and (b) PSNR values for Lena (512×512) with 0.1 noise

density.

Table 3: Test results for different grayscale images with different noise densities.

imgae density ISNR RE FSIM

10% 24.054 0.0018923 0.99976

House 20% 23.907 0.0020754 0.99973

30% 23.342 0.0024927 0.99965

40% 21.567 0.0039502 0.99947

10% 16.234 0.0030536 0.99914

Lena 20% 18.433 0.0031943 0.99908

30% 19.703 0.0034223 0.99898

40% 20.507 0.0036912 0.99886

10% 16.785 0.0023246 0.99724

Peppers 20% 17.983 0.0026354 0.99716

30% 17.946 0.0035549 0.99689

40% 14.841 0.0090734 0.99597

6 Conclusion

In this paper the nonconvex model based on fractional-order total variation and

framelet transfer is introduced for image restoration. The proposed model is solved

by ADMM and primal-dual methods. In the analysis of the proposed algorithm con-

vergence analysis is studied and simulation results are evaluated. The results have

been compared with other methods and these results show the efficiency of the pro-
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posed algorithm in restoring images that have been damaged due to blur and noise.

Conflict of interest

Authors declare that they have no conflict of interest.

Funding and data availability statement

The author(s) received no financial support for the research, authorship, and/or

publication of this article.

Data sharing is not applicable to this article as no new data were created or analyzed

in this study.

References

[1] Cai, Jian-Feng, Jae Kyu Choi, Jingyang Li, and Ke Wei. Image restoration: Struc-

tured low rank matrix framework for piecewise smooth functions and beyond.

Applied and Computational Harmonic Analysis 56 (2022): 26-60.

[2] Cai, Jian-Feng, Stanley Osher, and Zuowei Shen. Split Bregman methods and

frame based image restoration. Multiscale modeling & simulation 8, no. 2

(2010): 337-369.

[3] Chen, Scott Shaobing, David L. Donoho, and Michael A. Saunders. Atomic de-

composition by basis pursuit. SIAM review 43, no. 1 (2001): 129-159.

[4] Cheng, Jing, Haifeng Wang, Leslie Ying, and Dong Liang. Model learning: Pri-

mal dual networks for fast MR imaging. In International Conference on Medical

Image Computing and Computer-Assisted Intervention, pp. 21-29. Springer,

Cham, 2019.

[5] De Oliveira, Edmundo Capelas, and José António Tenreiro Machado. A review

of definitions for fractional derivatives and integral. Mathematical Problems in

Engineering 2014 (2014).

[6] Dong, Bin, Hui Ji, Jia Li, Zuowei Shen, and Yuhong Xu. Wavelet frame based

blind image inpainting. Applied and Computational Harmonic Analysis 32, no.

2 (2012): 268-279.

[7] Dong, Fangfang, and Yunmei Chen. A fractional-order derivative based varia-

tional framework for image denoising. Inverse Problems & Imaging 10, no. 1

(2016): 27.

[8] Dong, Fangfang, and Qianting Ma. Single image blind deblurring based on the

fractional-order differential. Computers & Mathematics with Applications 78,

no. 6 (2019): 1960-1977.

[9] Bonettini, Silvia, and Valeria Ruggiero. On the convergence of primal–dual hy-

brid gradient algorithms for total variation image restoration. Journal of Math-

ematical Imaging and Vision 44, no. 3 (2012): 236-253.

21



[10] Han, Bin. Framelets and wavelets. In Algorithms, Analysis, and Applications,

Applied and Numerical Harmonic Analysis. Birkhäuser xxxiii Cham, 2017.

[11] Han, Bin. Properties of discrete framelet transforms. Mathematical Modelling of

Natural Phenomena 8, no. 1 (2013): 18-47.

[12] Hao, Yan, Jianlou Xu, Jian Bai, and Yu Han. Image decomposition combining a

total variational filter and a Tikhonov quadratic filter. Multidimensional Sys-

tems and Signal Processing 26, no. 3 (2015): 739-751.

[13] He, Yiyang, Hongli Wang, Lei Feng, and Sihai You. Motion-blurred star image

restoration based on multi-frame superposition under high dynamic and long

exposure conditions. Journal of Real-Time Image Processing 18, no. 5 (2021):

1477-1491.

[14] Jing, Yu, Jianxin Liu, Zhaoxia Liu, and Hongju Cao. Fast edge detection approach

based on global optimization convex model and split Bregman algorithm. Diag-

nostyka 19 (2018).

[15] Kang, Myeongmin, and Miyoun Jung. A single image dehazing model using total

variation and inter-channel correlation. Multidimensional Systems and Signal

Processing 31, no. 2 (2020): 431-464.

[16] Kumar, Rohit, and Vishal Moyal. Visual image quality assessment technique us-

ing fsim. International Journal of Computer Applications Technology and Re-

search 2, no. 3 (2013): 250-254.

[17] Li, Bo, and Wei Xie. Adaptive fractional differential approach and its appli-

cation to medical image enhancement. Computers & Electrical Engineering 45

(2015): 324-335.

[18] Li, Dongming, Changming Sun, Jinhua Yang, Huan Liu, Jiaqi Peng, and Lijuan

Zhang. Robust multi-frame adaptive optics image restoration algorithm using

maximum likelihood estimation with poisson statistics. Sensors 17, no. 4 (2017):

785.

[19] Liu, Jingjing, Anqi Ni, and Guoxi Ni. A nonconvex l1(l1-l2) model for image

restoration with impulse noise. Journal of Computational and Applied Math-

ematics 378 (2020): 112934.

[20] Liu, Jingjing, Ruijie Ma, Xiaoyang Zeng, Wanquan Liu, Mingyu Wang, and Hui

Chen. An efficient non-convex total variation approach for image deblurring

and denoising. Applied Mathematics and Computation 397 (2021): 125977.

[21] Liu, Jun, Ting-Zhu Huang, Xiao-Guang Lv, and Jie Huang. Restoration of blurred

color images with impulse noise. Computers & Mathematics with Applications

70, no. 6 (2015): 1255-1265.

[22] Lou, Yifei, and Ming Yan. Fast L1-L2 minimization via a proximal operator.

Journal of Scientific Computing 74, no. 2 (2018): 767-785.

22



[23] Love, Eric Russell. Fractional derivatives of imaginary order. Journal of the Lon-

don Mathematical Society 2, no. 2 (1971): 241-259.

[24] Mistakidis, Euripidis S., and Georgios E. Stavroulakis. Nonconvex optimization

in mechanics: algorithms, heuristics and engineering applications by the FEM.

Vol. 21. Springer Science & Business Media, 2013.

[25] Ng, Michael, Fan Wang, and Xiao-Ming Yuan. Fast minimization methods for

solving constrained total-variation superresolution image reconstruction. Mul-

tidimensional Systems and Signal Processing 22, no. 1 (2011): 259-286.

[26] Yuan, Qiangqiang, Liangpei Zhang, and Huanfeng Shen. Multiframe super-

resolution employing a spatially weighted total variation model. IEEE Transac-

tions on circuits and systems for video technology 22, no. 3 (2011): 379-392.

[27] Rudin, Leonid I., Stanley Osher, and Emad Fatemi. Nonlinear total variation

based noise removal algorithms. Physica D: nonlinear phenomena 60, no. 1-4

(1992): 259-268.

[28] Sahu, Monika, and Manisha Rajpoot. Content based Image Retrieval using Sim-

ilarity and Quality Assessment of Images by FSIM and FSIMc Method.

[29] Sajjad, Muhammad, Irfan Mehmood, Naveed Abbas, and Sung Wook Baik.

Basis pursuit denoising-based image superresolution using a redundant set of

atoms. Signal, Image and Video Processing 10, no. 1 (2016): 181-188.

[30] Shao, Wen-Ze, Feng Wang, and Li-Li Huang. Adapting total generalized varia-

tion for blind image restoration. Multidimensional Systems and Signal Process-

ing 30, no. 2 (2019): 857-883.

[31] Shen, Yi, Bin Han, and Elena Braverman. Image inpainting from partial noisy

data by directional complex tight framelets. The ANZIAM Journal 58, no. 3-4

(2017): 247-255.

[32] Shu, X., Yang, Y. and Wu, B., 2021. A neighbor level set framework minimized

with the split Bregman method for medical image segmentation. Signal Process-

ing, 189, p.108293.

[33] Tao, Min, Junfeng Yang, and Bingsheng He. Alternating direction algorithms for

total variation deconvolution in image reconstruction. TR0918, Department of

Mathematics, Nanjing University (2009).

[34] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE transac-

tions on image processing 13, no. 4 (2004): 600-612.

[35] Wen, You-Wei, and Andy M. Yip. Adaptive parameter selection for total vari-

ation image deconvolution. Numer. Math. Theor. Meth. Appl 2, no. 4 (2009):

427-438.

23



[36] Yang, Jingjing, Yingpin Chen, and Zhifeng Chen. Infrared Image Deblurring via

High-Order Total Variation and Lp-Pseudonorm Shrinkage. Applied Sciences

10, no. 7 (2020): 2533.

[37] Zhang, Yi, Weihua Zhang, Yinjie Lei, and Jiliu Zhou. Few-view image reconstruc-

tion with fractional-order total variation. JOSA A 31, no. 5 (2014): 981-995.

[38] Zhu, Mingqiang, and Tony Chan. An efficient primal-dual hybrid gradient algo-

rithm for total variation image restoration. UCLA CAM Report 34 (2008): 8-34.

[39] Zifan, Ali, and Panos Liatsis. Medical image deblurring via lagrangian pursuit in

frame dictionaries. In 2011 Developments in E-systems Engineering, pp. 86-91.

IEEE, 2011.

[40] Zou, Jian, Haifeng Li, and Guoqi Liu. Split Bregman algorithm for structured

sparse reconstruction. IEEE Access 6 (2018): 21560-21569.

24


	Introduction
	Preliminaries
	Proposed minimization model and iterative method
	Proposed model
	Solve subproblems
	Restoration algorithm for color image

	Convergence analysis
	Simulation results
	Conclusion

