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Abstract
In order to better meet the communication needs of the hearing impaired and the general public, it is of
great signi�cance to recognize sign language more quickly and accurately in the embedded platforms
and mobile terminals. A sign language recognition method based on the Shu�eNetv2-YOLOv3
lightweight model was proposed. By Using Shu�eNetv2 as the backbone network of the YOLOv3 model,
the Shu�eNetv2-YOLOv3 method improved the recognition speed by the lightweight network with the
CIoU loss function and more less detection layers; kept the recognition accuracy of similar gestures that
were di�cult to accurately recognize. Statistical analysis of the self-made sign language images was
carried out to evaluate the recognition effectiveness of the model by F1 score and mAP value, and to
compare it with YOLOv3-tiny, SSD, Faster-RCNN, MobileNetv2-YOLOv3, and YOLOv4-tiny models,
respectively. The experimental results show that the proposed Shu�eNetv2-YOLOv3 model achieved a
good balance between the accuracy and speed of gesture detection under the premise of model
lightweight. The F1 score and mAP value of the Shu�eNetv2-YOLOv3 model were 99.1% and 98.4%,
respectively, and the target detection speed on the GPU can reach 54 frames per second, which is better
than other models. The Shu�eNetv2-YOLOv3 sign language recognition method is conducive to quick,
real-time, and similar static sign language gesture recognition, which lays a good foundation for real-time
dynamic gesture recognition.

1 Introduction
For people with language and hearing impairments, sign language is the main communication tool. Sign
language recognition uses algorithms to recognize gesture sequences and then realizes semantic
expression in text or voice. Such as Support Vector Machine (SVM) [1], FSM (Finite State Machine) [2],
Hidden Markov Model (TMHMM) based on Hybrid Meta-bundling [3], Hough Transform and Neural
Network [4], convolutional neural network and GPU acceleration [5], CNN classi�er [6], etc., have been
used for gesture recognition and achieved good recognition results.

With the development of target detection technology, scholars converted the classi�cation problem of
target recognition into target detection problems, RCNN (Region-Convolutional Neural network) [7], Fast-
RCNN [8], Faster-RCNN [9], and other algorithms were proposed to obtain higher recognition accuracy.
However, the methods mentioned before have disadvantages, such as complex networks, large models,
and slow running speeds, which make it di�cult to achieve high-speed target recognition on the mobile
terminal.

For mobile target detection, a number of miniaturized deep neural networks, such as the YOLO algorithm
[10] for one-stage detection were proposed. And then, the research team proposed the YOLOv2 algorithm
[11] which further improved the recognition accuracy; the YOLOv3 [12] algorithm was proposed in 2018 to
improve the recognition rate of small targets. Liu proposed the SSD (Single Shot MultiBox Detector) [13],
however, the detection speed of this network is slow when applied to the mobile terminal, because the
GPU computing speed of the mobile terminal is much lower than that of the PC terminal. In order to meet
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the needs of mobile devices, some lightweight CNN networks such as MobileNet [14] and Shu�eNet [15]
have been proposed, which have a good balance between speed and accuracy.

For mobile terminal gesture recognition, it is necessary to resolve the contradiction between model
lightweight, accuracy, and recognition speed. In response to this problem, a real-time static sign language
recognition method based on the lightweight network Shu�eNetv2-YOLOv3 is proposed. This method
has little requirements on equipment computing capability and stable detection effect. Under the premise
of ensuring accuracy and detection speed, the model size is signi�cantly reduced, making it easier to
deploy on mobile terminals or embedded platforms.

2 Related Work
Xu Liukai[16] et al. proposed a new architecture that uses convolutional neural network (CNN) to classify
the energy kernel phase diagram of sEMG signal through modeling and analysis of sEMG signal energy
kernel characteristics, so as to recognize human gestures in real time.Huang[17] propose a �nger-
emphasized multi-scale descriptor for hand gesture representation, this method is robust to noises, hand
articulations and rigid transformations. Tan[18] et al. proposed a convolutional neural network (CNN)
integrated with spatial pyramid pooling (SPP), called CNN-SPP, for vision-based gesture recognition. SPP
extends the input features to fully connected layers, enabling the network to better distinguish between
different gestures. Fan Jingjing et al.[19] proposed a lightweight gesture recognition algorithm based on
the YOLOv4-tiny network structure, aiming at the problems that the lightweight target detection network
has insu�cient ability to extract static gesture features, high false detection rate and missed detection
rate. This can achieve accurate classi�cation and real-time detection. and has better recognition effect
for small-scale gestures. We use the lighter feature extraction network shu�enetv2[20] as the backbone
network. Shu�enetV2 uses channel shu�ing to improve the exchange of information �ow between
channels, and further considers the actual speed of hardware.

3 Proposed Method

3.1 Shu�eNetv2-YOLOv3 Network
As shown in Fig. 1, the proposed Shu�eNetv2-YOLOv3 is an end-to-end object detection framework
based on regression. Different from the traditional YOLOv3 with Darknet-53 as the backbone network, the
Shu�eNetv2-YOLOv3 used Shu�eNetv2 as the backbone network and its detection layer still follows the
detection mechanism of YOLOv3. In terms of feature extraction: the stage in backbone uses depth-
separable convolution to extract features, effectively reducing the number of parameters and computing
costs. In the detection layer: the network depth is increased by multi-layer feature fusion and point
convolution, which improves the detection accuracy of the model. Reducing the number of detection
layers while maintaining model accuracy again reduces the model size. The accuracy of the model for
gesture recognition is further improved by replacing the loss function.

3.2 Loss function for Shu�eNetv2-YOLOv3
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The traditional YOLOv3 bounding box loss is calculated using MSE, but this method ignores the
intersection ratio of detection frames – IoU [21]. The IoU calculation expression is shown in Eq. (1) and
the bounding box loss is shown in Eq. (2). In target detection, the IoU value of the bounding box
regression is often used as an evaluation metric for object detection, which can re�ect the overlap effect
of the predicted detection frame and the real detection frame, but suffers from the following
shortcomings:

(1) If IoU is used as a loss function, when the bounding box and the real box do not overlap, the IoU value
is 0, which does not re�ect the distance between the two, and there is no gradient back propagation, and
no learning training can be performed.

(2) IOU cannot distinguish the different alignment between two objects. More speci�cally, the IOU of two
overlapping objects with the same intersection level in different directions will be exactly equal.

In CVPR2019, paper [22] proposes GIoU, which solves the problem when the bounding boxes do not
overlap based on IoU. The GIoU calculation expression is shown in Eq. (4). The bounding box loss is
shown as:

Where, A and B are any two rectangular parallelepipeds, and C is the smallest bounding rectangle
surrounding A and B.

However, GIoU failed to completely solve another problem, so based on IOU, Zheng Z[23] proposed DIoU
taking into account the distance between the centroids of the two frames. the DIoU bounding box loss is
shown in Eq. (5). CIoU was also proposed to solve the problem of inconsistent width and height of the
two frames when the predicted frame overlaps with the real frame and the centroids also overlap. the
CIoU bounding box loss is shown in Eq. (6).

       

Where  is de�ned as the penalty term of the prediction frame  and the target frame , and
 represent the center points of  and  respectively,  represents the Euclidean distance, and 

represents the diagonal distance of the smallest outer rectangle.

IoU = (1)
|(A ∩ B)|

|(A ∪ B)|

LIoU = 1 − IoU (2)

GIoU = IoU − (3)
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Where  is the in�uence factor and  is the parameter used to balance the ratio. The calculation
formula is shown as:

Where  is used as a parameter to measure the consistency of the aspect ratio. The calculation formula
is shown as:

4 Model Training

4.1 Experimental con�guration and datasets
All the experiments were performed on a Ubuntu 16.04 LTS desktop running on Intel Core i9-9900x, 32G
DDR4, and GeForce RTX2080Ti.The gesture data used in this experiment include public and homemade
databases of sign language images. The homemade sign language images were captured by the
kinectv2 camera and had been converted into 640×480 pixel images. There are 2500 images in the
dataset, and 80% of the data are randomly selected as the training set through the python algorithm. The
rest is divided into test set and validation set according to 8:2. The datasets were manually annotated
using the LabelImg tool and saved in PASCAL VOC format. The gestures contained in the data have eight
categories: C, D, Y, G, Q, H, L, and O, as shown in Fig. 2. The data set consists of 12 different left-handed
and right-handed sign language gestures of different people. All eight categories of gestures were
selected from the American Sign Language (ASL).

The public datasets is Microsoft Kinect and Leap Motion datasets and Creative Senz3D datasets [24, 25].
The Microsoft Kinect and Leap Motion datasets were

taken at the Department of Information Engineering,

University of Padova and contains images of 14 different people using Leap-Motion and Kinect devices
to acquire gestures performed by each person, each person performing 10 different gestures and each
person repeating 10 times. The Microsoft Kinect and Leap Motion data are shown in Fig. 3.

The Creative Senz3D datasets [26, 27] contains several different static gestures that were acquired with
the Creative Senz3D camera from four different people performing 11 different gestures each, repeated
30 times each, for a total of 1320 samples. The Creative Senz3D datasets is shown in Fig. 4

LCIoU = 1 − IoU + R (B,Bgt) + αv (6)

αv α

a = (7)
v

(1 − IoU) + v
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4.2 Evaluation criterion
In this experiment, mAP (mean average precision), F1 score, and model size were used as criteria to
evaluate the model:

Where, P is the precision rate; R is the recall rate; TP (true positive) is the number of true positive samples;
FP (false positive) is the number of false positive samples; FN (false negative) is the number of false
negative samples; n is the number of samples in all categories. AP is the average precision.

4.3 Training parameters
In the training phase, the size of the anchor frame was recalculated for the gesture datasets using the K-
means clustering algorithm, the model parameters were modi�ed by migration learning on the COCO
datasets using a back-propagation algorithm to gradually reduce the loss function; the optimization was
performed using the SGD (Stochastic Gradient Descent) optimizer. The hyperparameters in training are
set as follows: the momentum factor is 0.937, the initial learning rate is 0.01, the decay coe�cient is
0.0005, and the images were transformed into 416×416 pixel images during training. The Batch size is
32, a total of 300 epochs are trained. This research adopts the method of comparative experiment.

5 Results And Discussion

5.1 Detection results of different backbone network models
In order to re�ect the advantages of Shu�eNetv2 as the backbone network and to select the best channel
count for the Shu�eNetv2 model. Therefore, the comparison is between the Shu�eNetv2-YOLOv3 model
with different number of channels and the YOLOv3 model with IoU loss function. F1 score, mAP and
detection speed are tested several times to �nd the average value. The comparison results and training
time of different models are shown in Table 1.

P = (9)
TP

TP + FP

R = (10)
TP

TP + FN

F1 = (11)
2PR

P + R

AP = ∫
1

0

P (R)dR (12)

mAP = (13)
∑n

i=1 AP

n
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Darknet53 has a large amount of calculation parameters and high storage space requirements.
Shu�eNetV2 considers the actual speed at the target hardware. It uses channel shu�ing to improve the
exchange of information �ow between channels. Using Depthwise convolution and 1 * 1 convolution to
reduce the amount of parameters. So YOLOv3 had the longest training time and exceeded the
Shu�eNetv2-YOLOv3-2X channel version by 0.585 hours, while the four channel count versions of
Shu�eNetv2-YOLOv3 had a small difference in training time, with the time increasing slightly with the
number of channels 0.88, 0.89, 0.895 and 0.911 hours respectively.The training time was signi�cantly
shorter compared to YOLOv3.

The 1.5X channel version Shu�eNetv2-YOLOv3 was tested and although the model size and Flops were
slightly larger than the 0.5X and 1X channel versions, the model size was only 9.2MB and it outperformed
all other types in terms of mAP and F1 score. Therefore, the 1.5X channel count Shu�eNetv2 is selected
as the backbone network for the mode.

Table 1
Detection results of different backbone network models

Network models Output
channels

F1
score/ %

mAP/ % Weight
size/MB

Flops/G FPS Hours

Darknet53-
YOLOv3

  98.4 98.8 123.5 155.2 42 1.496

Shu�eNetv2-
YOLOv3

0.5X 97.4 98.8 4.8 4.1 50 0.88

Shu�eNetv2-
YOLOv3

1X 98.4 98.8 6.7 5.9 51 0.89

Shu�eNetv2-
YOLOv3

1.5X 98.4 99.1 9.2 8.4 51 0.895

Shu�eNetv2-
YOLOv3

2X 98.1 99.1 15.5 13.3 48 0.911

Table 2
Model performance under different detection scales

Network models Output
channels

Detection
scale

mAP/ % Weight
size/MB

F1
score/ %

FPS

Shu�eNetv2-
YOLOv3

1.5X 3 99.1 9.2 98.4 51

Shu�eNetv2-
YOLOv3

1.5X 2 99.1 8.9 98.3 54
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Table 3
Test results using G/D/CIoU loss function

Network models loss function mAP/ % Weight size/MB F1 score/ % FPS

Shu�eNetv2-YOLOv3 IoU 99.0 8.9 98.0 54

Shu�eNetv2-YOLOv3 GIoU 98.9 8.9 98.5 53

Shu�eNetv2-YOLOv3 CIoU 99.1 8.9 98.4 54

Shu�eNetv2-YOLOv3 DIoU 99.0 8.9 98.3 50

5.2 Model performance under different detection scales
The detection layer of YOLOv3 adopts a structure similar to FPN (Feature Pyramid Network), which can
merge feature maps of different levels.

In order to further reduce the model size, Shu�eNetv2-YOLOv3 is trained with two detection scales and
compared with the original three detection scales. The comparison results are shown in Table 2.

The size of the model with two detection scales is 8.9MB, which is 0.3MB smaller than that of the model
with three detection scales, and the detection speed is increased by 3 frames per second compared with
the model with three detection scales. Therefore, two detection scales are adopted as the �nal structure.

5.3 Test results using G/D/CIoU loss function
Replace the Shu�eNetv2-YOLOv3 model loss function, and average the results of multiple training and
test models. The comparison results are shown in the Table 3.

The CIoU loss solves the problem of inconsistent width and height of the two frames when the predicted
frame overlaps with the real frame and the centroids also overlap. It is more inclined to optimize in the
direction of the increasing overlapping areas. From the data in the table, it can be veri�ed that the mAP of
the CIoU loss function of Shu�eNetv2-YOLOv3 can reach 99.1%, which is the highest among the four
loss functions and the F1 score can reach 98.5%. They have the same model size. Therefore, the version
of CIoU loss function of Shu�eNetv2-YOLOv3 is adopted as the �nal network structure. The detection
results are shown in Fig. 5

5.4 Model effects on public datasets
To validate the effectiveness of the Shu�eNetv2-YOLOv3-1.5X-CIoU model, the Darknet53-YOLOv3

model was carried out on the datasets Microsoft Kinect and Leap Motion and Creative Senz3D as well.
The comparison results are shown in Table 4.

The table veri�es that there is no difference in the mAP and F1 score metrics between the two models in
the Creative Senz3D dataset, But the size of the Shu�eNetv2-YOLOv3 model is 8.9MB, which is about
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1/14 of the YOLOv3 model. The detection speed on GPU is 65 frames per second, which is 1.38 times
faster than the YOLOv3 model. The detection speed of the Shu�eNetv2-YOLOv3 model on the CPU is 12
frames per second, the detection speed of the YOLOv3 model is 5 frames per second. The detection
speed of the Shu�eNetv2-YOLOv3 model on the CPU is 2.4 times faster than that of the YOLOv3 model.

In the Microsoft Kinect and Leap Motion dataset, the detection image size is 1280×960, which is larger
than the 640×480 in the Creative Senz3D dataset, so the detection speed of Shu�eNetv2-YOLOv3-1.5X-
CIoU is only 15 frames per second on the GPU. The detection speed of YOLOv3 is only 12 frames per
second. The improved network detection speed is 1.5 times faster than YOLOv3. The detection speed of
Shu�eNetv2-YOLOv3-1.5X-CIOU is 8 frames per second on the CPU, while YOLOv3 detects 4 frames per
second. The improved network detection speed is twice as fast as YOLOv3. This veri�es the effectiveness
of the Shu�eNetv2-YOLOv3-1.5X-CIoU improvement.

Table 4
Model effects on public datasets

Network models Dataset mAP/ % Weight
size/MB

F1
score/ %

FPS

Shu�eNetv2-YOLOv3-
1.5X-CIoU

Creative Senz3D 99.5 8.9 98.0 65

Darknet53-YOLOv3 Creative Senz3D 99.5 123.5 98.0 52

Shu�eNetv2-YOLOv3-
1.5X-CIoU

Microsoft Kinect and Leap
Motion

99.6 8.9 97.9 15

Darknet53-YOLOv3 Microsoft Kinect and Leap
Motion

99.6 123.5 97.8 12

5.5 Comparison of different network models
The recognition accuracy and detection speed on GPU of SSD, YOLOv3-tiny, Shu�eNetv2-YOLOv3-1.5X-
CIOU and MobileNetv2-YOLOv3 under the self-made dataset were compared. The comparison results are
shown in Table 5 to verify the feasibility and superiority of the proposed method. The proposed
Shu�eNetv2-YOLOv3 model mAP can reach 99.1%, F1 score is 98.4%, the model size is 8.9MB, and the
detection speed can reach 54 frames per second. In the comparison model, The detection speed of
YOLOv3-tiny is higher than that of Shu�eNetv2-YOLOv3-1.5X-CIOU 6 frames, but the model is about twice
the size of the improved model and has slightly lower mAP and F1 scores. The Mobilenetv2-YOLOv3
model is only 0.2 MB smaller than the improved model, but its detection speed, mAP and F1 score are
slightly lower. The YOLOv4-tiny, Fatser-RCNN, and SSD models are inferior to the shuffnetv2 model in all
aspects. This validates the superiority of the proposed Shu�eNetv2-YOLOv3-1.5X-CIOU model.
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Table 5
Comparison of different network models

Network models mAP/ % F1 score/ % Weight size/MB FPS

Shu�eNetv2-YOLOv3-1.5X-CIoU 99.1 98.4 8.9 54

YOLOv3-tiny 98.6 98.0 17.4 60

MobileNetv2-YOLOv3 98.8 98.1 8.7 47

SSD 97.4 90.4 98.7 39

Faster-RCNN 98.7 91.3 113.7 18

YOLOv4-tiny 99.0 95.0 23.6 44

6 Conclusion
To achieve sign language recognition higher detection speed and accuracy on removable devices, the
novel Shu�enetv2-YOLOv3 lightweight is presented. The traditional MSE bounding box loss is replaced
with the CIoU bounding box loss, which further improves the detection accuracy. The test results show
that the mAP and F1 scores of the model can reach 99.1% and 98.4% respectively on the homemade
datasets, with a model size of only 8.9MB. For 640×480 images, the detection speed on the GPU is 54
frames per second. Compared with SSD, Faster-RCNN, YOLOv4-tiny and other models, it has improved in
all aspects, and has a comparative advantage in similar gesture recognition. The proposed Shu�eNetv2-
YOLOv3 network structure can be transplanted to embedded platform or mobile terminals for real-time
multi-target sign language gesture recognition.
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Figures

Figure 1

Shu�eNetv2-YOLOv3 structure
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Figure 2

Figure legend not available with this version.

Figure 3

Microsoft Kinect and Leap Motion data

Figure 4

Creative Senz3D data
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Figure 5

Actual detection effect


