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Abstract—Automatic modulation recognition (AMR) of radar 

signals plays a critical role in electronic reconnaissance. Current 

AMR algorithms are mainly based on convolutional neural 

networks (CNN), which can learn the feature hierarchy by 

establishing high-level features from low-level features. However, 

for time-frequency analysis-based methods, distinct low-level 

features in the time-frequency spectrum (TFS) can already reflect 

modulation characteristics. Thus, this study develops a novel 

approach based on low-level shape descriptors via histograms of 

oriented gradients (HOG) and support vector machine (SVM). 

Comparison studies with classic CNN-based methods have also 

been done to reveal the superiority of the designed approach.  

Experimental results demonstrate that the HOG-SVM approach 

has a more efficient performance. To further enhance the 

classification precision under low signal-to-noise ratios (SNRs), an 

improved principal component analysis (IPCA) denoising 

algorithm is developed to improve signal quality under intense 

noise background. Experiments based on simulated and measured 

signals demonstrate that the proposed algorithm can accurately 

distinguish signals under intense noise environments. 

Index Terms—Automatic modulation recognition; radar 

signals; low-level features; histograms of oriented gradients; 

support vector machine; improved principal component analysis. 

 

I. INTRODUCTION 

UTOMATIC modulation recognition (AMR) technique 

can automatically recognize the waveform of radiation 

sources without prior knowledge [1]. Such an instrument can 

assess the threat level of radiation sources, which is 

indispensable in autonomous driving, electronics support 

measures (ESM), and electronic countermeasures (ECM). 

Thus, the development of AMR has attracted considerable 

attention from an increasing number of researchers. 

 Previous research methods are mainly based on feature 

extraction and classifiers. The handcrafted features with inter-

class correlation are sent to the classifier to recognize various 

radar signals [2-5]. However, the selection of handcrafted 

features dramatically depends on the experience of researchers. 
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Moreover, these features have to be re-selected when the 

system needs to recognize new waveforms. 

Inspired by the structure and functions of the human brain, 

deep learning applies artificial neural networks for analysis and 

learning. Owing to its talent in automating the feature-

extracting process, deep learning has pushed the performance 

of speech identification [6], language understanding [7], and 

computer vision [8] to soaring heights. As an essential branch 

of deep learning, deep convolutional neural networks have 

evidenced an outstanding capacity to identify large-scale image 

datasets [9]. Some research has achieved excellent results by 

combining convolutional neural networks (CNN) to recognize 

signal waveforms. 

Literature [10] designed a multi-level CNN based on 

different maps of the signal to recognize modulated signals. In 

literature [11], minimum shift keying (MSK), frequency-shift 

keying (FSK), 4FSK, frequency modulation (FM) signals, 

binary phase-shift keying (BPSK), quadrature phase-shift 

keying (QPSK), and amplitude modulation (AM) were 

classified with an accuracy of 95% at the SNR of 2 dB. CNN, 

which adopted denoising cyclic spectrum as the identification 

basis, contributes to this performance. In literature [12], variant 

CNN was adopted to extract features from the autocorrelation 

spectrum. Benefitting from the powerful ability of CNN, this 

recognition system achieved nearly 100% accuracy for 

sinusoidal frequency modulation (SFM), linear frequency 

modulation (LFM), FSK, BPSK, QPSK, and no extra-

modulated (NS) signals, when the SNR is over -2 dB. LeNet-5 

[13], one of the classic networks, is utilized to recognize LFM, 

Costas, BPSK, Frank code, and T1-T4 signals in literature [14]. 

Combining time-frequency analysis and CNN, this approach 

reached an overall precision of 93% at the SNR of −2 dB. 
Literature [15] improved the LeNet-5 model according to 

another noted Alexnet [16] model. Richer convolution 

thickness and the introduction of "relu" activation function 

contributed to better performance under low SNRs. Besides, 

literature [17-19] has achieved satisfactory results by applying 
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CNN-based methods.  

It seems that CNN has dominated the field of signal 

recognition. CNN can integrate high-level features from low-

level features, such as shape, texture, and edge. Owing to the 

richer semantic information of high-level features, CNN 

achieves outstanding performance on large-scale complex 

image classification tasks. However, for radar signal waveform 

recognition, especially the classification methods based on 

time-frequency analysis, the energy distribution of different 

modulation signals in the time-frequency spectrum (TFS) is 

significantly different. Therefore, it is essential to compare 

CNN-based methods with methods based on low-level features 

and discuss the pros and cons of each technique. 

So far, there is no research on the modulation classification 

of radar signals based on low-level features. Hence, this 

research developed a novel recognition method utilizing the 

shape descriptor of the signal TFS. Firstly, the gradient of the 

time-frequency image is calculated. Then, a histogram is 

generated according to the gradient direction. Next, histograms 

of oriented gradient (HOG) of each area are stitched together to 

form a descriptor. Finally, a support vector machine (SVM) is 

trained to realize signal waveform recognition. The proposed 

HOG-based method can accurately and effectively extract 

shape features from time-frequency images. Additionally, we 

designed a comparative study to compare the designed HOG-

SVM and classic CNN methods from the accuracy, calculation 

time, and parameter amount of each model. The results show 

that, compared with methods utilizing classic CNN, the newly 

proposed method has the same excellent recognition accuracy, 

while it leads CNNs in terms of calculation time and the number 

of required parameters. 

In order to further improve the classification results under 

low signal-to-noise ratios (SNRs), improved principal 

component analysis (IPCA) has been designed in this paper. 

Compared with the traditional PCA method, IPCA can 

automatically separate the signal and noise components 

according to the power of the eigenvalue difference spectrum. 

The quality of original signals is significantly improved via 

IPCA, enhancing the recognition results in intense noise 

environments. 

The contributions of the paper are: (1) A novel radar signal 

AMR method is designed to replace the traditional CNN-based 

approach. (2) The modulation recognition performance of CNN 

and HOG-SVM is compared. The short time-consuming HOG-

SVM method with a small number of parameters facilitates the 

hardware implementation. (3) We develop an IPCA denoising 

method for adaptive noise reduction, which improves cognitive 

performance under low SNRs. 

The remaining article is organized as follows. In section II, 

the cognitive system overview is described. Section III presents 

the denoising approach in detail. In section IV, The HOG 

feature and classifier are introduced. Section V analyzes and 

discusses the classification performance. At last, Section VI 

gives concluding remarks. 

II. RECOGNITION SYSTEM OVERVIEW 

The signal intercepted by the receiver is contaminated by 

noise, whose model can be written as  

 ( ) ( ) ( )r t o t n t= +                    (1) 

Here, ( )r t represents the intercepted signal, ( )o t denotes the 

original modulated signal, and ( )n t means channel noise, 

which is supposed to be additive white Gaussian noise. Eight 

types of radar signals are revealed in Tab. I. 

The received radio frequency radar signal needs to be 

downsampled to obtain the intermediate-frequency (IF) signal. 

Afterward, modulation recognition can be recognized in five 

steps. First, signal quality is improved via the IPCA denoising 

algorithm. Second, the time-frequency image is obtained via 

smooth pseudo-Wigner-Ville distribution (SPWVD) 

transformation. Third, binarization, time gating, and frequency 

filtering are adopted further to enhance the difference between 

object and background in time-frequency images. Next, HOG 

descriptors are extracted as the classification basis. Finally, the 

modulation type of the signal can be correctly identified with 

high precision after completing the training process of SVM. 

The system flowchart is given in Fig. 1. 

III. DENOISING PRE-PROCESSING 

The noise component has non-negligible energy under low 

SNRs. In order to decrease its negative influence on signal 

TABLE I 

RELATED RADAR SIGNALS IN DETAIL 
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where oA , T , cf , 0ϕ  denote the amplitude, the pulse width, the carrier 

frequency and the initial phase, respectively. k  and 1k  indicate the 

modulation slope. fm  is the frequency modulation index. 

( ) ( / 1 / 2)r t rect t T= − , ( )= ( / 2) ( / 2)rect t u t T u t T+ − − . N  is the number 

of symbols. { }1, , Lfci f f∈ L , L  represents the number of frequencies (for 

FSK 2L = ; for 4FSK 4L = ). 
PT means the width of the symbol. ,m nφ

denotes the thm sample at the thn  frequency point, , 1,2,m n M= L , M  

means the number of frequency steps. 
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quality, removing the noise component is imperative. Thus, this 

paper proposes an IPCA denoising algorithm to repair the 

damaged signal. 

A. Principal Components Analysis 

PCA, a classic data analysis technique, maps high-

dimensional data to low-dimensional space via linear projection 

based on the minimum mean square error principle [20]. PCA 

has been widely applied in data dimensionality reduction and 

denoising [21]. 

Assuming that the discrete signal 1 2{ , , , }N Nx x x x=   is 

damaged by AWGN, it can be written as N N Nx s f= + . Here, 

Ns  is the useful signal and Nf  is the noise signal. The Hankel 

matrix H  of the overlapping signal can be obtained by Hankel 

transformation [22], which can also be written as 

H S F= +                         (2) 

where S and F are the Hankel matrix of Ns  and Nf , 

respectively.  

Since the variance 
2

Fσ  of AWGN is constant and there is no 

statistical correlation between noise signal and useful signal, the 

covariance matrix R  of H  can be figured out as 

( ) ( )( )( )
( ) ( ) 2

2 2( )

TT

T T T

F

T T

S F S F

T

R E HH E S F S F

E SS FF E SS I

V V I V I V

V V

σ

σ σ

= = + +

= + = +

= ∑ + = ∑ +

= ∑

          (3) 

Here, I  is the identity matrix, 
T

SV V∑  is the eigenvalue 

decomposition of 
TSS , ∑  are eigenvalues of 

THH . 

∑  can also be written as the sum of 
2

S F Iσ∑ + as follows 

2 2 2 2 2 2 2 2

1 2=diag[   ]F F r F F Fλ σ λ σ λ σ σ σ∑ + + +     (4) 

where 
2 2 2

1 2[     0  0]S rdiag λ λ λ∑ == L L  are non-zero 

eigenvalues of 
TSS . These non-zero eigenvalues represent the 

valuable signal components with primary energy. Therefore, 

noise suppression can be realized by reconstructing the signal 

within the subspace composed of the principal functional 

members and abandoning the worthless noise subspace. The 

size of the signal subspace is critical to the quality of the 

reconstructed signal. The too-small size will cause the loss of 

useful signal information. In reverse, excessive size results in 

incomplete noise removal. Thus, an appropriate algorithm to 

precisely measure the signal subspace dimension is vital to final 

noise reduction. 

The traditional PCA algorithm [23] sets a threshold for the 

ratio of each eigenvalue to the total power to separate the 

eigenvalues into signal and noise subspaces. However, the pre-

defined threshold cannot satisfy different signals in all 

situations. Especially under low SNRs, this method would be 

invalid. Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) have been employed to adaptively 

search for the dimension of the signal subspace in literature [24-

25]. However, it is time-consuming for these parametric 

approaches owing to solving all the subspace dimension 

possibilities. Hence, a concise method that can adaptively 

divide subspace is urgent to be proposed. 

B. Improved Principal Components Analysis 

Considering the shortcomings of existing methods, a novel 

approach based on the power of the eigenvalues difference 

spectrum is developed in this paper to extract the amounts of 

primary signal components adaptively. The eigenvalues 

difference spectrum denotes the sequence consisting of 

differences between neighboring eigenvalues, which can 

entirely reveal the changing trend of eigenvalues. Especially in 

the background of strong noise, much noise makes the overall 

eigenvalue amplitude spectrum sharply increase, while this 

increasing trend will be smoothed in the difference spectrum. 

According to (4), the difference spectrum can be written as 
2 2 2 2 2

1 2 2 3=( ,    , ,  0. ,  0)rD λ λ λ λ λ− −  ，          (5) 

Theoretically, the difference spectrum value of the noise 

subspace is nearly zero. As shown in Fig. 2, the size of the 

primary energy of the difference spectrum almost coincides 

with the original signal subspace dimension even at the SNR of 

-6 dB, which is consistent with theoretical derivation. The 

signal subspace mainly determines the difference spectrum 

energy. Thus, the separation of signal and noise can be achieved 

by screening the eigenvalue segment of the primary energy 

contribution. This paper performs threshold filtering on the 

difference spectrum based on prior information. Specific steps 

are as follows: (1) Generate 200 groups of noise-free signals for 

each modulation type. (2) Calculate the ideal signal subspace 

for these noise-free signals. (3) Overlap the noise-free signal 

with the noise of different powers (SNR ranges from -4 to 4 dB 

at the interval of 1dB). (4) According to the ideal signal 

subspace, compute the power sP  of the signal subspace and the 

power NP  of the noise subspace in the difference spectrum. (5) 

Calculate the power ratio of each signal as ( )/s N sP P P+ . (6) 

Intercepted 

signals
IPCA

Time-frequency 

analysis

Image 

enhancement
Classification

Extract HOG 

features
SVM

 
Fig. 1.  Recognition system flowchart. 

 
Fig. 2.  Eigenvalue spectrum and difference spectrum of the SFM signal. 
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The calculated power ratios are sorted by magnitude. Given that 

a larger power ratio may cause the corresponding subspace to 

contain more noise, the power ratio less than the majority values 

(90%) is chosen as the final threshold. 

In summary, the IPCA denoising algorithm can be stated in 

Algorithm 1.  

IV. FEATURE EXTRACTION AND CLASSIFIER  

After denoise processing, the TFS of the restored signal is 

obtained via smooth pseudo-Wigner-Ville distribution 

(SPWVD) transformation. The distinct features in TFS 

characterizing signal individuals are shape information. Hence, 

radar signals of different modulation modes can be 

distinguished well based on the shape characteristics of signal 

energy distribution in TFS. Existing methods mostly adopted 

CNN to capture TFS shape features. This paper novelly 

introduces the shape descriptors HOG to extract features in TFS. 

Combined with the robust classifier SVM, accurate and fast 

waveform recognition is realized.  

A. Histogram of Oriented Gradient 

HOG descriptors, one of the most successful human 

detection algorithms, have been widely used in image analysis 

and machine vision [26-27]. HOG has talent in defining texture 

and shape owing to utilizing the gradient distribution of the 

local image to characterize edge information [28-30]. The cell 

and the block are two computation units in the HOG feature 

calculation. First, the image is separated into small units (cells). 

Second, histograms of each cell in larger regions (blocks) are 

gathered. Finally, the histograms in all blocks are merged to 

form the shape descriptor. Fig. 3 describes the process of HOG 

feature extraction. It can be realized in three main steps. 

Step 1: Gradient Calculation. In order to get the gradient 

histogram, the horizontal and vertical gradients need to be 

calculated. Assume that the pixel lies in coordinate ( , )x y , and 

the grayscale value of the pixel is represented as ( , )g x y . The 

gradients of horizontal and vertical, expressed by ( , )Gx x y and

( , )Gy x y , respectively, can be calculated as follow 

( , )= ( 1, ) ( 1, )Gx x y g x y g x y+ − −                     (6) 

( , )= ( , 1) ( , 1)Gy x y g x y g x y+ − −                     (7) 

Then, the gradient magnitude and the gradient direction can 

be described as  

2 2( , )= ( , ) ( , )M x y Gx x y Gy x y+                   (8) 

( )( , )= arctan ( , ) ( , )D x y Gy x y Gx x y                       (9) 

Step 2: Direction Vote. The unsigned (or signed) orientations 

are quantized into K  orientation bins. Then, the orientation 

bins are determined based on the gradient direction of the pixel. 

Finally, the gradient value corresponding to this pixel is voted 

proportionally to the corresponding bin. For example, the pixel 

located at coordinate ( , )x y  has the gradient magnitude 

( , )M x y  and the gradient direction ( , )D x y , direction vote can 

be denoted as 

( )( ) = ( , ) ( , ) ( )bin i binf M x y D x y bin i L× −                 (10) 

( )( 1) = ( , ) ( 1) ( , )bin i binf M x y bin i D x y L+ × + −             (11) 

where ( ) ( , ) ( 1)bin i D x y bin i≤ < +  are two neighboring bins, 

( )bin if represents the value weighty voted to orientation ( )bin i

by the pixel ( , )x y , binL is the angle range size of each 

orientation bin (for unsigned bins =180 /binL K° and for signed

=360 /binL K° ). 

The gradient values of all pixels in a cell are voted into bins 

corresponding to their respective directions. The K -number 

gradient histogram descriptor is formed in this way. 

Step 3: Combination histogram. The histograms of all cells 

in the block are merged into a vector. The feature descriptors of 

the entire image are spliced by the vectors corresponding to all 

blocks. Assume that the image is divided into a a× cells, each 

block has b b× cells, and there is no overlap between blocks, the 

number of blocks is (( ) 1) (( ) 1)a b b a b b− + × − + . Thus, the 

length of the final feature descriptor of the entire image is 
2(( ) 1) (( ) 1)a b b a b b b K− + × − + × × . 

B. Data Enhancement 

To further improve the representation ability of the descriptor, 

data enhancement processing is performed on the TFS 

grayscale image. This processing mainly includes four steps. 

Firstly, the Otsu method [31] is adopted to binarize the 

grayscale image. Secondly, in order to eliminate the negative 

impact of processing noise generated in the SPWVD kernel, the 

small connected regions (less than 10% of the largest connected 

region) will be cleared (set the pixel value to zero). Thirdly, 

time gating and frequency filtering are performed to remove the 

areas without signal energy distribution [14]. Finally, the image 

is resized to the proper size whose aspect ratio is normalized 

utilizing bilinear interpolation [15]. 

Fig. 4 shows the processes of data enhancement. Through 

data enhancement, the noise in the image is further removed, 
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Fig. 3.  The process of HOG feature extraction. 

Algorithm 1 IPCA denoising algorithm 

1. Construct the Hankel matrix H of a one-dimensional 

discrete signal. 

2. Calculate the covariance matrix R  of H . 

3. Perform eigenvalue decomposition on the covariance 

matrix and arrange feature values in order of size. 

4. Compute the eigenvalues difference spectrum and 

definite the size of the signal subspace based on the 

power of the difference spectrum. 

5. Restore signal based on the signal subspace size. 
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and the shape distribution of the signal components is converted 

from the original local characteristics to the global 

characteristics, which will improve the representation ability of 

the descriptor and promote recognition performance. 

C. Support Vector Machines 

The margin-based classifier SVM is an outstanding machine 

learning classifier in speed and accuracy [32-33]. SVM maps 

data to high-dimensional space through a kernel function. Then, 

the superior sorting hyperplane is created to separate the data 

with interclass separability. Fig. 5 vividly shows this process.  

D. Comparison with CNN 

In order to compare the designed HOG-SVM method, we 

created several CNN models based on the classic network 

structure, including LeNet-5 [13-14], AlexNet [15-16], and 

VggNet [9]. The network structures of these networks are 

presented in Tab. II. The simulation analysis will be further 

described in the next section. 

V. RESULTS AND ANALYSIS  

In this section, we first introduce evaluation criteria and 

experiment datasets. SNR is an indicator of signal quality, 

which can be calculated as 

( )2 2

1010log /s nSNR σ σ=                           (12) 

where 2

sσ and 2

nσ  are variances of signal and noise, 

respectively. 

The correlation coefficient is an evaluation criterion to assess 

the similarity between two waveforms ( a  and b ) as below 

[ ] [ ] [ ]( , )p a b E a b E a a E b b= ⋅ ⋅ ⋅                (13) 

where the closer p is to 1, the more similar the waveforms are.  

Precision, applied to describe recognition results, is 

determined as  

( ) ( )( )1 1

a aN N

i i ii i
precision TP TP FP

= =
= +∑ ∑               (14) 

where iTP are the correctly recognized samples, iFP are the 

incorrectly recognized samples. aN is the total number of 

samples.  

Experiment datasets contain eight kinds of simulation radar 

signals and three kinds of measured signals. Model is trained by 

simulation data and verified by both simulation and measured 

data. Parameters of simulation data are randomly generated in 

the range of Tab. III (First, the carrier frequency is randomly 

generated in the range shown in Table III. Second, the 

bandwidth value will randomly fall in the intersection between 

the range in Table III and the reasonable setting.). 200 samples 

are simulated per 2 dB from -6 dB to 8 dB for each type of 

signal as training data. Additionally, 100 samples are simulated 

per 2 dB from -6 dB to 8 dB for each type of signal as validation 

data. Last, 100 samples are simulated per 2 dB from -8 dB to 8 

dB for each type of signal as testing data. There are 12800 

training samples, 6400 validation samples, and 7200 testing 

samples in total. Three experiments for each classification are 

carried out, and the average value of these experiments is 

TABLE II 

STRUCTURES OF INVOLVED NETWORKS 

 LeNet-5 [14] AlexNet [15] VggNet [9] 

Input size 64×64×1 

Weight 

layer 

Con5-6 

(sigmoid) 
Con5-20 (relu) 

Con3-16 (relu) 

Con3-16 (relu) 

MaxPool: 2×2 

Con5-16 

(sigmoid) 
Con5-48 (relu) 

Con3-32 (relu) 

Con3-32 (relu) 

MaxPool: 2×2 

Con5-32 

(sigmoid) 
Con4-96 (relu) 

Con3-64 (relu) *2 

Con1-64 (relu) 

MaxPool: 2×2 

MaxPool: 2×2 

Con3-128 (relu) *2 

Con1-128 (relu) 

MaxPool: 4×4 

Dense 

layer 

Flatten 

2048-8 2400-8 512-8 

Params 31796 117600 626616 

TABLE III 

PARAMETERS RANGE 

Signal Parameter Ranges 

NS  ( )Carry frequency cf  (1 / 10 ~ 2 / 5) sf∗  

LFM  
cf   

( )Bandwidth f∆   

(1 / 10 ~ 2 / 5) sf∗  

(1 / 10 ~ 2 / 5) sf∗  

SFM  
cf  

f∆  

(1 / 10 ~ 2 / 5) sf∗  

(1 / 10 ~ 2 / 5) sf∗  

EQFM  
cf  

f∆  

(1 / 10 ~ 2 / 5) sf∗  

(1 / 10 ~ 2 / 5) sf∗  

FSK  
1cf , 2cf  

sT  

(1 / 10 ~ 2 / 5) sf∗  

1 / 8 ~ 1 / 4 N∗（ ）  

4FSK  
1cf , 2cf , 3cf , 4cf  

sT  

(0.1 ~ 0.4) sf∗  

1 / 8 ~ 1 / 4 N∗（ ）  

BPSK  
cf  

Barker codes  

sT  

(0.1 ~ 0.4) sf∗

[5,7,11,13]  

1 / 64 ~ 32 N∗（ ）  

Frank code  
cf  

sT  

Phase number  

(1 / 10 ~ 2 / 5) sf∗  

1 / 100 ~ 1 / 64 N∗（ ）  

[4,5,6]  

Here, 1024N = denote the length of the discrete signal, and 
sf is 400 MHz. 

TFS
Binary 

image

Isolated 

noise 

removing

 time gating 

and frequency 

filtering

Resizing

Image

 
Fig. 4.  The processes of data enhancement (SFM is selected at –4 dB as 

an example). 

Feature 

mapping

 
Fig. 5.  Data decomposed by a hyperplane. 
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calculated as the final recognition performance. Simulation 

experiments are conducted by MATLAB R2019a in computing 

equipment with Intel i7 10700 CPU hardware capabilities. 

A. Performance of IPCA 

This section reveals the denoising performance of the 

proposed IPCA. 200 Monte Carlo trials are carried out per 1 dB 

from -6 dB to 0 dB for each type of signal. The correlation 

coefficient is evaluated as a function of the SNR. Tab. IV 

illustrates the denoising performance of traditional PCA [23] 

and IPCA, respectively. It can be seen that the proposed IPCA 

significantly improves the signal quality, which is remarkably 

better than the traditional PCA algorithm. The traditional PCA 

can hardly significantly repair the signal time-domain 

waveform under low SNRs, while the quality of that processed 

via IPCA makes an outstanding improvement. IPCA eliminates 

most noise, which restores the time-domain characteristic. The 

excellent noise suppression capability of IPCA guarantees 

subsequent recognition performance. 

B. Recognition Result Analysis 

Experiments on the validation set analyze the choice of block 

size, cell size, overlapping degree, and the number of 

orientation bins. Based on the best performance on the 

validation set, 8×8 pixel cells, 4×4 cell blocks, the 1/2 block 

overlapping, and 8 bins under signed-gradient are selected as 

final hyperparameters of the system. 

Fig. 6 reveals the recognition performance of each radar 

signal. The recognition results of each signal are almost 100% 

once the SNR is over −2 dB. As the SNR further decreases, the 

recognition precision of various signals will vividly decrease. 

When the SNR is −8 dB, the classification system can also 

recognize NS, EQFM, FSK, 4FSK, and BPSK with more than 

80% precision. This indicates that the developed approach is 

valid and robust. 

It is demonstrated in Fig. 7 that the existing approaches [12, 

14, 18] are strongly affected by noise and can not robustly 

recognize signals in an intense noise environment. In 

comparison, the recognition accuracy of the designed method 

surpasses that of these approaches sufficiently under the low 

SNR. This shows that our approach has a better antinoise 

performance. Tab. V reveals the execution time of each 

approach. Compared with the TFS-based method [14], the 

proposed method achieves better recognition performance at 

additional computational cost on ICPA. [12] and [18] spends 

less time on signal processing (autocorrelation spectrum, 

frequency spectrum, and power spectrum). However, [18] 

developed three networks, which increased the calculation cost. 

[12] applied a long short-term memory structure, which 

requires the output of the previous node to do the computation 

over the present node. Thus, this method has a low inference 

efficiency. 

The confusion matrix of the developed algorithm at −6 dB is 
displayed in Fig. 8. The identification model can precisely 

recognize various signals. 4FSK and Frank code signals have a 

precision of 94%, which is the worst result among all categories. 

The recognition algorithm confuses FSK and 4KSK signals 

several times. Some unclean noises are trapped in the time-

frequency image, disturbing the extraction of gradient features. 

This causes the HOG of these two signals to be similar. 

C. Effects of Data Processing 

To evaluate the influences of the data processing, 

comparison to a system without IPCA and a system without 

data enhancement are conducted, respectively. It is vividly 

shown in Fig. 9 that the IPCA algorithm dramatically increases 

the classification precision. IPCA denoising approach can 

repair the original signal well and improve the time-frequency 

spectrum, creating a satisfactory performance. Besides, data 

enhancement further heightens recognition precision due to 

enhancing the contrast between envelope and background and 

unifying envelope distribution. 

D. Comparison Result with CNN 

This part compares the proposed HOG-SVM method and the 

classic CNN-based methods under the same dataset (data via 

IPCA and data enhancement). For CNN-based methods, the 

optimizer utilized in experiments is SGD, and the batch size is 

64. The learning rate is 0.001. A total of 100 epochs have been 

run. Network computation is carried out on an Intel i7 10700 

TABLE IV 

DENOISING PERFORMANCE 

 -6 dB -5 dB -4 dB -3 dB -2 dB -1 dB 0 dB 

Original 0.447 0.489 0.531 0.577 0.621 0.664 0.706 

MPCA 0.501 0.551 0.602 0.656 0.710 0.762 0.812 

IPCA 0.738 0.783 0.817 0.849 0.874 0.894 0.908 

TABLE V 

EXECUTION TIME OF EACH APPROACH 

Methods proposed [14] [18] [12] 

time 109.7 ms 76.5 ms 98.4 ms 190.6 ms 
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CPU. After each epoch is trained, the network performance is 

verified on the verification set. Finally, the weight with the best 

performance on the verification set is selected to identify the 

test data. 

As shown in Fig. 10, the proposed method has almost the 

same recognition accuracy as the VggNet, when the SNR is 

greater than or equal to -6dB. Additionally, the classification 

precision of the HOG-SVM method is higher than AlexNet, 

which is far beyond traditional LeNet-5. This demonstrates that 

the method proposed in this paper has the excellent cognitive 

ability, which can clearly describe the difference between 

different modulated signals. Besides, from Tab. VI, the classic 

CNN-based methods are more time-consuming than the HOG-

based method. The proposed method can not only complete 

training faster but also recognize the signal faster. Finally, our 

approach does not need to store a large number of parameters. 

Due to the linear kernel function application, the system 

parameters are linear predictor coefficients of each binary 

classification, which can be calculated as  

*PNum M s=                             (15) 

Here, PNum means the parameters amount of the model, M is 

the number of binary classifications, and s represents the length 

of linear predictor coefficients. In our eight-classification 

experiments, =28M and =1152s which is the same as the 

length of the HOG feature. There are a total of 32256 

parameters in our model, which is much less than the Alexnet 

and VGGnet. Hence, the proposed method facilitates hardware 

implementation and storage on-chip. 

E. Recognition Performance Based on Measured Data 

To demonstrate the practicality of the developed method, the 

model trained by simulation data is verified by measured data. 

Fig. 11 indicates the signals collection scenario. Signals are 

generated by the National Instruments signal source and 

radiated out through an antenna. Then, signals are received by 

another antenna and sampled in an Agilent oscilloscope. LFM, 

SFM, and NS signals are collected in this experiment, whose 

paraments are within the range in Tab. III. 15 samples for each 

type of signal are collected under each SNR. Via changing the 

transmit power, signals with different noisy levels are obtained. 

And the SNR of measured radar signals can be written as 

10log( )MEASURED s NSNR σ σ=                     (16) 

where Nσ is the power of environmental noise. s r Nσ σ σ= −  

denotes the power of noise-free radar signal, rσ is the power of 

the collected signals. 

Fig.12 reveals the practicality of the developed method. The 

system can recognize each signal accurately, which is similar to 

the performance based on simulated data. Excellent practicality 

property further shows the superiority of the proposed approach. 

VI. CONCLUSION 

Precise AMR of radar signals is an essential ingredient of 

radar reconnaissance systems. In this paper, the IPCA, with 

excellent antinoise ability, is designed to restore the signal 

polluted by noise. Then, gradient descriptors are extracted from 

the TFS of signals. After finishing the training of the SVM 

classifier utilizing the training data, the precious classification 

of various signals is realized. This recognizing system can 

identify NS, LFM, SFM, EQFM, FSK, 4FSK, BPSK, and Frank 

code signals in an intense noise environment. Even if the SNR 

is -6 dB, the developed approach can still reach an overall 

precision of 97.37%. Compared with the classic CNN-based 

methods, the designed approach is faster and easy to implement 

in hardware without sacrificing accuracy. This study will 

positively affect ECM, ESM, and other aspects of modern 

electronic warfare. 

                  
Fig. 9. Effects of data processing.                         Fig. 10. The overall results of HOG-SVM and CNNs.         Fig. 12. Recognition results on measured data. 
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Fig. 11. Signals collection scenario. (a) Transceiver antennas; (b) Receiver 

and signal source. 

TABLE VI 

TIME-CONSUMING OF EACH APPROACH 

Methods Traning Testing 

SVM+HOG 9.61 s 13.50 ms 

LeNet-5 [14] 1002.4 s 18.75 ms 

AlexNet [15] 1704.3 s 25.62 ms 

VggNet [9] 4010.1 s 33.27 ms 
Time of feature extraction and classification. (IPCA and data enhancement are not included) 
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