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Abstract
The classi�cation of apoptotic and living cells is signi�cant in drug screening and treating various
diseases. Conventional supervised methods require a large amount of prelabelled data, which is often
costly and consumes immense human resources in the biological �eld. In this study, unsupervised deep-
learning algorithms were used to extract cell characteristics and classify cells. A model integrating a
convolutional neural network and an auto-encoder network was utilised to extract cell characteristics, and
a hybrid clustering approach was employed to obtain cell feature clustering results. Experiments on both
public and private datasets revealed that the proposed unsupervised strategy performs well in cell
categorisation. For instance, in the public dataset, our method obtained a precision of 96.72% on only
1000 unlabelled cells. To the best of our knowledge, this is the �rst time unsupervised deep learning has
been applied to distinguish apoptosis and live cells with high accuracy.

1 Introduction
Apoptosis is the cell-independent orderly death that occurs to resist external stimulation and maintain the
homeostasis of the internal environment, which is often referred to as programmed death. Unlike other
methods of cell death, apoptosis is a self-protection mechanism, activated, expressed, and regulated by
speci�c genes [1, 2]. The term apoptosis was �rst coined by Kerr et al. in 1972 to describe a new
morphological feature of cell death [3]. Caenorhabditis elegans' programmed cell death has led to a better
understanding of apoptosis in mammals [4]. Physiologically, apoptosis plays a crucial role in the growth,
development, and evolution of organisms [5]. The process of apoptosis maintains homeostasis and the
dynamic balance of cell number in the body, but it can also be used as a defence mechanism to eliminate
unnecessary or unwanted cells [6]. Appearing in cell apoptosis, cell shrinkage, smaller volume, nuclear
enrichment, nuclear membrane nucleoli, DNA fragmentation, then the cell cleaves into apoptotic
corpuscles, which are formed by the cell membrane-enclosed cytoplasm, organelles and broken nucleus,
and eventually, the apoptotic body are recognized around the macrophage, which is swallowed, resulting
in degradation. The cell membrane structure is complete during apoptosis, no contents are spilled, no
cytokines are released, the duration is short, and there is no in�ammatory reaction around. There are
several signalling pathways involved in apoptosis. Apoptosis in cells can be triggered by either the
caspase-mediated extrinsic or intrinsic pathways. Both pathways converge to activate effector apoptotic
caspases, ultimately resulting in morphological and biochemical cellular alterations and characteristics
of apoptosis [7].

Apoptosis is a rational and active decision made to sacri�ce speci�c cells for the greater bene�t of an
organism [8]. Detection of apoptotic cell death in cells and tissues has become of paramount importance
in many �elds of modern biology, including studies of embryonic development, degenerative disease, and
cancer biology [9]. TEM is regarded as the gold standard for conforming apoptosis. This is because the
categorisation of an apoptotic cell is irrefutable if the cell exhibits certain ultrastructural morphological
characteristics [10]. Cost, time, and only being able to analyze a small area at a time are the major
disadvantages of TEM. The TUNEL (Terminal dUTP Nick End-Labelling) method is used to assay the
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endonuclease cleavage products by enzymatically end-labelling the DNA strand breaks [11]. Terminal
transferase is used to add labelled UTP to the -end of the DNA fragments. The dUTP can then be
labelled with a variety of probes to allow detection by light microscopy, �uorescence microscopy or �ow
cytometry. These techniques are costly, potentially phototoxic, and may even interfere with the cell death
process itself [12, 13]. As a result, novel alternative approaches to studying apoptosis and distinguishing
it from living cells are required.

In 1998, Lecun proposed the convolutional neural network (CNN) and demonstrated excellent
performance in image recognition [14]. Following that, some improved CNNs with deeper layers were
designed and achieved satisfactory image recognition results, including AlexNet, VGGNet, GoogLeNet,
and ResNet [15, 16]. CNNs mainly include the input layer, output layer, convolutional layer and pooling
layer. The most important layers in CNNs are the convolutional layers themselves. Different convolution
kernels are �ltered without interfering with each other, from an input image or a feature map output from
the previous layer, each �lter effectively extracts a particular type of feature. In recent years, CNNs have
been widely applied to medical imaging analysis [17, 18]. Machine learning algorithms have been
demonstrated to be successful in classifying apoptotic and live cells [19]. To achieve successful
performance in supervised learning, such as with CNNs, a large amount of high-quality human-labelled
data from the target domain is required. In the bioimage informatics domain, structured and machine-
readable labelling is still uncommon and generally very expensive to produce. To address the issue of
collecting high-quality labelled data while utilizing a large amount of existing unlabelled data, we applied
an unsupervised deep learning method to our model.

As an unsupervised pre-training method for arti�cial neural networks (ANN), the autoencoder was
originally called the "auto-associative learning module" in the 1980s [20]. As a method of learning
features without supervision, autoencoders have been widely adopted. In order to improve their
performance, autoencoders' outputs are often used as inputs into other networks and algorithms. There
are generally two modules in an autoencoder: an encoder and a decoder. The encoding module encodes
the input signals into a latent space, while the decoder module transforms signals from the latent space
back into the original domain. The main applications of autoencoders are dimensionality reduction and
feature extraction [21–23]. In this study, we used a deep learning unsupervised classi�cation model that
integrated a CNN and an auto-encoding network known as the constraint convolutional auto-encoder
(CCAE) to extract cell characteristics, and a hybrid clustering approach was applied to obtain the �nal
clusters [24]. Certain changes were made to improve the performance of CCAE, such as adding a new
loss function to aid model convergence and improve the network fundamental structure. Experiments on
public and private datasets revealed that this unsupervised method performed well in cell categorisation.
We also created a bright �eld imaging dataset of HeLa cells and calculated the accuracy of classifying
apoptotic cells to con�rm the effectiveness of our method. To verify the generalisation of the network, we
tested it on a public dataset with the same parameters. This method yielded positive results for both
datasets.

3′
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The remainder of this paper is organized as follows. In Section 2, we introduce the main method,
including the data pre-processing, the CCAE neural network model structure, and the hybrid clustering
strategy respectively. In Section 3, we exhibit the result of the main method used on datasets.
Furthermore, details such as the experimental environment's con�guration, the speci�c con�guration of
the experimental model, and the performance evaluation of each model are provided. Conclusions and
discussions are discussed in Section 4.

2 Dataset And Main Method

2.1 Cells and materials
Human cervical cancer cells (HeLa) were cultured in DMEM (Gibco, USA) supplemented with 10% foetal
bovine serum (Sijiqing, China) in a 37 ºC incubator containing 5% CO2. Staurosporine (STS) was
purchased from Sigma-Aldrich (United). The cells were incubated with 1 µM STS for 1, 2, 4, and 8 h,
respectively, to induce apoptosis and subsequently imaged bright �elds using a Zeiss (Axio Observer 7,
Germany). Using �uorescence microscopy to demonstrate that apoptosis was successfully induced.

2.2 Image pre-processing
Generally, bright-�eld images of cells are susceptible to interference, such as noise, uneven grayscale, and
uneven image contrast. Cell image pre-processing comprises global equalisation transformation,
threshold processing, adaptive binarization, and denoising to obtain high-quality images. Gaussian blur
�lter and contrast equalisation are initially used to remove high-frequency noise and boost image
contrast. Subsequently, adaptive binarization processing is used to maximise differences in the
representation of foreground and background and improve image quality. Finally, we can emphasise the
morphological characteristics of the cells by minimising the background noise in the images, as shown in
Fig. 1.

2.3 Deep learning model
This section introduces the CCAE convolutional auto-encoder structure and the modi�cations we made to
improve the performance of the model. CCAE is a variant of the autoencoder (AE) model. The AE coding
block is replaced by convolutional layers in CCAE, allowing CCAE to effectively compress images, and a
constraint is applied to the hidden parameter to assist the model in learning more effective features.

The AE is an e�cient method for extracting valid information from raw data [25]. The main information is
preserved while the input dimension is reduced by encoding and decoding blocks composed of multiple
fully connected layers. Normally, the encoding block can be regarded as a

nonlinear mapping that maps the input data  to the latent vector parameter . For instance,

1

x y

y = fencode  (x) = σ(Wx + b)
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where  denotes the nonlinear activation function, and and  are the weight and bias of the
encoding block, respectively. The decoding block, which is another nonlinear mapping, maps the latent
vector parameter  back to the reconstructed data . By adjusting the weights in the encoding and
decoding blocks, the AE minimises the difference between the reconstructed data  and input data .

The convolutional operation is an effective method of extracting image features. For instance, AlexNet
[26] and Lenet-5 networks [27], as variations of the CNNs, enhanced the image classi�cation e�ciency
signi�cantly. It has been shown that applying a constraint on the hidden parameter  helps the AE to
learn more effective features [28]. Therefore, in VAE, the hidden parameters are usually sampled using a
Gaussian distribution. In addition, Aytekin et al. [29] sampled the latent vector parameters from the unit
ball space.

To assist the model convergence and enhance the network fundamental structure, we used triplet loss
instead of L2 loss to optimise the effective features of cell images. The triplet loss pulls in the positive
sample pair and pushes out the negative sample pair such that the same label image features can be
aggregated in the feature space [30]. In this algorithm, the anchor picture is treated as a positive image,
whereas all other photos are treated as negative images. Extracting all morphological features of cells is
redundant for cell classi�cation and will lead to a decrease in classi�cation accuracy. In other words, the
model must retain valid features while discarding invalid ones. In this model, the latent vector parameter
y was sampled from a Gaussian distribution with a mean value of 0. The constraint is transformed into
an additional term in the loss function,

2

where M denotes the number of cell images, N means the number of triplets, L is the length of the latent
vector,  is the input image,  is the decoding data,  is the anchor image,  means the negative
image and is the margin between positive and negative pairs. The structure of the model and the
parameter setting is shown in Fig. 2.

2.4 Hybrid clustering algorithm
This section introduces a new clustering strategy known as the hybrid clustering algorithm for cell
clustering. The single clustering method groups subsamples from a single perspective, which leads to
misclassi�cation. The sub-samples can be grouped from a comprehensive perspective, which is multi-
perspective by considering the clustering results of various types of models; thus, the clustering results
are more reliable [31]. The encoded data were used to divide the cell data into two categories (apoptotic
and live cells) using different clustering methods with different clustering effects. The hybrid clustering
algorithm, a bagging algorithm based on the multi-clustering model, is then used to secure the optimum
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clustering results. In other words, a cell was considered apoptotic if it was considered apoptotic by all of
the clustering techniques I used.

Three traditional clustering methods were used in this study: the Euclidean distance k-means [32],
agglomerative

(AGG) [33], and balanced iterative reducing and clustering using hierarchies (BIRCH) [34] algorithms. The
k-means algorithm divides dataset samples into k cluster classes using different distance formulas. The
cluster centre was obtained by initialising the mean vector at the beginning. The greedy strategy
minimises the distance between the sample and the cluster centre, and the cluster centre is updated.
Finally, clustering results were obtained. The AGG and BIRCH algorithms belong to the hierarchical
clustering algorithm, which divides the dataset at different levels into a tree-like structure. The AGG
algorithm is a bottom-up aggregation strategy. First, each sample in the dataset is considered an initial
cluster; then, at each step of the algorithm, the two clustering clusters that are closest to each other are
found to merge. The merging process was repeated until the pre-set number of cluster clusters was
reached. The BIRCH algorithm uses a clustering feature (CF) tree to perform hierarchical clustering. The
algorithm constructs a CF tree based on input data. Then, the clustering algorithm and outlier processing
on the leaf nodes were performed. At the end of the clustering process, each leaf node becomes a cluster
of sample sets. Although the multi-clustering model-based bagging algorithm generates more rejection
data, the hybrid clustering algorithm can signi�cantly improve clustering accuracy, as described in the
following sections. Figure 3 provides a brief overview of the main methods used for cell classi�cation.

3. Results
In this section, we provide evaluation indicators for several models. The transfer of the evaluation method
with supervised learning to the unsupervised task is the highlight here. All our models used an Adam [35]
optimiser with a learning rate of  training 1000 epochs on datasets. The experimental system
environment used for learning and testing was as follows: The operating system is Linux Ubuntu 18.04.5;
The hardware consists of an Intel Xeon CPU E5-2690v32.60GHz, 64 GB memory, two NVIDIA GeForce
GTX 3090 GPU; Tensor�ow 2.4.0 deep learning framework. A table is provided to demonstrate the
performance of several datasets to show the difference between the existing supervised methods and our
model.

Table 1 reveals that CCAE achieves higher accuracy than the supervised method without any pre-labelled
training dataset. In addition, the model can accurately determine whether the cells are apoptotic when the
morphology of the cells changes slightly.

3.1 Effectiveness of the hybrid clustering algorithm
In this subsection, we compare the results of the single clustering model with the hybrid clustering model,
as summarized in Table 2, to demonstrate the usefulness of the hybrid clustering technique. Table 2

3 × 10−4
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reveals that the accuracy of the hybrid clustering model is at least 1.08% higher than that of the single
clustering model at the cost of at most 6.40% rejected subsamples.

Table 1
Cell image classi�cation results on our dataset and public dataset. The classi�cation results of current
supervised deep learning method for apoptotic and live cells was displayed in the �rst row of the table.
The classi�cation results of the CCAE on 1000 randomly chosen images form the same dataset were
displayed in the second row. The remaining rows show the classi�cation results of CCAE on our own

dataset. Our method yielded positive results for all datasets. R.r is the Reject rate, which is the percentage
of the total number of rejections after the hybrid clustering mechanism.

Method Training
sets(size)

Testing sets(size) Alive
prediction (%)

Apoptosis
prediction (%)

R.r
(%)

Verduijn
et al.

DLAN
(35000)

DLAN (70000) 87.90 81.80 ×

The
CCAE

None DLAN (1000) 91.00 96.72 6.40

The
CCAE

None Hela treated with STS for
8h (1000)

97.32 98.42 2.74

The
CCAE

None Hela treated with STS for
4h (1000)

98.45 98.20 0.80

The
CCAE

None Hela treated with STS for
2h (1000)

97.05 97.98 2.20

The
CCAE

None Hela treated with STS for
1h (1000)

91.95 92.07 2.14
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Table 2
Comparison of independent testing performance between single clustering model and hybrid clustering

model. On the public dataset and our dataset, we tried the k-means, BIRCH, and AGG and hybrid
clustering methods individually. Experimental results on the both datasets employed show that,

compared to single clustering methods, hybrid clustering method generally achieves the best
classi�cation accuracy. By considering the clustering result of various kinds of models, one can group

subsamples from a comprehensive view, that is a multi-perspective of view, and thus the clustering result
is more reliable.

Method Testing sets(size) Alive
prediction (%)

Apoptosis
prediction (%)

R.r(%)

The
DLAN(1000) 89.79 94.69 ×

The
DLAN(1000) 90.12 92.53 ×

The
DLAN (1000) 88.42 89.17 ×

The
DLAN (1000) 91.00 96.72 6.40

The
HeLa treated with STS for
8h (1000)

95.33 98.25 ×

The
HeLa treated with STS for
8h (1000)

92.19 90.73 ×

The
HeLa treated with STS for
8h (1000)

84.43 94.96 ×

The
HeLa treated with STS for
8h (1000)

97.32 98.42 2.74

3.2 Analysis of CCAE
This section delves deeper into the e�cacy of CCAE. The triplet loss-function restriction is discussed in
detail. Our triplets consist of two matching cell bright �eld images and a non-matching cell bright �eld
image, and the loss aims to separate the positive pair from the negative pair by a distance margin.
Particularly, we seek an embedding , from an image  into a feature space such that the squared
distance between all cells of the same identity, independent of imaging conditions, is small, whereas the
squared distance between a pair of cell images from different images is large. In this algorithm, the
anchor picture is treated as a positive image, whereas all other photos within the margin are treated as
negative images. We compare triplet loss to l2 loss as shown in Table 3.

The strong prior operation is favourable for model learning features. We used the t-SNE (t-Distributed
Stochastic Neighbour Embedding) [36] visualization method to directly show the improvement brought by
strong prior operation. The technique is a variation of Stochastic Neighbour Embedding [37]. T-SNE can

CCAEk−means

CCAEBIRCH

CCAEAGG

CCAE

CCAEk−means

CCAEBIRCH

CCAEAGG

CCAE

f (x) x
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capture much of the local structure of high-dimensional data while also revealing global structures such
as the presence of clusters at multiple scales. The results of the t-SNE visualization are shown in Fig. 4.

A constraint is added to the encoding network so that the generated latent variables roughly follow the
standard normal distribution, potentially improving recognition accuracy [38]. A constraint on the latent
vector is a mechanism for "forgetting" cell characteristics. We add Gaussian constraint to the encoding
data to help our model learn more effective features.

4. Conclusions And Discussions
In this study, we combine convolutional neural networks and an autoencoder to extract cell
characteristics and use the hybrid clustering algorithm to cluster cells. The encoder utilises convolutional
layers to learn cell features from images and the decoder uses deconvolutional layers to reconstruct cell
images. Based on FaceNet [30], which uses triplet loss to learn highly discriminating face features, we
introduce triplet loss to guide the model to learn recognizable cell features. We employed a generative
model instead of a discriminative model to extract cell structural information in its entirety. The goal of
the discriminant model is to locate a high-dimensional representation of data in a high-dimensional
space and thereafter transfer them to a low-dimensional space for classi�cation and discrimination. This
may contain data with missing structural properties. In contrast, the generation model can compress the
data dimension while the generation module maintains the structural integrity of the data. This is a more
sensible method of data compression with greater resilience and interpretability for downstream data
matching and classi�cation.

Table 3
Comparison of CCAE performance with L2 loss and triplet loss. In the Table, the �rst and the second row

report the classi�cation results on DLAN dataset by using CCAE with different loss function.
Classi�cation results of CCAE with different loss on our dataset are present in the remaining rows. On the

same dataset, the triplet loss function not only has greater recognition accuracy than l2 loss, but also
rejects less photographs, as seen in the table.

Method Testing sets(size) Alive
prediction (%)

Apoptosis
prediction (%)

R.r(%)

The  with L2
loss

DLAN (1000) 88.17 92.10 12.50

The  with
triplet loss

DLAN (1000) 91.00 96.72 6.40

The  with L2
loss

HeLa treated with STS for
8h (1000)

91.36 93.42 14.73

The  with
triplet loss

HeLa treated with STS for
8h (1000)

97.32 98.42 2.74

CCAE

CCAE

CCAE

CCAE
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Prior study has shown that supervised deep learning performs well in discriminating cell images.
Verduijn’s method used a training set (~ 35,000 cells) to tune the model towards its new objective of
detecting and discriminating between alive, apoptotic and necroptotic cancer cells [19]. It is possible to
use deep learning algorithms such as the convolutional neural network for image classi�cation, however,
these methods require an extensive amount of training data that is well-annotated. Compared with the
existing methods, our algorithm only uses 1000 randomly selected cell images from Verduijn’s dataset
and achieves higher accuracy. Although our method can only distinguish living and apoptotic cells, it
does not require any annotated images compared with other deep learning models and can achieve a
considerably high classi�cation accuracy.

This is the �rst study to look into the potential of unsupervised deep learning methods for apoptotic cell
classi�cation. The triplet loss function is introduced into the CCAE loss module, which uses image
similarity to enhance feature extraction ability. We demonstrate the performance by the published
dataset, and the result shows that our proposed method can achieve a high classi�cation accuracy rate.
Compared with some existing supervised methods, our method is more applicable to domains in which it
is di�cult to obtain high-quality, balanced datasets. The approach described here is expected to have a
signi�cant impact on research in cancer diagnosis, drug screening, and cell characterization in general.

This study has several limitations that should be acknowledged. Our approach has only been tested on
bright�eld images of HeLa cells and digital holographic microscopy images of L929sAhFas cells so far.
Furthermore, some cell deaths, such as ageing, necrosis, and ferroptosis, could help in a variety of
applications, such as developing and screening new drugs and detecting dangerous toxins. It remains to
be seen whether unsupervised deep learning approaches work well in other cell lines and cell death. We
intend to investigate the effect of our method on a larger cell dataset in the future and make it applicable
to multiple cell classi�cation problems.

For future work, we will consider different network architectures, such as residual [40] and the inception
[41] networks, which have been shown highly effective in �nding latent structures and features.
Furthermore, we plan to enlarge the capabilities and generality of the method and migrate the model to
other domains.
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Figure 1

Preprocessing of HeLa cells treated with STS for 8 h and control. An overview of changes were made to
bright �led images of apoptotic and living cells. Image graying and Gaussian blur �lter can remove high-
frequency noise and boost image contrast. Adaptive binarization processing and denoising is used to
maximize differences in the representation of foreground and background and improve image quality
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Figure 2

The structure and parameter setting of CCAE. The CCAE only uses convolutional and deconvolution
layers, instead of �ltering the features using a pooling or upsampling method that may lose important
information. This shows several steps within the CCAE, starting from an image. The cropped cells are
resized to 512×512 pixels before submitting to CCAE. To extract information from these images, several
blocks of convolution are applied after the input has been resized. By applying a convolution matrix on
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top of the original image, the image is recalculated and enhanced based on the values of surrounding
pixels. Followed by a few deconvolution layers, these layers will reconstruct image from 32×32 pixels to
512× 512 pixels. The latent vector parameter was sampled from a Gaussian distribution with a mean
value of 0. Lastly, input image, reconstructed image and latent vector all used as parameters of triplet
loss and help CCAE learn more effective features of cells.

Figure 3

Flow chart of main method. The �rst step of the model is cell image preprocessing, including Gaussian
blur, adaptive binarization and denoising. Afterwards, processed images are resized to 512×512 pixels
before submitting to CCAE model. After all the convolution and deconvolution steps, the encoding data
(at the end of the convolutions of size 32×32×2), is �attened to be used in the following step of the
model. The hybrid clustering algorithm, including the Euclidean distance k-mean algorithm, the
agglomerative (AGG) algorithm, and the balanced iterative reducing and clustering using hierarchies
(BIRCH) algorithm, was applied to get clustering results.
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Figure 4

The effect of preprocessing on data compression. In order to demonstrate the effectiveness of
preprocessing, the t-SNE method is used to visualize the feature maps of CCAE using the same dataset.
According to the map of CCAE with preprocessing, samples are almost separated in two dimensions. In
contrast, using CCAE without preprocessing features makes it challenging to distinguish two classes.
This result suggests that the features extracted with preprocessing are more discriminative than those
extracted without preprocessing and help CCAE learn more effective features of cells.


