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Abstract

This paper presents a comprehensive survey of publicly available neural network models specifically
designed for detecting wildfires using regular visible-range cameras positioned on hilltops or forest
lookout towers. The surveyed models are first pre-trained on the ImageNet-1K dataset and then
fine-tuned on a custom wildfire dataset to enhance their performance. Evaluations are conducted on
diverse wildfire images, enabling a thorough assessment of their capabilities. The survey findings pro-
vide valuable insights for individuals interested in leveraging transfer learning techniques for wildfire
detection. Among the examined models, Swin Transformer-tiny achieves the highest Area Under the
Curve (AUC) value, indicating strong overall performance in distinguishing wildfire events. However,
ConvNext-tiny stands out for its exceptional ability to detect all instances of wildfires while main-
taining the lowest false alarm rate within our dataset. These results highlight the varying strengths of
different neural network models and offer valuable guidance for selecting an appropriate model based
on specific detection requirements and priorities.

Keywords: Wildfire Detection, Transfer Learning, Convolutional Neural Network, Vision Transformer

1 Introduction

Early detection of wildfires is crucial in minimizing
the harm they cause to people and the economy.
Researchers have developed different techniques, in-
cluding real-time algorithms that use video-based
surveillance systems and deep neural networks that
can recognize fire and smoke images[1–13]. Some of
these methods enable a single camera to detect wildfire
smoke in real-time from a distance[14].

Neural network-based methods for wildfire detec-
tion eliminate the need for manual feature selection,
but they require a lot of data and computing power. To
mitigate the issue of insufficient data, synthetic data is
used for training, and transfer learning techniques like
Fast R-CNN and Yolo series algorithms[15] are uti-
lized to enhance the model’s performance and reduce

the amount of data required[16, 17]. Transfer learn-
ing has been used in this survey, inspired by previous
papers[14, 18], leading to the development of effective
neural network models for forest fire detection since
2015.

In this paper, we explore the feasibility of sev-
eral classical models in the field of wildfire detec-
tion and compare their performance. These models
are Residual Neural Network V2(ResNetV2), Data-
efficient, image Transformers (DeiT), EffecientNetV2,
Big Transfer (BiT), MobileNetV3, Swin Transformer,
and ConvNeXt[19–26]. Inspired by a previous paper
[14], a single image is split into sub-images for object
detection. We evaluate critical indicators, including
accuracy, false alarm rate, true detection rate, detec-
tion latency, and implementation latency for wildfire
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detection [14, 18]. Experiments compare model per-
formance, analyze superior models, and provide a
summary of comparisons.

2 Overview of Artificial
Neural Networks

In this section, we present a comprehensive review of
the selected models, detailing their respective struc-
tures and innovations.

2.1 Residual Neural Network
(ResNet)

ResNet is a revolutionary neural network [27]. It
achieved unprecedented depth with more than 1000
layers, owing to the introduction of residual blocks
[27]. Before the ResNet, it is always challenging
to design very deep Convolutional Neural Networks
(CNNs) because neural networks that are too deep
usually face the problems of gradient vanishing and ex-
ploding. Besides, an increasing number of layers could
also cause degeneration. Through the skip connec-
tion structure of layers which is called residual block
and the usage of the Batch Normalization (BN) layer,
ResNet shows its ability to solve this predicament. The
core equation of a residual block in ResNet can be
expressed as follows:

y = F(x, {Wi}) +Wsx. (1)

In ResNetv2 [19], the structure of the residual
module was improved. The BN layer and activation
function are placed in front of the weight layer as
preactivation. This is the main difference between
ResNetv2 and ResNetV1. Such a structure can not
only afford efficient backpropagation but also allow the
BN layer to play a regularization role, which makes
ResNetV2 significant progress.

2.2 MobileNet

MobileNet [28] is built primarily from depthwise sepa-
rable convolutions. Depthwise separable convolutions
include a standard convolution into a depthwise con-
volution and a 1×1 convolution called a pointwise
convolution. It can reduce computation and model size
effectively.

Meanwhile, the network structure has been opti-
mized and a parameter called width multiplier has
been introduced to further thin the network uniformly
at each layer. MobileNet is small and has low la-
tency. It is implementable on computationally limited
platforms and shows strong performance. The authors
introduce MobileNetV2 using the inverted residual
with the linear bottleneck to further improve the

network [29]. In the next generation MobileNetV3,
a combination of these modules (depthwise separa-
ble convolutions and inverted residual with linear
bottleneck) are used in the first two generations.
Platform-aware Neural Architecture Search (NAS) is
also employed to search for the global network struc-
tures and then use the NetAdapt algorithm to search
per layer for the number of filters. Computationally
expensive layers has been redesigned and a nonlin-
earity called swish to replace ReLU is used instead.
As the next generation of MobileNet, MobileNetV3
can achieve higher accuracy and lower latency than
MobileNetV2 [24].

2.3 Big Transfer (BiT)

The innovation of BiT lies in its large-scale pretrain-
ing strategy that involves training on multiple public
datasets. By leveraging this strategy, BiT achieves
high performance on a wide range of computer vision
tasks and surpasses previous state-of-the-art results.
Also, Group Normalization and weight standardiza-
tion is used instead of Batch Normalization. Because
it incurs inter-device synchronization costs when using
distributed training. And it is detrimental to transfer
due to the requirement to update running statistics.

During the transfer to downstream tasks, a fine-
tuning protocol called BiT-HyperRule is proposed.
It is heuristic to set the following hyperparameters
per-task: training schedule length, resolution, and
whether to use MixUp regularization. The models are
evaluated on standard benchmarks and have a good
performance. The recipe is simple and effective when
we transfer pre-trained models to diverse tasks [23].

2.4 EffecientNet

The compound scaling method is proposed to scale
network width, depth, and resolution with a set of
fixed scaling coefficients. NAS is used to design a new
baseline network and scale it up to obtain a family of
models called EfficientNets, which is smaller and faster
than existing convolutional neural networks [30].

EfficientNetV2 is introduced in June 2021. A com-
bination of training-aware NAS and scaling are used to
improve both training speed and parameter efficiency.
They design a search space enriched with additional
ops such as Fused-MBConv and propose an improved
method of progressive learning, which can adjust reg-
ularization along with image size. EfficientNetV2 have
up to 11x faster training speed and up to 6.8x better
parameter efficiency on ImageNet, CIFAR, Cars, and
Flowers dataset, than prior art such as ResNet-101
and ViT-L/16 (21k) [22].
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2.5 Data-efficient image
Transformers (DeiT)

Recurrent Neural Networks (RNNs) require informa-
tion from previous or next-time steps for calculations,
making parallel computation difficult and limiting
them to serial processing. By adopting the Self-
Attention mechanism [31], The Transformer model for
sequence processing avoids horizontal propagation, re-
lying instead on vertically stacked self-attention layers
that allow for parallel computation and acceleration
using GPUs.

Vision Transformer (Vit) is a transformer-based
model in computer vision which require massive train-
ing data [32]. In order to overcome the limitations
of Vit, the Data-efficient image transformers (DeiT)
model was developed. A systematic optimization and
regularization approach was employed on DeiT, which
includes data augmentation during training. The au-
thors employed the so-called soft and hard-label
knowledge distillation to facilitate the teacher model
in guiding DeiT during training [20, 21].

2.6 Swin Transformer

Swin Transformer uses a hierarchical construction
method similar to CNNs. Such a backbone helps
to build detection and segmentation tasks on this
basis[25]. When using the Windows Multi-head Self-
Attention (W-MSA) module, the self-attention calcu-
lation will only be performed within each window, so
there is no information transfer from window to win-
dow. To solve this problem, the authors introduced
the Shifted Windows Multi-Head Self-Attention (SW-
MSA) module. Relative Position Bias is also employed
to improve the performance of the model.

2.7 ConvNeXt

ConvNeXt does not introduce novel architectural or
methodological innovations. Instead, it leverages ex-
isting techniques and optimized CNNs for enhanced
performance. The authors first used the strategy of
training ViT to train the original ResNetV2-50 model
and observed a significant improvement in perfor-
mance compared to the baseline. This benchmark
performance was then utilized for subsequent exper-
iments. Through a series of experiments, ConvNeXt
has faster inference speed and higher accuracy com-
pared with Swin Transformer with the same compu-
tational complexity [26].

Figure 1: The example of detection result (de-
tected by Swin Transformer-tiny).

3 Methodology

3.1 Methods of Implementation

Object detection tasks involve identifying the loca-
tion and classification of objects in images. Usually,
the bounding box-based method needs to manually
label massive bounding boxes like the Yolo series
algorithm[15]. In this experiment, the approach taken
is to divide each image into 45 blocks as Fig. 1. Using
this approach, it is possible to detect and locate fires
accurately and we do not need to label the bounding
box of the wildfire. Assuming that the dimensions of
the active image area are Mi and Ni and that the di-
mensions of each block are Mb and Nb, an equation
can be used to express the row number R and column
number C for each block:

R = ⌊
Mi

Mb

⌋, C = ⌊
Ni

Nb

⌋, (2)

where ⌊·⌋ stands for the floor function. The main task
is to construct a binary classifier that can predict the
whether there is a wildfire or not. Forest fire detec-
tion devices are often used in remote wilderness areas
where weight and computational resources are limited.
Therefore, small models are chosen to fit these devices.

3.2 Dataset

In this work, we build a wildfire dataset by enrich-
ing the dataset in [14] and [18] to about 35k images.
The training subset approximately contains 14k im-
ages of normal forests and 9k wildfire images. The
test subset contains about 8k images of normal forests
and 4k wildfire images. All the data images are from
the HPWREN wildfire dataset , the FIRESENSE
database [33], google images, and YouTube videos.
Furthermore, to evaluate the performance in real-
world applications, we evaluate the models on the
HPWREN videos to estimate the detection latency.
Fig. 2 and Fig. 3 show some samples from the dataset.
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(a) (b) (c) (d)

Figure 2: Examples of the dataset images. Wild-
fire exists in (a) and (b). Wildfire does not exist
in (c) and (d).

Figure 3: HPWREN samples for test model de-
tection. We use data from 9 HPWREN cameras,
each of which recorded the process of occurrence
of fire.

4 Experiment

4.1 Training Models

Transfer learning techniques in deep learning can
address the time-consuming task of gathering ex-
tensive training data and overfitting problems In
this study, pre-trained models from the ImageNet-1K
open-source database [34] were used for forest fire de-
tection using the TensorFlow deep learning library
with an NVIDIA RTX3070 GPU. The training process
consisted of 15 epochs with a fixed feature extractor
method used in the first 10 epochs and a transfer learn-
ing strategy applied in the final 5 epochs. Fine-tuning
all the layers in the whole model further improved the
models’ performance while reducing the demand for
large amounts of data. After fine-tuning, the probabil-
ity of wildfire was calculated by feeding the results to
a softmax layer. The study assumed that images with
fire are negative samples and images without fire are
positive samples. To ensure practical application, the
wildfire detection model should not be overly sensitive
while accurately detecting forest fires to the greatest

extent possible using the true detection rate and false
alarm rate in the confusion matrix.

4.2 Testing Models

4.2.1 Evaluation Indicators

The evaluation of deep neural networks (DNNs)
involves five key indicators: accuracy, true detec-
tion rate, false alarm rate, floating point operations
(FLOPs), number of parameters, detection latency,
and Receiver Operating Characteristic (ROC). ROC
curve is a graph that shows how sensitive a model is to
various threshold ranges between 0% and 100% [35].
By calculating the False Positive Rate (FPR) and True
Positive Rate (TPR) under different thresholds and
setting them as X-axis and Y-axis respectively, ROC
curve and Area Under the Curve (AUC) can be used
to compare the performance of different models and
usually a larger AUC indicates a better performance.
The mathematical expressions for ROC and AUC can
be represented as:

ROC =
TPR

TPR+ FPR
(3)

AUC =

∫ 1

0
ROC(x) dx (4)

Accuracy measures the percentage of accurate pre-
dictions generated by the neural network, indicating
the models’ fitness for purpose. True detection rate
and false alarm rate are crucial indicators in wildfire
detection systems, with true detection rate repre-
senting the proportion of correct negative predictions
made by the model and false alarm rate indicating the
percentage of false alarms, with a lower false alarm
rate indicating greater reliability.

Parameters and FLOPs are essential factors af-
fecting neural networks, with the former indicating
the model’s complexity and the latter measuring the
number of calculations an algorithm can perform in a
second. FLOPs are also used to estimate the compu-
tational requirements of training or executing a neural
network on a hardware device.

Finally, detection latency refers to the interval be-
tween the start of an actual fire and the system’s
detection of it. In experiments, this metric is evaluated
in frames rather than seconds. These indicators can
assist in evaluating the potential applicability and per-
formance of DNNs, which can inform the development
of more reliable and efficient models.

4.2.2 Basic Test

Fig. 4 shows the ROC curve of each model. Because
the curves are dense, Fig. 4 displays the details of
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Model Parameters (M) FLOPs (G) AUC ACC
True False

Detection Alarm

Swin Transformer-tiny 27.6 8.99 0.99917 97.95% 94.63% 0.36%
DeiT-tiny 5.5 2.54 0.99876 98.13% 95.12% 0.35%
ConvNeXt-tiny 27.8 8.99 0.99743 96.69% 90.52% 0.18%
MobileNetV3-small 20.3 0.12 0.99114 95.17% 94.11% 4.30%
BiT-small 23.5 8.38 0.98973 96.86% 99.78% 4.63%
ResNetV2-50 23.6 6.99 0.98837 95.00% 98.92% 6.99%
EfficientNetV2 1.5 5.74 0.98571 93.47% 96.48% 8.06%
Mobilenet-edgetpu-v2 2.5 1.03 0.98056 94.70% 91.73% 3.79%

Table 1: Parameters, FLOPs, AUC of models. Accuracy, True Detection Rate, and False Alarm Rate of
models on the test dataset. Models are arranged in descending order of AUC.

Video No. 1 2 3 4 5 6 7 8 9 Average

Swin Transformer-tiny 7 4 0 27 6 1 2 4 2 5.8
DeiT-tiny 5 4 1 29 7 2 6 4 2 6.7
ConvNeXt-tiny 5 4 0 29 7 1 6 6 1 6.6
MobileNetV3-small 6 11 0 35 7 4 27 13 1 11.6
BiT-small 2 0 0 26 4 1 1 3 1 4.2
ResNetV2-50 3 2 0 29 5 1 8 7 2 6.3
EfficientNetV2 4 2 0 26 6 4 6 2 1 5.7
Mobilenet-edgetpu-v2 6 11 1 35 7 4 6 11 1 9.1

Table 2: Considering the rigor of fire prediction, we set the threshold to 95%. Each number represents
the frame number at which the models first detected the presence of fire.We Calculate detection latency
as the time between the frame when the fire is first detected and the frame when the fire starts. In the
last column, we calculate the average detection latency.

the top left part. Table 1 shows the FLOPs and pa-
rameters of each model, the models are arranged in
the order of AUC size, from largest to smallest. Table
1 records the performance of each model on the test
dataset with the threshold of 95%. As Table 1 shows,
DeiT-tiny owns the highest accuracy which is 98.13%
followed by 97.95% from Swin Transformer-tiny and
they are both transformer-based models. The remain-
ing traditional CNNs models perform slightly worse,
with BiT-small and ConvNeXt-tiny performing bet-
ter than 96%, the rest of the models’ performance is
relatively mediocre.

For image recognition with fire, traditional CNNs
perform very well, with ResNetV2-50 reaching 98%
accuracy and BiT-small even reaching 99%. However,
a high true detection rate comes at the cost of a high
false alarm rate. Both models have a high false alarm
rate, ResNetV2-50 was found to have a false alarm
rate of 6.99%. On the contrary, the transformer-based
models have a very low false alarm rate, although
the accuracy is slightly lower than that of the CNNs
models. ConvNeXt-tiny, a member of the traditional
CNNs, has a slightly lower accuracy than other CNN

models but has a comparable false alarm rate with the
transformer-based models.

4.2.3 Detection Latency

Detection latency is a way to describe the time from
the onset of the fire until the model raises an alarm and
it is measured in frames. Nine datasets are selected to
calculate the detection latency, which does not overlap
with the data in the test dataset. The result is shown
in Table 2.

In Table 2, BiT-small demonstrates the best per-
formance, exhibiting a remarkable ability to recognize
small features. However, this also leads to a higher
susceptibility to similar features, which is related to
BiT-small’s higher false alarm rate in Table 1. The
performance of ConvNeXt-tiny and DeiT-tiny in the
detection latency test is moderate, despite their good
inference speed and accuracy. Moreover, the difference
in detection latency between them is insignificant. On
the other hand, Swin Transformer-tiny is slower in
detection latency.
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Figure 4: ROC of models. Models are arranged
by AUC size from top to bottom.

4.2.4 Implement Latency

Model Sub-image Whole Image

Swin Transformer-tiny 0.02227 1.0023

DeiT-tiny 0.02272 1.0223

ConvNeXt-tiny 0.06151 2.7680

MobileNetV3-small 0.00591 0.2660

BiT-small 0.01636 0.7363

ResNetV2-50 0.00683 0.3074

EfficientNetV2 0.01441 0.6483

Mobilenet-edgetpu-v2 0.00892 0.4013

Table 3: The time it takes for the model to pro-
cess the image to make a prediction. Measured in
seconds.

In addition to the model’s ability to detect fires
at the earliest stages, we are also interested in im-
age processing speed. Implement latency is used to
measure the time that a model needed to process a
single image. Since we split our single image into 45
sub-images, we both calculate the time of processing
a single image and a sub-image. At the same time,
Table 3 indicates the speed of models and we can note
that MobileNetV3-small has the shortest implement
latency and ResNetV2-50 has the second shortest im-
plement latency. While ConvNeXt-tiny has a smaller
false alarm rate compared to Swin-tiny and DeiT-
tiny, it is not as efficient in processing images as these
transformer-based models.

5 Conclusion

In this paper, we chose 8 pre-trained models that are
widely used in image classification to validate the ef-
fectiveness and performance of artificial deep neural
networks for wildfire detection using regular visible-
range cameras. Transfer learning is used to train
these models and the models are evaluated based on
different indicators. Based on the experiments sum-
marized above, the strengths and limitations of these
models are determined. According to the criteria of
traditional image classifiers, transformer-based mod-
els Swin Transformer and DeiT achieved the highest
AUC and accuracy. Traditional CNNs models have
slightly lower AUC and accuracy. On the other hand,
traditional CNN models except ConvNeXt are more
efficient in implementation and superior in detecting
tiny smoke features. Swin Transformer and DeiT con-
sume more time to implement relatively, but it is still
acceptable in practice because the processing time of
an entire image frame size is less than 1 second except
for Swin Transformer and DeiT networks. Unfortu-
nately, Swin Transformers and Deit are less sensitive
to tiny smoke features. ConvNext-tiny has the lowest
false alarm rate. A low false alarm rate is very impor-
tant for the acceptance of the use of machine learning
in wildfire detection problems.

Future research will focus on the use of other types
of data, such as thermal and multispectral imagery.
Additionally, the development of hybrid models that
combine deep learning algorithms with traditional
machine learning techniques and domain knowledge
can also be a promising direction for improving the
accuracy of wildfire detection systems.
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