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Abstract

The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the
two modalities to generate high-quality fused image. However, existing methods still suffer from some
shortcomings, such as lack of effective supervision information, slow computation due to complex
fusion rules, and difficult convergence of GAN-based models. In this paper, we propose an end-to-
end fusion method based on semantic region guidance (SRGFusion). Our model contains three basic
parts: preprocessing module, image generation module, and information content discrimination mod-
ule. Firstly, we input the infrared and visible images into the preprocessing module to achieve the
preliminary fusion of the images. Subsequently, the features are fed into the image generation mod-
ule for high-quality fused image generation. Finally, the training of the model was supervised by the
information quantity discrimination module (IAQM). In particular, we improve the image generation
module based on the diffusion model, which effectively avoids the design of complex fusion rules and
makes it more suitable for image fusion tasks. We conduct objective and subjective experiments on
four public datasets. Compared with existing methods, the fusion results of the proposed method have
better objective metrics, contain more detailed information, and are more suitable for subsequent
vision tasks.

Keywords: Visible and infrared image, Image fusion, Diffusion models, Semantic guided, Generative network

1 Introduction

The purpose of image fusion is to combine images in differ-
ent modes to generate a fusion image with the advantages
of the input image. The visible image has the advantages
of high resolution, high quality and rich image texture
detail information. However, the image quality of the vis-
ible image is easily affected by lighting conditions such
as no light or low light, and environmental factors such
as object occlusion and camouflage. Infrared image has
better contour information and global information of the
object, which can effectively make up for the shortage of
visible image. However, infrared images still suffers from
low image contrast and quality, inadequate expression of
texture and detail information, as well as susceptibility to

noise. Therefore, the fusion of infrared and visible images
can effectively overcome the limitations of single sen-
sors, compensate for scene information, and provide richer
information and stronger robustness for advanced vision
tasks such as object detection [1], object tracking [2], and
semantic segmentation [3].

We divide the image fusion algorithms into tradi-
tional methods and deep learning-based methods, and next
we will introduce some representative works, respectively.
In the beginning, researchers commonly used traditional
methods to complete the image fusion task. The perfor-
mance of traditional image fusion methods mainly depends
on the ability of the model to extract features, and hand-
crafted feature extractors are used to extract image features
followed by manual selection of fusion strategies. Among
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them, the multi-scale transform method [4] [5] uses spe-
cific rules to decompose different scale features, and various
types of fusion strategies are employed to fuse the decompo-
sition results. Sparse representation (SR) [6] and low-rank
representation-based methods (LRR) [7] learns a complete
model from a high-quality image and utilized to enhance
the representation of the source image. Although the above
methods achieve good results, they still suffer from the fol-
lowing drawbacks: the fusion performance highly depends
on the hand-designed feature extractor, the time is long
and the quality is low when dealing with complex image.

In recent years, with the extensive use of residual blocks
[8] and dense connections [9], DenseFuse [10] is the first
work to apply deep learning to image fusion. Subsequently,
RFN-Net [11] proposed a two-stage training method to
achieve full learnability of the model. With the exten-
sive application of the attention mechanism in the field of
computer vision, PIAFuse [12] combines the cross-modal
differential perception fusion module with the semi-fusion
strategy, and designs an attention module based on infor-
mation difference. SeaFusion [13] is the first model that
uses high-level semantic information to drive image fusion,
which concatenates the image segmentation task and the
image fusion task, effectively enhances the fusion network
ability to describe spatial details. Subsequently, DID-fuse
[14] proposed a deep decomposition model, which uses fore-
ground and background information to assist the fusion
network for the performance of fused image in subsequent
vision tasks improved.

With the in-depth study of GAN [15], the GAN based
image fusion model has opened up a new method for the
field of image fusion. Fusion-GAN [16] is the first one to
introduce GAN in image fusion. It compensates for prob-
lems such as information loss caused by fusion strategies
by generating and adversarial strategies through which the
fused images are directly generated by the generator. DDc-
GAN [17] designed the structure of two discriminators and
a generator, so as to retain the information of the two types
of images to a greater extent. This has been extensively
cited in subsequent work [18–20]. The recent SDDGAN
[21] segments the input image into foreground and back-
ground information, and completes the generation of the
image through semantic information supervision. TarDAL
[22] improved the fusion network of generator and dual dis-
criminator, laying a foundation for subsequent high-level
vision tasks. It is worth noting that in the recent work Dif-
Fusion [23], the diffusion model is used to realize image
fusion for the first time, but the fused image still focuses
on the information of the visible image and ignores the
information of the infrared image. We summarize the short-
comings of current deep learning-based fusion methods as
follows:

1) Auto-encoder (AE) based methods still suffer from
numerous constraints of traditional methods by manually
selecting fusion strategies.

2) Fully convolutional neural network based methods
generally force the fused image to obtain detailed infor-
mation from the visible image, while thermal radiation
information in the infrared image is obtained only through
content loss. It makes the fused and visible images very
similar and lacks the information from the infrared image.

3) In generative models, although VAE based algo-
rithms can sample quickly, the quality of generated images

is low. GAN based fusion models suffer from shortcomings,
such as easy training collapse and lack of interpretability.

4) Fusion models based on attention mechanisms have
too many parameters, are computationally slow, and are
difficult to perform real-time image fusion.

To solve the above problems, we propose an infrared and
visible image fusion algorithm based on the diffusion model.
So that, address the common issue of insufficient ground
truth as supervision information in image fusion, this
study employs an image segmentation model for perform-
ing semantic segmentation on both the input infrared and
visible images; at the same time, an information discrimi-
nant module is designed to solve the problem of semantic
level region screening, obtain the unique features of infrared
image, the unique features of visible image and the com-
mon features, and realize the comparison of the semantic
level information of infrared and visible images. To avoid
the problems of high complexity and high computational
cost of high-quality fusion rules, we choose a generative net-
work to directly generate the fused image. Since the GAN
model still has problems such as difficult training and con-
vergence, we innovatively introduce the diffusion model as
the fusion image generator. Aiming at the common prob-
lems of the diffusion model and the shortcomings of the
current image fusion work based on the diffusion model, the
advantage of the proposed model is that the structure of
the diffusion model is redesigned, which makes the training
simpler and the performance more competitive.

The main contributions of this paper are as follows:
1) We propose an image fusion method that combines

semantic information with the diffusion model. The gen-
erative network is guided by the input image to directly
generate the fused image, eliminating the need for complex
fusion rules.

2) To solve the problems of slow image generation
and complex structure of the current diffusion model, we
redesign the structure of the diffusion model. Specifically,
we have designed a preprocessing module and a style atten-
tion module to shorten the training time of the model and
enhance the fine-grained features of the original image.

3) To break through the difficulty of lacking ground
truth in the image fusion task, we propose an informa-
tion quantity discrimination module (IQDM). The two
computer vision tasks were combined, and the seman-
tic level fusion of different modalities of information was
used to constrain the model through the comprehensive
consideration of multiple evaluation indicators.

4) To measure the quantity of information contained in
an image, we introduce a new evaluation index DEB, and
prove that our method is superior to the existing advanced
methods through a large number of experiments.

2 Proposed Method

In this section, we present the prerequisites for both the
partial diffusion model and the SRGFusion model frame-
work. Firstly, a brief review of diffusion models is provided,
which includes the forward and backward processes as well
as a simple derivation of the loss function. Secondly, we
will provide a detailed description of the proposed infor-
mation quantity discrimination module. Then, the overall
model structure and the detailed design of some models
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will be described. Finally, we discuss the design of the loss
function.

2.1 Diffusion Model

The diffusion model was proposed by [24] and has been
widely used for image-to-image and text-to-image genera-
tion in the recent work DDPM [25]. The specific steps are
shown in Fig. 1. The model is trained by predicting the
distribution of noise, and image generation is completed
through randomly generated Gaussian noise. An image of
size R

H×W×C represented by a tensor is denoted as I, and
β ∈ (0, 1) is a linear or sinusoidal parameter. In the for-
ward process, the noisy image xt ∈ R

H×W×3 is obtained
after the diffusion step t ∈ {0, 1, · · · , T − 1, T} the original
image x0 ∈ R

H×W×3 input to the diffusion model. In the
inverse process, the noisy image xt is input to generate the
image x′

t ∈ R
H×W×3.

Fig. 1 Diffusion model forward and reverse process.

Forward process: The noise image xt is generated by
gradually adding noise z to the original image x0 through
the Markov chain of order T , which can be expressed as
Eq.(1) using the re-parameterization technique.

xt =
√
αtx0 +

√
1− αtzt (1)

Here, αt =
∏t

i=0
αi is a linear distribution, αt = 1 − βt

and Zt represents random noise.
Reverse process: Predicting x0 directly from xT is

highly unlikely, so we use the Bayesian formula to predict
xT to xT−1, which leads to x0. Write xT predicting xT−1

in the form of Eq.(2):

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)

q(xt|x0)
(2)

Using N ∼ (ξ, δ2) ∝ e
−

(x−ξ)2

2δ2 , the final relation from
xt to xt−1 can be obtained as shown in Eq.(3):

xt−1 =
1

√
αt

(xt −
1− αt

1− αt

εθ(xt, t)) + σtz (3)

Here, ε denotes the neural network and θ denotes the model
parameters. In particular, the forward process is a process
that does not require learning, and the corresponding β is
obtained by randomly selecting the forward step size t. The
inverse process generates the image by stepwise derivation.

When training the diffusion model, the model can be
constrained by minimizing the difference between the pre-
dicted value of the loss function through the neural network
and the true value through the forward process, which is
specifically expressed in the form of Eq.(4):

min
θ

Lsimple =
∥

∥ztrue − εθ(αtx0 +
√
1− αtz, t)

∥

∥

2
(4)

2.2 Information Quantity

Discrimination Module

We denote the infrared image as Iir ∈ R
H×W×1 and the

visible image as Ivi ∈ R
H×W×3. As shown in Fig. 2,

Iir and Ivi are input into the segmentation network to

Fig. 2 Three kinds of region masks are obtained by the
segmentation model

obtain each semantic level segmentation region, and three
common regions are calculated for each region through
normalization, as shown in Eq.(5):

Seg(Iir)− Seg(Ivi) = masktrueir ,masktruecommen,masktruevi

(5)
Within this group, mask ∈ {0, 1} distinguishes three
types of features by positive, negative, and zero values.
masktrueir represents the private mask of infrared image,
which mainly includes the unclear or nonexistent parts
of visible image such as occluded or disguised objects or
people. masktruecommen corresponds to the common mask of
two types of images, mainly including features that appear
simultaneously in infrared and visible images. masktruevi

corresponds to the private mask of the visible image, which
mainly includes texture information, detail features and
other information.

To address the issue of insufficient supervision infor-
mation in fused images and effectively distinguish feature
quality, we propose an Information Quantity Discrimina-
tion Module (IQDM), as shown in Fig. 3. This module

Fig. 3 IQDM obtaining supervision information

obtains high-quality regional image features by evaluating
the image quality of each region. Specifically, masktruecommen

is used to calculate the common areas of Iir and Ivi
through Eqs.(6) and (7), and the final common area
features are obtained through the IQDM.

Icommon
ir = Iir ×masktruecommon (6)

Icommon
vi = Ivi ×masktruecommon (7)

In particular, masktruecommen is covered on Iir and upper
Ivi to obtain each semantic region under common features,
and the corresponding information quantity is obtained by
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calculating each semantic region, and the optimal common
feature region Itruecommon is obtained after comparison. It is
worth noting that in the design of the IQDM, we intro-
duce three no-reference image quality assessment methods,
namely DB-CNN [26], Entropy, and BRISQUE [27]. The
influence of the three methods on the final image qual-
ity and whether they are suitable for the evaluation index
of the fusion image will be discussed with some details in
Section 3.3.1.

Finally, after calculation by the information module
guided by semantic information, we will get Itrueir , Itruevi

and Itruecommon. The three features are combined to obtain
the true value Itrue for supervised learning.

2.3 General Framework

In the image fusion task, we put image Iir and Ivi con-
catenated on the channel dimension, and then input the
preprocessing module to obtain x0, and then realize the
image fusion through the forward and reverse process.
Among them, Iir and Ivi are preliminarily fused through
the preprocessing module, and then the preliminary fusion
features are synchronously input into the style attention
module and the diffusion model to generate the fusion
image If ∈ R

H×W×3. Finally, the loss function is used to
constrain the training of the network, as shown in Fig. 4.

The preprocessing module and the style attention mod-
ule are both designed to adapt the diffusion model to the
fusion task of infrared and visible images. Among them,
the preprocessing module performs a preliminary fusion of
input images to shorten the training time for the diffu-
sion model. The style attention module incorporates the
features into each layer of the diffusion model, thereby con-
straining the diffusion model to produce high-quality fused
image. In particular, the noise prediction network of the
diffusion model is a network structure similar to the U-Net,
and its encoder and decoder are in the exact corresponding
structure. We input the preprocessed image features into
the style attention module to force the constrained diffu-
sion model to generate the fused image, which is conducive
to the enhancement of the two different types of features.

2.4 Loss Function

We design a loss function based on semantic guidance
to better use the existing knowledge to constrain the
fusion image, and train the network by minimizing the loss
between the input image and the output image, as shown
in Eq.(8):

Ltotal = αLmse + βLssim + γLcolor (8)

Here α, β, and γ are all hyperparameters used to balance
the three classes of loss functions.

Lmse can guide the network to fit each pixel in the
image to minimize the difference between the generated
image and the true value, which is specifically expressed as
Eq.(9):

Lmse =

√

1

HW

H
∑

x=1

W
∑

y=1

(If (x, y)− Itrue(x, y)) (9)

In order to keep the structure between the fused image
and the generated image as complete as possible, Lssim as

shown in Eq.(10) is used to constrain.

Lssim = 1− SSIM(If , Itrue) (10)

Since the model uses RGB three-channel visible image
to directly generate the fused image, the color similarity
loss Lcolor can enhance the color preservation of the fused
image. The specific form is shown as Eq.(11):

Lcolor =
1

HWC

∑

i∈η

K
∑

k=1

∠(Iivi, I
i
f ), η ∈ {R,G,B} (11)

Where, C represents the number of channels and K repre-
sents the number of pixels. ∠(·, ·) illustrates the pixel-wise
calculation of the discrete cosine similarity between the
fused image and the original visible image in the RGB chan-
nels. Using Lcolor can better reduce the chroma distortion
of the fused image and also capture more scene information.

3 Experiment

In this section, we first introduce the experimental setup,
which includes the dataset selection and model train-
ing details. Secondly, we present the model’s training
method and experimental results for each stage. Thirdly,
we compare test results and visual fusion images of related
advanced algorithms under various evaluation indicators.
In addition, during the ablation experimental phase, we
reveal the effectiveness of each module in our proposed
model. Finally, the effect of the fusion results in the seg-
mentation model is tested to prove that the proposed
method is suitable for high-level vision tasks.

3.1 Experiment Details

1) Datasets: We evaluate the model using infrared and
visible images contained in the LLVIP [28], M3FD [29],
Road Scene [30], and TNO [31] datasets. The model is
trained on the LLVIP dataset, where the original dataset
consists of 12025 sets of infrared and color visible image
pairs and the test dataset consists of 3463 sets of image
pairs. It is worth mentioning that in order to prevent gradi-
ent explosion all images are resized to size and pixel values
are normalized to [0,1] before feeding into the network.

2) Training details: This model is implemented based
on the PyTorch framework, using Intel Xeon(R) CPU E5-
2620 v4 @ 2.10GHz 32 processors, running on Ubuntu
20.04.2 LTS 64-bit operating system. We performed model
training in two stages on four NVIDIA Corporation GP102
GeForce GTX 1080 Ti graphics cards, setting the batch
size of a single card to 12 and training the model for 300
epochs. When training the network, the Adam optimizer is
used to minimize the loss, and the initial learning rate is
set to 0.001. The values of α, β, and γ are 0.9, 0.5, and 0.2.

3.2 Performance Analysis of Fusion

To demonstrate the advantages of our proposed method,
we conducted a comprehensive evaluation of fusion perfor-
mance on four datasets and compared it with the five most
recent state-of-the-art methods.
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Fig. 4 The framework of the proposed SRGFusion.

3.2.1 Qualitative Results Analysis

The LLVIP and M3DF datasets include two types of image
pairs: daytime and nighttime. Among them, infrared image
highlight extreme heat radiation targets in the scene, while
visible image contain further texture information, detailed
features, and color information. To more intuitively com-
pare the advantages of our method in preserving source
image information, highlighting detail information, and
color fidelity, we selected four sets of infrared and visible
image pairs from the LLVIP and M3FD datasets for day
and night scenes for visual analysis.

Of the five compared methods, RFN-Net is based on the
encoder-decoder structure, PIAFuse applies an attention
mechanism and illumination guidance module to image
fusion, and SeaFusion introduces high-level vision task as
supervision information, SDDGAN and TarDAL based on
generative networks and their variants.

For demonstrate the advantages of our method more
intuitively, in Fig.5 and Fig.6, we show the fusion results
for infrared and visible images of #260001 in the LLVIP
dataset and #M01442 in the M3DF dataset, respectively.
In the daytime visible and infrared image fusion, the visible
image contains a large amount of information, how to effec-
tively preserve the texture features and common features
in the visible image is a research difficulty.

(a) Infrared (b) Visible (c) RFN-Net (d) PIAFuse

(e) SeaFusion (f) SDDGAN (g) TarDAL (h) Ours

Fig. 5 Fusion results of #260001 in the LLVIP dataset

the original texture and color features of human faces
cannot be maintained in RFN-Net and TarDAL. Although
PIAFuse and Seafusion can retain the detailed information
about human faces, they are badly blurred and the fused
images are not clearly sufficient. In contrast, our method
effectively preserves information and color information. In
addition, the prominent feature of the wiper in the green
area in the infrared image is the head of the wiper, and
the prominent feature in the visible image is the wiper rod.
Only our method and SDDGAN can effectively retain the
details information of the wiper and its surroundings, and
our method retains additional color information.

(a) Infrared (b) Visible (c) RFN-Net (d) PIAFuse

(e) SeaFusion (f) SDDGAN (g) TarDAL (h) Ours

Fig. 6 Fusion results of #M01442 in the M3DF dataset

Fig.6. shows the image fusion results in the wild, and
there is a relatively clear smoke edge in the green box
area of the visible image. In RFN-Net, Seafusion, and
TarDAL, the edge of smoke is blurred, and only PIAFuse
and SDDGAN are fused with our method more obviously.
However, the trees partially obscured by smoke in the red
box region are also challenging for the model to accurately
distinguish the texture features. In comparison, our method
can better complete the distinction and fusion of texture
under the premise of ensuring adequate information.

In Fig.7. and Fig.8., #230070 and #190015 in the
LLVIP dataset are selected to show the fusion results of
nighttime images. In Fig.7, the door handle in the green

5



area is the private feature of the infrared image, and the
license plate in the red area is the private feature of the
visible image.

(a) Infrared (b) Visible (c) RFN-Net (d) PIAFuse

(e) SeaFusion (f) SDDGAN (g) TarDAL (h) Ours

Fig. 7 Fusion results of #230070 in the LLVIP dataset

In Fig.7, the door handle in the green area is the pri-
vate feature of the infrared image, and the license plate
in the red area is the private feature of the visible image.
In the experimental results, only TarDAL is fuzzy for the
red region, while only SDDGAN gives poor results for the
green region.

(a) Infrared (b) Visible (c) RFN-Net (d) PIAFuse

(e) SeaFusion (f) SDDGAN (g) TarDAL (h) Ours

Fig. 8 Fusion results of #190015 in the LLVIP dataset

In Fig.8, the red area is the advertising sign of the car
door, and some environmental information brought by illu-
mination changes is also included around it. It can be seen
that various methods are able to fuse such features effi-
ciently, except for the TarDAL method, which has a slight
drawback in texture. However, there is no clear texture fea-
ture in the infrared image for the transformer box part in
the green area, and the dark rectangular band extending to
the side is not clear in the visible image. In this case, most
methods ignore the extension effect of the dark band, and
only our method and TarDAL distinctly retain this feature.

3.2.2 Quantitative Results Analysis

In order to make a fair comparison with other works, we
use six evaluation metrics in our quantitative evaluation.
Mutual information (MI) is used to evaluate the aggrega-
tion quality of the information of the original image pair in
the fused image, visual information fidelity (VIF) is used
to evaluate the fidelity of the information in the fused
image, spatial frequency (SF) is used to evaluate the spa-
tial frequency related information in the combined data,
and Qabf is used to quantify the edge information of the
source image. The evaluation metric standard deviation SD
is used to evaluate the contrast of fused image, and the
metric MS-SSIM is used to evaluate multi-scale structural
similarity.

We introduce an evaluation index DEB for quantifying
the overall information content of the fused image, to better
verify the quality of the image and lay the foundation for
the subsequent advanced vision tasks, which are composed
of DB-CNN, Entropy, and BRISQUE. The higher the DEB
score, the more information is perceived. Since the image
fusion task is a computer vision task lacking effective prior
knowledge, and DEB is the image evaluation index under
no reference, it can be more effective to verify the quality
of the fused image.

We selected 40 sets of infrared and visible image pairs
in each of the four datasets for comparison, and show the
test results in Table 1.

Our method performs prominently on the LLVIP
dataset and achieves the optimum in all indicators. On the
remaining two types of color datasets, our method has a
large difference in the DEB index compared with alter-
native methods, which is attributed to the fact that the
learning method based on semantic information guidance
better retains the feature information in the two types of
images. In the TNO dataset, our method performs nicely
and has a tiny difference in DEB values compared with
other methods, which is limited by the fact that the input
images are gray images with low resolution.

3.3 Ablation Study

3.3.1 Information Quantity

Discrimination Module

We determine the final amount of IQDM used by testing
the effect of different amounts of IQDM on the quality of
the fused image. Specifically, we adopted the strategy of
controlling variables to conduct experiments in the LLVIP
dataset, and tested the influence of each module on the final
evaluation index without changing the network structure.
According to Table 2, compared with the single method,
the combination of the two information content judgment
methods improves the image quality obviously, but the
optimal index is still composed of the combination of the
three information content modules. Therefore, we believe
that the three methods of judging the amount of informa-
tion are all helpful to the improvement of the final index,
and the combination of multiple methods is more obvious
for the improvement of the index.

3.3.2 Use diffusion process or not

To demonstrate the effectiveness of the diffusion model,
we perform ablation experiments on the diffusion model.
Specifically, we retain the original network structure but
remove the diffusion process, and we summarize the experi-
mental results in Table 3. On the LLVIP, M3FD, and Road
Scene datasets, it performs well in six categories of metrics:
MI, VIF, Qabf, SD, MS, and DEB. In the TNO dataset,
only the SD index is slightly lower than the model struc-
ture under the removing diffusion process, which proves
that the use of the diffusion model is extremely beneficial
for the generation of high-quality fused image.
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Table 1 Performance of SRGFusion and related methods in four datasets

Method

LLVIP database M3FD database

MI VIF Qabf SD MS-SSIM DEB MI VIF Qabf SD MS-SSIM DEB

RFN-NET 1.98 0.54 0.15 8.37 0.68 39.57 2.83 0.87 0.48 9.38 0.72 37.16
PIAFuse 3.97 1.86 0.63 8.84 0.89 68.43 4.21 1.16 0.64 8.80 0.93 66.99
SDDGAN 3.16 0.89 0.30 9.01 0.64 45.71 3.07 0.71 0.31 9.52 0.65 46.38
SeaFusion 4.11 1.87 0.64 8.41 0.81 64.59 4.02 1.02 0.66 8.41 0.83 68.87
TarDAL 3.42 0.59 0.40 8.54 0.72 52.77 3.37 0.80 0.43 9.26 0.92 54.39
Ours 4.76 1.92 0.65 9.61 0.96 87.61 4.21 1.10 0.63 9.37 0.93 74.83

Method

Road Scene database TNO database

MI VIF Qabf SD MS-SSIM DEB MI VIF Qabf SD MS-SSIM DEB

RFN-NET 1.64 0.56 0.36 8.26 0.72 42.29 2.97 0.82 0.65 9.72 0.71 40.74
PIAFuse 4.42 1.14 0.61 8.13 0.84 68.16 4.74 1.14 0.66 8.95 0.92 67.17
SDDGAN 3.94 0.69 0.42 8.57 0.74 51.14 3.26 0.72 0.39 8.86 0.63 52.24
SeaFusion 4.98 1.10 0.64 8.54 0.69 62.74 4.21 1.22 0.71 8.35 0.94 64.98
TarDAL 3.81 0.76 0.42 8.27 0.79 54.15 3.82 0.87 0.49 9.36 0.91 58.84
Ours 4.56 1.15 0.62 8.83 0.91 77.62 4.41 1.41 0.62 9.44 0.94 69.27

Table 2 Impact of different information modules on
performance(DB represents DB-CNN, EN represents
Entropy, and BR represents BRISQUE)

Modules
MI VIF Qabf SD MS-SSIMDB EN BR

� 4.17 0.88 0.46 8.87 0.62
� 4.02 0.62 0.46 8.79 0.64

� 3.98 0.77 0.47 8.81 0.62
� � 4.33 1.09 0.59 9.26 0.79
� � 4.35 1.16 0.51 9.31 0.75

� � 4.26 1.13 0.54 9.28 0.83
� � � 4.76 1.15 0.65 9.61 0.96

3.4 Performance on High-level

Vision Tasks

In order for prove that the proposed method is more suit-
able for subsequent high-level vision tasks, we tested the
performance of fused image on DeepLab v3+ [32]. To
be fair, the segmentation model uses officially provided
pre-trained weights and we do not retrain on the LLVIP
dataset.

Table 4. shows the results for image segmentation,
which we test on a testset consisting of 40 images, and com-
pare several of the above methods in terms of the common
image segmentation metrics pixel accuracy (PA) and mean
intersection over union (mIoU). Our fused image perform
well in both PA and mIoU, indicating that better segmen-
tation performance can be achieved by assigning different
weights to different semantic regions to ensure that the
fused image still have their features. Therefore, we believe
that supervised learning with semantic information is an
approach that can be further investigated and is beneficial
for subsequent advanced vision applications.

4 Conclusion

In this paper, we propose a semantic information guided
image fusion network based on diffusion model for infrared
and visible image fusion, called SRGFusion. Firstly, the

Table 3 Performance Comparison of Models With
or Without Diffusion (N/SRGFusion stands for
removing diffusion process)

MI VIF Qabf SD MS DEB

Dataset LLVIP database

N/SRGFusion 4.13 1.57 0.52 9.25 0.87 78.24
SRGFusion 4.76 1.92 0.65 9.61 0.96 87.61

Dataset M3FD database

N/SRGFusion 4.08 0.92 0.58 9.31 0.84 69.34
SRGFusion 4.21 1.10 0.63 9.37 0.93 74.83

Dataset Road Scene database

N/SRGFusion 3.97 0.98 0.58 8.76 0.79 70.88
SRGFusion 4.56 1.15 0.62 8.83 0.91 77.62

Dataset TNO database

N/SRGFusion 3.85 1.27 0.63 9.57 0.86 62.41
SRGFusion 4.41 1.41 0.62 9.44 0.94 69.27

Table 4 Performance of the fused image in the
segmentation model

Method RFN-NET PIAFuse SDDGAN

PA(%) 10.34 28.42 37.88
mIoU(%) 19.36 34.58 43.69

Method SeaFusion TarDAL ours

PA(%) 35.61 29.34 38.43
mIoU(%) 42.64 32.56 43.77

preprocessing module is used to pre-fuse the infrared visi-
ble images to shorten the model training time. Then, the
style attention mechanism and diffusion model are used to
generate high-quality fused image. Finally, IQDM is used
to generate supervision information and compute the loss
to ensure model training. In summary, we investigate a dif-
fusion model-based image fusion framework and attempt

7



to bypass complex fusion rules to directly generate high-
quality fused image for applications to high-level vision
tasks. In the future, we may explore additional lightweight
network structures to meet the needs of real-time image
fusion.
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