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Abstract

In order to efficiently retrieve the same or similar fabric samples, a fabric image retrieval model based

on deep hashing is proposed. The model is improved on the basis of MobileNetV1, and the performance

of the model is improved by combining the h-swish activation function and attention mechanism

module. The hashing method is used to solve the problem of low feature matching speed caused

by high dimensional feature output. By combining the label information and similarity information

of the images, a new loss function is constructed, which solves the problem of low model accuracy

caused by the large feature difference between similar samples and the small feature difference between

heterogeneous samples in fabric images. The experimental results on self-built fabric image dataset

showed that the feature extraction time of the proposed algorithm was 0.25ms, and the MAP reached

93.2%, which can take into account the fabric retrieval speed and improve retrieval accuracy at the

same time, and has certain application prospects.

Keywords: Fabric image, Similarity loss, Image retrieval, MobileNet, Deep hashing

1 Introduction

With the development of the industry and the
improvement of people’s living standards, con-
sumers are no longer limited to the actual demand
of commodities, but pursuing more attractive and
diversified products. In order to attract more buy-
ers, the textile industry usually prints various
patterns on fabrics, so ”multi-variety” is increas-
ingly becoming a new production mode of textile
industry. The enterprises have accumulated a large
amount of historical production data under this
production mode. However, in the process of imi-
tation of new fabrics, it is usually necessary to

manually analyze the technological parameters of
the fabrics and find the same or similar fab-
rics from the warehouse or historical production
records. Therefore, how to find the required fabrics
from this huge historical data is a great concern
of enterprises[1].

At present, the fabric retrieval method used
in the industry is based on text (TBIR[2]). This
method uses manual annotation and query, which
is not only labor-consuming and time-consuming,
but also has strong subjectivity, and it is difficult
to meet the requirements of textile industry for the
retrieval accuracy and speed of fabrics. Therefore,
the content-based image retrieval (CBIR) method
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has emerged. In the existing research, SHEN et
al.[3] built a private dataset containing 972 kinds
of fabric images, and used various deep convo-
lution neural network models such as VGG to
search, finally achieved an accuracy of over 90%.
Abdul Haris Rangkuti et al.[4] used VGG19 as
feature extractor, and used Manhattan, Euclid,
Chebyshev and other distance measurement mod-
els to study 56 traditional styles, and the accuracy
reached over 90% on the self-made fabric dataset.
Silvester Tena et al.[5] built a private fabric image
dataset containing a large number of complex
patterns, and conducted experiments with deep
convolution neural networks such as ResNet101
and InceptionV3 and finally the recall of top5
reached 84.08%. It is effective to use CNN for
fabric retrieval, but the high-dimensional output
characteristics of networks such as ResNet101 slow
down the retrieval speed. Xiang J et al.[6] intro-
duced soft similarity into small fabric datasets,
and a CNN network is designed for fabric image
representation. Zhang N et al.[7] used the approx-
imate nearest neighbor search Annoy method to
measure the similarity, and the aggregation convo-
lution of different layers is used to prove the fabric
image, by combining the color and texture fea-
tures, good results have achieved on the self-made
dataset. However, there are many kinds of fabric
image datasets, and the difference between hetero-
geneous samples is small, so it is easy to cause low
accuracy due to too small feature difference.

In order to solve the above problems, this
paper combines CNN with hash coding, and uses
the low-dimensional hash code as the feature
representation of the image, so that the model
can obtain the high-order semantic features of
the image while having a low output dimension.
At the same time, starting with the method of
using tag information, a new loss function is pro-
posed to narrow the feature distance between each
pair of similar samples and expand the feature
distance between each pair of different samples,
and the retrieval accuracy is further improved by
generating high-quality hash codes.

2 Related work

2.1 Overview of deep hashing

Deep hashing combines feature extraction with
hash expression, so that the two processes can

be carried out at the same time, thus effectively
retaining the original feature information when
the features are converted into hash codes. There
are many kinds of deep hashing network models,
such as the hash network model based on sin-
gle input sample (mainly applying classification
loss), the hash network model based on paired
sample input (mainly applying similarity loss) and
the hash network model based on triple (mainly
applying triple loss).

(1) Hash network model based on single input
sample: The deep hashing method of this model is
improved directly on the image multi-classification
model, such as adding a hash layer between the
last two layers. A hash layer usually includes FC
layer, activation function and thresholding layer.
The input of the hash layer is the image features
extracted from the previous layer, and its output is
the input of the next fully connected layer. In the
process of model training using classification loss
such as cross entropy, the hash layer can also learn
the mapping relationship from image features to
hash codes, and the structure of the hash layer is
shown in Fig.1.

Fig. 1 Hash layer structure

The thresholding layer can be constructed
from this: when a sample enters the hash layer
through CNN, the expected characteristic value
should basically tend to 0 or 1, for example, the
last input vector should be similar to the distri-
bution of [0.1,0.9,0.8,0.005,0.995], then the vector
can be simply converted into hash code at this
time, for example, in the following two ways: 1.
The average value is used as the threshold value.
Firstly, the method accumulates all the elements
in the output vector, and then takes the average
value as the threshold. 2. A certain number as the
threshold value. Since the values are distributed
at both ends of 0 and 1, a number such as 0.5 can
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be directly set as the threshold. In the threshold-
ing layer, when the vector element value is greater
than the threshold value, it is 1, otherwise it is
0, so that the input features are transformed into
hash codes consisting of 0 and 1.

(2) Hash network model based on paired sam-
ple input: Different from single-input hash net-
work model, this model is often constructed with
two-way network structure, and the weights of
two-way networks are shared during model train-
ing. The model trains two image samples as input
at the same time, and then puts the obtained hash
code into the loss function, and calculates the pair-
wise similarity loss according to whether the labels
are the same or not.

(3) The hash network model based on triples:
This model is similar to the hash network model
input by paired samples, except that the two
paths are changed into three paths, and the hash
mapping relationship between the same class and
different classes is learned at the same time. How-
ever, this method is limited by the selection of
triples, therefore, there is no related research in
this paper.

2.2 Network structure

In MobileNet series, MobileNetV1 proposed deep
separable convolution, which greatly reduced the
number of parameters of the model. MobileNetV2
proposed the inverse residual block based on
V1 to improve the performance of model, while
MobileNetV3 proposed h-swish[8] based on V2,
which reduced the cost of calculating Sigmoid
in swish and applied some SE (Squeeze-and-
Exclusion)[9] modules. From the results in this
paper, the performance of V3 is better than that
of V1 and V2.

Compared with the structure of MobileNetV1,
NMV (New MobileNetV1) proposed in this paper
readjusts some structures, and adds h-swish acti-
vation function and SE mechanism module. The
structure diagram of MobileNetV1 model is shown
in Fig.2, and the structure diagram of NMV
proposed in this paper is shown in Fig.3:

It can be found from Fig.3 that the improve-
ment of NMV mainly includes the following
points:

(1) Inspired by the innovative thought of
Inception[10], since two 3×3 convolution kernels
can replace one 5×5 convolution kernel in order to

Fig. 2 The structure diagram of MobileNetV1

Fig. 3 The structure diagram of NMV

reduce the parameters, one 5×5 convolution ker-
nel can also replace two 3×3 convolution kernels in
order to reduce the number of convolution layers.
The reason why MobileNetV2 proposes the inverse
residual block is that the gradient will disappear
when V1 simply overlaps convolution layers, and
if the convolution layers are too few, the feature
extraction will not be sufficient. Therefore, a 5×5
convolution kernel is used in this paper.

(2) In order to get better results, h-swish pro-
posed in MobileNetV3 is used instead of Relu
activation function, and SE mechanism module is
applied. The effectiveness of the two methods has
been confirmed in related papers.

In order to promote implementation, this
paper gives a detailed NMV model structure, as
shown in Table 1:

In the NMV structure of Table 1, Conv2D uses
standard 3×3 convolution. DepthSeqConv repre-
sents deep separable convolution, in which h-swish
is applied after using deep convolution and point
convolution. Use means that after the end of the
current part, the SE mechanism module is added,
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and GAP means global average pooling. For the
convenience of viewing, all layers above GAP in
the network are aggregated and represented by
Features layer, in which the structure of NMV is
shown in Table 2.

Table 2 The structure of NMV network

Layer Input Output

Features 3*224*224 512*7*7
GAP 512*7*7 512*1*1
1024FC/h-swish 512*1*1 1024*1*1
860FC/h-swish 1024*1*1 860*1*1

NMV - DH (New MobileNetV1-Deep Hashing)
is a model that inserts the hash layer in a -DH way
based on NMV, and all the models that insert the
hash layer in this way in the experiment end with-
DH. The improved NVM-DH model structure is
shown in Table 3.

Table 3 The structure of NMV network

Layer Input Output

Features 3*224*224 512*7*7
GAP 512*7*7 512*1*1
1024FC/h-swish 512*1*1 1024*1*1
860FC/h-swish 1024*1*1 48/64/128*1*1

In the improved NVM-DH model, the Hash1
layer uses the classification loss function to
directly calculate the loss after the output of this
layer, while the Hash2 layer uses the output of
paired images to calculate the similarity loss. In
the structure of NMV-DH network, the loss func-
tion used mainly includes classification loss and
similarity loss.
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3 Algorithm description

3.1 Construction of Classification

loss function

A labeled image sample has class label informa-
tion. The common method of using class label
information is to regress the labeled feature vec-
tor, and directly regress its code to a matrix in
the form of one-hot label, so as to directly calcu-
late the regression classification loss, such as the
NMV-DH structure above. At this time, the cross
entropy loss is shown in Formula 1:

L0 = −

N
∑

i=1

{qilnci + (1− qi)ln(1− ci)} (1)

In Formula 1, q i and c i are obtained by the
following steps:

(1) Firstly, construct a 1024 orthogonal matrix
Q=[q 1,. . . ,q n ] (equivalent to one-hot matrix);

(2) At this time, the eigenvector matrix
C=[c 1,. . . ,c n ] of N samples has been obtained
from the Hash1 layer, and the dimension of each
c i is 1024, where the label of each c i correspond-
ing sample is y i;

(3) Then choose a q i for each different y i, and
the q i corresponding to the same y i is the same.
Therefore, every c i labeled y i can be matched to
its corresponding q i.

There is a problem with the constructed cross
entropy loss function, that is, when the output
coding features return to a matrix in the form
of one-hot labels, the Hamming distance between
the real labels corresponding to any two vectors
is only 2. For example, vector A and vector B
regress to [0,0,0,0,0,0,1,0] and [1, 0, 0, 0, 0, 0]
respectively, which means that when they regress
perfectly, their Hamming distance is only 2. It can
easily cause the Hamming distance between the
eigenvectors of classes to be too small, and it is
difficult to normalize the eigenvectors of classes.

There is a problem with the constructed cross
entropy loss function, that is, when the output
coding features return to a matrix in the form
of one-hot labels, the Hamming distance between
the real labels corresponding to any two vectors
is only 2. For example, vector A and vector B
regress to [0,0,0,0,0,0,1,0] and [1, 0, 0, 0, 0, 0]
respectively, which means that when they regress
perfectly, their Hamming distance is only 2. It can

easily cause the Hamming distance between the
eigenvectors of classes to be too small, and it is
difficult to normalize the eigenvectors of classes.

In order to solve the above problems, this
paper proposes a loss function which uses
Hadamard[11] matrix to expand the Hamming dis-
tance between classes, and calls it HL (Hadamard
Loss), and applies it to Hash1 layer.

Hadamard matrix is composed of +1 and -1
elements, which is an orthogonal square matrix.
The so-called orthogonal square matrix means
that any two rows (or columns) are orthogonal,
and the sum of squares of all elements in any
row (column) is equal to the order of the square
matrix, which is mainly composed of multi-order
+1 and -1 elements, Hadamard matrix of order 2
can be expressed by formula 2: if it needs to be
extended to a matrix of order 4, it is expressed
by formula 3, and the general form is shown by
formula 4, where A and K represent the order:

M2 =

[

1 1
1 −1

]

(2)

M4 =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









(3)

MK =

[

MA MA

MA −MA

]

(4)

According to the properties of Hadamard
matrix, it can be obtained that the inner product
of any two column vectors (such as column vec-
tors v(0)(1,1,1,1) and v(1)(1,-1,1,-1) in M 4) is 0,
then the Hamming distance D(v(a),v(b)) of the
two vectors (v(a),v(b)) is 1/2*(K-0)=K/2, K rep-
resents the matrix order, which is set to 1024 in
the experiment. The following properties can be
obtained:

Property 1: The Hamming distance of any two
columns of the above matrix M K is the same, and
it is K/2.

Property 2: It can also be extended that the
matrix [M K,-M K] also satisfies property 1.

The HL steps constructed in this paper are as
follows:

(1) Firstly, get the eigenvectors c=[c 1,. . . ,c n
] of N samples from the Hash1 layer, where the
dimension of each c i is K, and the label of each
c i corresponding sample is y i;

5



(2) After that, construct Hadamard matrix
with dimension K, get a matrix with [M K,-M K
]=[m 1,. . . ,m 2K], and change all -1 to 0 , and
choose a m i for each different y i, then the m i
corresponding to the same class is the same. m i
is used as the label information and c i is used as
the predicted feature, the corresponding content
in Formula 1 is replaced, and the HL classification
loss function L 0 is obtained as shown in Formula
5:

L0 = −

N
∑

i=1

{milnci + (1− qi)ln(1− ci)} (5)

3.2 Construction of similarity loss

function

The similarity loss can be constructed for pairs
of input images to ensure the similarity relation-
ship between sample labels. A typical similarity
loss or pairwise loss function can make similar
images have similar hash codes (small Hamming
distance), while different images have different
hash codes (large Hamming distance). This paper
mainly introduces two similarity loss functions.

(1) DSH[12]: This is a particularly classic simi-
larity loss construction method. This method uses
image pairs and corresponding similarity labels to
train CNN, learns the class binary image represen-
tation that keeps similarity by carefully designing
the loss function, and then quantifies the output
of CNN to generate binary codes for new images.
Its loss function design is as follows:

For a pair of images (I (i,1),I (i,2)), and
the corresponding binary network outputs
(i,1),b (i,2), if they are similar, define y=0, oth-
erwise, define y=1. The loss definition of this pair
of images is shown in Formula 6:

L =
1

2
(1−y)D(bi,1−bi,2)+

1

2
ymax(m−D(bi,1−bi,2), 0)

(6)
In formula 6,D (•)represents the distance

between b (i,1) and b (i,2), and m is the threshold
parameter of the distance. Only when the distance
is within the threshold, the diffenrent pairs will be
considered as contributing to the loss function. In
the references, its values are set to 1, 2, 3 and 6,
and this paper uses the highest precision 2 as the
parameter.

Euclidean distance is used when defining the
distance. If the binary constraint is completely
ignored, the difference between Euclidean space
and Hamming space will lead to suboptimal
binary code. The common scheme is to use Sig-
moid or Tanh activation function to make the
output approach the required value. However,
using this nonlinear function will inevitably slow
down or even limit the convergence of the network.
In order to overcome this limitation, L1 norm is
used to regularize the network output, and make
it close to the discrete value (-1,1).

Then, N training pairs are selected from image
pairs during the training, and L2 normal form is
used for Euclidean distance. Combined with For-
mula 6, the overall loss DSH can be defined as
follows, as shown by Formula 7:

L1 =
∑N

i=1

{1

2
(1− y) ∥bi,1 − bi,2∥

2
2

+
1

2
yi max

(

m− ∥bi,1 − bi,2∥
2
2 , 0

)

+ α
(

∥|bi,1| − 1∥1 + ∥|bi,2| − 1∥
h

)

}

(7)

In formula 7, ∥•∥2,∥•∥1,|•| are L2 norm of vec-
tor, L1 norm of vector, and absolute value opera-
tion of elements, respectively, and α is a weighting
parameter to control regularization intensity. In
references, its values are set to 0, 0.1, 0.01 and
0.001, in this paper, 0.1, the highest precision in
the literature, is used as the parameter. In the
selection of sample pair, the sample pair consists
of a single sample and other samples because the
total number of training samples is not large.

(2) CL (Cauchy Loss): It is also a loss function
designed by using the similarity of image pairs.
In this paper, another similarity loss function CL
(Cauchy Loss) which uses Cauchy distribution to
improve performance is proposed, and it is applied
to Hash2 layer. The design is as follows:

First, given a set of trained image pairs, which
are represented by {(xi, xj , sij : sij ∈ S}, then the
generated hash code H = [h1, h1, ..., hN ] for N
samples in a set of images, its maximum poste-
rior estimation can be expressed as logP (H | S)
.logP (H | S) is proportional to logP (S | H)P (H)
by using Bayesian learning framework, where the
likelihood function logP (S | H) can be expressed
as Formula 8, and Formula 9 can be obtained from
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it.

P (S | H) =
∏

sij∈S [P (Sij | hi, hj)]
wij (8)

=

logP (S|H)P (H)
∑

sij∈S

wij logP (Sij | hi, hj)+

N
∑

i=1

logP (hi)

(9)
Where W is the weight used to represent the

information between similar pairs of samples and
dissimilar pairs, which is represented by Formula
10:

Wij =

{

|S|
|S1|

, sij = 1
|S|
|S0|

, sij = 0
(10)

S1 = {sij ∈ S : sij = 1} represents a set of
similar pairs, S0 = {sij ∈ S : sij = 0} represents
a set of dissimilar pairs, P (Sij | hi, hj) is the
conditional probability of a pair of hash codes
(hi, hj) given by the similarity label Sij, which is
expressed by Formula 11:

P (sij | hi, hj)

{

σ (d (hi, hj)) , sij = 1
1− σ (d (hi, hj)) , sij = 0

= σ (d (hi, hj))
sij (1− σ (d (hi, hj)))

1−sij

(11)

σ is a well-defined probability function, and the
sigmod function is commonly used. In this paper,
the modified Cauchy distribution function is used
to define σ. The original Cauchy distribution is
expressed by Formula 12. Where x0 is the position
parameter used to represent the peak value of the
distribution, δ is the scale parameter in Cauchy
distribution, and the modified formula is repre-
sented by 13, where γ is used to control different
Hamming distance radius, the value range of this
value can be [2, 200]. In this paper, reference is
made to related literature[13] to set it to 20, and
the formula 14 is obtained.

f(x;x0, δ) =
1

Π

[

δ

(x− x0)2 + δ2

]

(12)

σ(d(hi.hj)) =
γ

γ + d(hi, hj)
(13)

P (hi) =
γ

γ + d(|hi, 1|)
(14)

The value d(hi,hj ) of Hamming distance
and the normalized Euclidean distance can be

expressed by Formula 15:

d(hi, hj) =
K

4

∥

∥

∥

∥

hi

|hi|
−

hj

|hj |

∥

∥

∥

∥

2

2

=
K

2
(1−cos(hi, hj))

(15)
We want to maximize the likelihood estima-

tion, that is, minimize the negative log-likelihood
function. Then, in Hash2 layer, by substituting the
above formula into Formula 9, the loss function
CL that we finally want to minimize is expressed
as L+Q, where L is shown by Formula 16 and Q
is shown by Formula 17:

L =
∑

sij∈S

wij(sij log
d(hi, hj)

γ
+ log(1 +

γ

d(hi, hj)
))

(16)

Q =

N
∑

i=1

log(1 +
d(|hi| , 1)

γ
) (17)

3.3 NMV-DH-HL-CL model

The model structure of NVM-DH-HL-CL com-
bined with loss function HL+CL is shown in Fig.
4.

Fig. 4 NVM-DH-HL-CL model structure diagram

4 Experiment and analysis

4.1 Experimental data

4.1.1 Experimental environment

In the experiment, the model framework is
Pytorch1.4, the cpu model is i7-10700F, the graph-
ics card is GTX1080ti, the operating system is
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Ubuntu18.04, the learning rate for reference is
1E-4, and the batch-size is 64.

4.1.2 Dataset and data processing

In academic research, there is still no universal and
open dataset of fabric images. Therefore, a fab-
ric image retrieval dataset ZSTU-Silk-Set is made
according to the real factory. This dataset contains
fabric images of more than 3,500 kinds of fabrics,
of which 1,720 are labeled, totaling 8,600, and the
remaining 1,800 classes include 13,888 images. In
order to simulate the real application scene, dif-
ferent photos were taken for each fabric, and 5-10
images were collected for each fabric under differ-
ent conditions, and the collection conditions were
changed from the following angles.

(1) On the shooting equipment: using various
mobile phone models, such as Android, iOS, etc.,
the mobile phone configuration is also from low-
end to high-end to realize the diversity of image
acquisition.

(2) In the shooting environment: choose to
shoot a fabric in different environments and at
different times.

(3) In the shooting view: the fabric can be
rotated to capture images from different angles;
take photos with far and near perspectives, so as
to collect some images with different scales; in the
actual process, some fabric images with sundries
will be photographed. At the same time, in the
selection of fabric images, fabric images with dif-
ferent repetition degree of meta-texture will be
photographed according to the actual situation.

All 1720 kinds of fabrics are merged into the
dataset, and the images of the same fabric will
be labeled with identical labels. During training,
1/2 of 1720 samples were randomly selected as the
training set, and the rest were used as the test
set. Therefore, there are 860 kinds of fabric images
composed training sets and 860 kinds of fabric
images composed testing sets. In the test process,
1/5 of each class in the test set will be randomly
selected as the query image, while the search set
will be composed of the remaining 4/5 images and
the remaining images of more than 1800 classes.

4.1.3 Evaluation indicators

CBIR has many evaluation indicators, all of which
are handled according to a set of guidelines. Some

of the most common evaluation indicators are used
in the following literature:

(1) Image retrieval average precision (AP) and
image retrieval mean average precision (map),
which are calculated as shown in formula 18:

AP =
1

N

∑N

i=1
i

position(i) (18)

Where N indicates the number of the top K
images of a single class containing this class, and
position(i) indicates the position of the ith image
in the search result list. MAP is the average value
of all retrieval picture precision.

(2) As an indicator, the Recall is used to indi-
cate the number of correct class in the top K
samples. Its calculation is shown in Formula 19:

Recall =
A

P
(19)

In Formula 19, A represents the number of sim-
ilar images retrieved, and P represents the total
number of all similar images in the dataset.

4.2 Experiment and result analysis

4.2.1 Precision experiment of NMV

In order to find the backbone network which is
suitable for this task, and to explore the feasibility
of NMV structure. In this paper, the above-
mentioned fabric image datasets and related algo-
rithms are used for the following experiments.
In this experiment, the last classification layer
is removed from the backbone network during
retrieval, and the output of the penultimate layer
is used for retrieval. The experimental results of
the model are shown in Table 4:

Table 4 shows the retrieval MAP and recall of
different models. Some conclusions are drawn as
follows by analyzing these data:

(1) Among these models, the output dimension
of VGG19 is the highest, but the effect of the high-
est dimension is the worst. The output dimension
of Inception v3 is 2048, but the accuracy is only
81.7%. Therefore, in this task, the high output
dimension does not mean the high experimental
accuracy.

(2) ResNet101 is 51 layers deeper than
ResNet50, but the MAP is only increased by 0.4%,
while ResNet152 is 101 layers deeper, but the
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MAP value is 4% lower than ResNet50. It is con-
sidered that the main reason is the phenomenon
of over-fitting.

(3) DenseNet169 has the highest accuracy, but
it is only 0.2% higher than DenseNet121, while
DenseNet201 has lower accuracy after increasing
the number of layers. DenseNet series has higher
accuracy than ResNet series, because DenseNet
series has the characteristics of feature reuse,
which alleviates the influence of over-fitting. How-
ever, when DenseNet201 uses dropout of 0.2 or
0.5, the accuracy is not much different, so it is
found that the deep models inevitably appear
over-fitting.

(4) With the version changes, the effect of
MobielNet series is gradually improved, especially
MobileNetv3 small-1.25, whose accuracy is only
1.1% lower than that of DenseNet169, but the
difference between them in the number of model
parameters is at least more than three times.
Therefore, it can be judged that this task is more
suitable for lightweight models, because such mod-
els not only have fast feature extraction speed,
but also are less prone to over-fitting. However,
because the accuracy of MobileNet series is lower
than that of DenseNet121 network model, it is
speculated that there is the problem of insufficient
feature extraction, and it also shows that cross
entropy loss is not completely suitable for such
tasks.

(5) At the same time, it is found that Shuf-
fleNet series, MoblieNet series and NMV model
have good effects in this experiment, which proves
that deep separable convolution can be used in
this task.

(6) From the experiment, it is also found
that MobileNet series performs well in this
experiment, but the residual block of ResNet
doesn’t seem to have a good effect. At the same
time, MobileNetV2 doesn’t improve the accu-
racy of MobileNetV1 much, which means that
MobileNetV2 has a general effect compared with
the new inverted residual block in MobileNetV1.
This shows that in this task, the retrieval accu-
racy will not be affected if the model doesn’t use
residual structure.

(7) It is also found that the accuracy of
MobileNetv1 is only 78.8%, while that of NMV
is 81.4%, and the MAP value of MobileNetv3
small-1.25 has exceeded 82%. Therefore, it is

9



assumed that it is effective to apply h-swish and
SE mechanism modules in this task.

4.2.2 Precision comparison experiment

of different loss functions

Cross Entropy and HL can be used to represent
classification loss, while DSH and CL can be used
to represent similarity loss. At the same time, the
corresponding effects of different lightweight net-
work structures are completely different. In order
to explore the effects of different loss functions and
different lightweight models, this paper designs
relevant comparative experiments, and the results
are shown in Table 5.

Table 5 shows the retrieval MAP and Recall
under different methods. By analyzing these data,
some conclusions are drawn as follows:

(1) The accuracy of NMV-DH+HL+CL model
is 93.2%. Compared with the 1024-dimensional
NMV model in the last experiment, NMV-DH is
at least 10% higher in MAP and nearly 13% higher
in Recall. The result shows that the combination
of HL+CL is very effective, and the combination
of HL+CL is more effective than that of Cross
Entropy +DSH.

(2) It can be seen from the experimental
results, compared with MobileNetV3 small-1.25-
DH and Shuffle ETV2 1.0-DH, the accuracy of
NMV-DH+HL+CL is higher, which indicates that
NMV-DH is more suitable for a loss function
combination like HL+CL, and further proves the
effectiveness of NMV-DH model in this task.

(3) NMV-DH+DSH, a model trained by simi-
larity relation, has a slightly worse effect than the
model directly using Cross Entropy loss. However,
both CL and DSH can be used as a compensa-
tion method to improve the model using Cross
Entropy loss, and the effect is remarkable. With
this compensation method, MobileNetV3 small-
1.25-DH, shuffleNetV2 1.0-DH and NMV-DH all
directly surpass the original model without adding
-DH layer. This shows that in this task, classifi-
cation loss may be more effective than similarity
loss, and the combination of classification loss and
similarity loss can achieve better performance.

4.2.3 Visual contrast experiment of

different loss functions

In order to further explore the performance of
NMV-DH with different loss functions, some T
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visual experiments were carried out. The results
are shown in Fig.5, 6, 7, and 8. Unmarked images
represent query images (there are only 4 similar
samples in the database), marked images repre-
sent results, checkmarks represent right, and red
crosses represent wrong.

Fig. 5 HL+CL experimental result

Fig. 6 DSH+ Cross Entropy experimental result

Through the analysis of the above experi-
mental results, some conclusions are drawn as
follows:

(1) The method of HL+CL will search another
complete class after searching all the samples
in the database, while DSH+ Cross Entropy is
more likely to involve other similar classes. This
shows that the HL+CL method can classify more
effectively than the DSH+Cross Entropy method,
which is also in line with the effect that HL
method hopes to achieve after improving Cross
Entropy, that is, the features of samples within a

Fig. 7 CL experimental result

Fig. 8 DSH experimental result

class can return to the same vector by expanding
the feature distance between classes.

(2) The background color and texture of sam-
ples between classes of this dataset are similar,
and the gap between samples within classes is
not particularly large. Therefore, it is speculated
that we don’t need a deep network structure to
extract particularly complex features, but should
pay more attention to how to separate heteroge-
neous samples, which should be the reason why
CL or DSH can improve the effect.

(3) Although the CL method has a high error
rate, the background color and texture of the sam-
ples obtained by searching are similar from the
perspective of the naked eye. However, this is not
the case for DSH, which may be related to too
many classes and low collision rate of samples
(this is a common problem of similarity loss func-
tion). Although CL is also low in collision rate,
the experimental accuracy is higher.
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4.2.4 Precision comparison experiment

of NMV-DH+HL+Cl

After the above experiments, it is found that
NVM-DH with HL and CL has very high accu-
racy. In order to explore the different performance
between this method and other mainstream deep
hashing methods, the following experiments are
designed. In order to compare the results conve-
niently, 128-dimensional outputs are selected and
the experimental results are shown in Table 6
below:

From the experiment in Table 6, it can be
found that the model using NMV-DH as the back-
bone network is better than the model using
AlexNet-DH in this paper, and the effect of
HL+CL is better than other loss functions when
using the same network structure. When NMV-
DH is used, the proposed method improves the
MAP and Recall by 4.6% and 12.9% and 14.0%
compared with DPN and DPSH respectively.

4.2.5 Experiment of exploring the

effect of NMV-DH+HL+Cl

In the HL+CL loss function, in order to under-
stand the contribution degree of the loss function
more clearly and explore the influence of different
dimensions on NMV-DH, the following experi-
ments are designed, and the results are shown in
Table 7 below: By analyzing the data in Table 7,
we get some conclusions as follows:

(1) In NMV-DH model, the output of 128
dimensions is better than that of 64,48 dimen-
sions.

(2) When used in combination, whether DSH
is matched with HL or CL is matched with HL,
the performance of HL can be greatly improved.
However, the performance of CL is inferior to that
of HL when used alone.

(3) When CL loss function is used alone, the
changes of MAP and Recall are not particularly
obvious in each output dimension of 48, 64 and
128. However, when HL is used alone, the 128-
dimension HL increases by 2.2 percentage points
on MAP and 3.6 percentage points on Recall. This
shows that HL is more sensitive to the output
dimension than CL.
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4.2.6 Dominant visualization

experiment of NMV-DH+HL+Cl

Based on NMV-DH+HL+CL, Fig.9 shows some
visual experimental results. Unmarked images
represent query images, marked images repre-
sent results, checkmarks represent right, and red
crosses represent wrong.

Fig. 9 NMV-DH+HL+CL experimental result

Through the analysis of the experimental effect
diagram in Fig.9, some conclusions can be drawn
as follows:

(1) This method can effectively deal with the
influence of scale change.

(2) This method is not affected by color and
background to some extent.

(3) This method shows good performance in
both simple texture fabric images and complex
texture fabric images.

4.2.7 Experiment of feature extraction

speed

The purpose of constructing NMV is not only
to obtain a lightweight network suitable for this
experiment, but also to spend less time on feature
extraction. In order to study the feature extraction
time of different models, this paper has carried
out the following experiments: firstly, load a model
with Pytorch, then read and preprocess a sin-
gle picture, then start network model to extract
features and start time at the same time, and
finally finish timing. Using different models, but
similar code writing for testing, the single image
feature extraction speed between different models
is shown in the following Table 8:
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Table 8 Feature extraction time
for different models

Different models time/ms

ResNet50 0.151
DenseNet121 0.321
Inception v3 0.284
MobileNetV3 small-1.25 0.061
shuffleNetV2 1.0 0.035
NMV 0.025

Table 9 Feature matching times
for different distance functions

Different function X2 = 1e6,
X1=128,time/ms

Euclidean Distance 30.6
Manhattan Distance 51.9
Cosine Similarity v3 13.5
Chebyshev distance 19.3
hamming distance 1.0 3.3

From the results in Table 8, we can find that
the extraction speed of network structure features
such as NMV is very fast, and the time spent
is almost 1/16 of that of DenseNet121, which is
very suitable for application in the dataset of this
paper.

4.2.8 Experiment of feature matching

speed

The speed of image retrieval also depends on the
feature matching process after feature extraction.
The output characteristics of deep hashing can be
represented by binary coding, which can meet the
requirements of hamming distance, and this is the
biggest advantage of deep hashing compared with
other non-hashing methods. In order to explore
the speed of NMV-DH model in feature matching,
this paper simulates feature matching and uses
some commonly used codes to efficiently calculate
time. In the experiment, X1 is used to represent
the vector dimension of the output, X2 is used to
simulate the number of images in the database,
and the experimental results of the final speed are
shown in Table 9:

It can be seen from Table 9 that when the
characteristic dimension of the output is 128, the
calculation time of hamming distance is basically
1/10 of Euclidean Distance, 1/17 of Manhattan
Distance and 1/4 of Cosine Similarity. Therefore,

using Hamming distance for feature matching can
achieve great speed advantage in fabric image
retrieval.

5 Conclusion

Aiming at the problem of efficient fabric image
retrieval, this paper constructs NMV-DH network
model, which improves the speed of feature extrac-
tion and feature matching. A new loss function
HL+CL is proposed based on label information,
which reduces the influence of large feature dif-
ference between similar samples and small fea-
ture difference between heterogeneous samples on
fabric retrieval accuracy. Among them, by con-
structing Hadamard matrix, a common center
vector is allocated for similar output features, so
that the Hamming distance between output fea-
ture vectors of different fabric classes is expanded
by using class information. By constructing sim-
ilarity loss function, the similarity between pairs
of samples is used for hash coding to minimize
the distance between each pair of similar fabric
samples and maximize the distance between each
pair of different fabric samples. The experimental
results showed that this method can consider both
retrieval accuracy and retrieval speed, and has
certain practical application value. In the future,
the method of decision tree will be integrated to
realize more efficient fabric image retrieval.
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