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ABSTRACT Owing to the impact of vibration on the carrier of a car-mounted camera, video images are 

shaking, resulting in decreased or failed recognition accuracy based on visual-target detection. To solve this 

problem, a video stabilization algorithm based on grid motion statistics and an adaptive Kalman filter is 

proposed. To satisfy the real-time and precision requirements of the vehicle video stabilization algorithm, the 

Oriented Fast and Rotated Brief (ORB) feature point detection algorithm was selected to detect and describe 

the obtained video frames. In addition, the accuracy of the motion estimate is increased by deleting the 

erroneous match points using an erroneous match-removal algorithm based on grid motion statistics (GMS). 

The matching accuracy of the GMS-based feature matching algorithm increased by 2.3% and 4.1% compared 

to conventional feature-matching algorithms based on scale-invariant feature transform (SIFT) and ORB, 

respectively. However, the matching time between adjacent video frames was reduced by 76% and 16%, 

respectively. Considering the possible jitter of the vehicle-mounted camera, an adaptive Kalman filtering 

algorithm was used to smooth the acquired motion trajectory and solve the problem of classical Kalman 

filtering being sensitive to the initial value. The mean Peak Signal-to-Noise Ratio (PSNR) after stabilization 

rose by 10.27 dB in comparison to the video stability before stabilization. Therefore, this algorithm exhibits 

good stability. 

INDEX TERMS   Digital image stabilization; ORB; Grid motion statistics; Adaptive Kalman filtering;  

PSNR;  

I. INTRODUCTION 

Visual-based image perception technology is an important 

method for unmanned vehicles to perceive changes in their 

surrounding environment [1]. The harsh road conditions of 

underground coal mines and the inherent vibration of the 

vehicle itself can result in an vehicle camera capturing 

shaky images, which adversely affects the accuracy of the 

subsequent image recognition. Therefore, video 

stabilization technology is required to remove shaking in a 

video [2,3]. Video stabilization is the process of improving 

the video quality by eliminating shaking. They can be 

divided into mechanical, optical, and digital stabilization 

systems [4]. Mechanical stabilization devices generally 

have larger sizes and higher space requirements for 

stabilization, making them typically used in airborne, 

marine, and large-scale weapon guidance systems. Optical 

stabilization has the characteristics of small size, light 

weight, and no need for a stable platform, which can 

effectively eliminate or alleviate video shake and is often 

used in medical equipment, space observation, aviation, 

and military fields [5-6]. However, they are expensive, 
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require high-quality materials, and have complex system 

architectures. To maintain accuracy, color discrepancies 

must be removed before usage and stability must be 

rectified regularly. This is not suitable for stabilizing 

cameras in underground coal-mine operations. Digital 

image stabilization (DIS) technology utilizes image-

processing techniques to analyze images and obtain the 

original motion trajectory of the camera. Through motion 

smoothing, active motion in shaking videos is retained, 

whereas random shaking in video sequences is eliminated, 

resulting in a stable video sequence [7]. Because of its 

advantages of low cost and lack of additional mechanical 

structures, many domestic and foreign scholars have 

conducted extensive research on DIS [8]. 

Based on the use of motion models, digital image 

stabilization (DIS) algorithms can be divided into two main 

categories: 2D and 3D DIS algorithms [9-10]. The 2D 

stabilization algorithm tracks the movement of pixels in the 

image to obtain the offset between adjacent frames, 

accumulates the camera motion trajectory, and then removes 

the jitter component in the motion trajectory through motion 
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smoothing. Finally, an affine transformation is applied to the 

video frames to generate a stable video [11]. The 3D 

stabilization algorithm uses the Structure from Motion (SFM) 

method to estimate the three-dimensional information 

structure of the image and then performs global motion 

estimation to obtain the motion trajectory of the camera. The 

computational complexity of SFM is high and requires 

sufficient motion information from the video. In addition, 

when parallax information is lacking in a video, it is difficult 

to construct an accurate three-dimensional scene. Therefore, 

for most scenarios, the 2D stabilization algorithm is more 

robust and has a wider range of applications. 

Currently, research on DIS has mainly focused on the 

motion estimation and motion-smoothing stages. Shujiao et al. 

[12] proposed using the BRISK operator to extract feature 

points between adjacent frames in a video image, and 

established matching relationships based on the Hamming 

distance between descriptors to obtain a rough estimate of the 

motion vector. However, the matching relationship 

constructed based on the Hamming distance is a coarse match, 

which can easily lead to inaccurate motion estimations when 

there are mismatching points. Kejriwal et al. [13] proposed a 

feature point tracking-based image stabilization algorithm that 

extracts feature points using the Shi-Tomasi algorithm and 

then tracks and matches the feature points in adjacent frames 

using the Lucas-Kanade optical flow to obtain motion vectors. 

However, the optical flow method is based on the assumption 

of constant brightness between adjacent frames and is 

significantly affected by changes in the lighting conditions. 

Rodriguez et al. [14] proposed a method for stabilizing 

continuous image sequences based on feature matching and 

subpixel correlation technology, which effectively eliminates 

high-frequency jitter in shaky videos. Bing et al. [15] used a 

scale-invariant feature transform (SIFT) operator to extract 

and describe feature points; however, the high dimensionality 

of SIFT descriptors affects the real-time performance of 

feature matching. Shene et al. [16] proposed the use of the 

Speeded Up Robust Feature (SURF) algorithm to extract and 

describe feature points and remove incorrect matching points 

through cross-validation, which improves the speed of feature 

matching compared to the SIFT algorithm. However, owing 

to the repeated computation of the Haar wavelet response 

values when computing the main orientation of the feature 

points, the real-time performance of image stabilization 

requires further improvement. 

 
II. CAMERA MOTION MODELING 

The main reason for video sequence jitter is irregular 

camera motion, which causes large jumps in the image 

pixels and results in a lack of smooth transitions between 

adjacent frames. The essence of video stabilization is to 

obtain accurate motion vectors and use specific image 

transformation models to achieve video stabilization. 

During the motion of an vehicle device, the movement of 

the camera consists mainly of rotation and translation. The 

pixel position can be effectively corrected and the image 

structure can be restored using an affine transformation 

model. The affine transformation model between image 

frames can be expressed as: 

 
cos sin

sin cos

 
 

        
= +        −        

X X X

Y Y Y
 (1) 

Where  TX Y and   X Y represent the corresponding 

coordinates of the same feature point between the two frames 

of the jittering video,  is the rotation angle   parameter caused 

by the jitter, and    T
X Y  represents the motion vector in 

the horizontal and vertical directions between the two frames. 

For video image sequence 0 1 1, , , ,−t t
I I I I , the motion model 

from frame  to frame is defined as according to the 

affine transformation model between frames. The motion path 

of the camera at time  can be expressed as: 

 1 2 1...− −=   
t t t

C H H H  (2) 

After obtaining the camera motion trajectory, a smooth path 

can be obtained using methods such as path smoothing and 

fitting. Motion compensation can then be performed based on 

the relationship between the smoothed paths before and after 

the smoothing. After completing the motion compensation, 

image transformation can be performed according to the affine 

transformation model, and the cropping ratio can be set to 

remove the black margin that appears after image 

transformation. The process of generating a stabilized video is 

illustrated in Fig. 1. 

 

FIGURE 1. Image stabilization algorithm flowchart 
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III.  FUSION OF GMS FOR FEATURE POINT DETECTION 
AND MATCHING 

A. DETECTION AND DESCRIPTION Of ORB FEATURE 

POINTS  

 

The ORB algorithm is a feature detection and description 

algorithm that combines Features from Accelerated Segment 

Test (FAST) feature point detection with BRIEF descriptors. 

It has the characteristics of fast computation and good real-

time performance and is a combined algorithm [25]. The 

purpose of the FAST algorithm is to find representative pixels. 

It randomly selects a pixel point in the image as the center and 

selects 16-pixel points on a circle with a radius of 3. The 

feature points were determined by comparing the grayscale 

values of the 16-pixel points. Once the image keypoints have 

been determined, they are differentiated based on their 

corresponding descriptors. The ORB algorithm uses a binary, 

robust, and independent feature descriptor called BRIEF to 

describe detected keypoints [26]. 256-pixel pairs were 

randomly selected within the neighborhood range centered 

around each keypoint. The grayscale values of each pixel pair 

are then compared, as shown in Equation (3). Where ( )p x   

and  are the gray values of a pair of pixels randomly 

selected around the feature point. If ( ) ( )p x p y is used, the 

binary bit corresponding to the feature point is 1; otherwise, it 

is 0. After comparing them individually with 256 pairs of 

pixels randomly selected around the feature point, a descriptor 

of the feature point was generated. 

 ( ) ( ) ( )
( ) ( )

1,
,

0,


 =  

p x p y
x y

p x p y
 (3) 

Although the BRIEF algorithm can generate binary 

descriptors, it cannot satisfy the rotation invariance of 

images. Under different working conditions, the vehicle-

mounted camera device must detect feature points in 

images with side tilts and pitch angles. Therefore, the 

vector pointing from the FAST corner point to the centroid 

of the surrounding rectangular area can be used as the 

orientation vector of the ORB feature point. The direction 

of the feature point can be determined using the orientation 

vector, thereby solving the problem of rotation invariance. 

The feature point detection results for the coal mine 

roadway images are shown in Fig.2. The radius size reflects 

the offset angle, the line segment in the circle represents the 

primary direction of the feature point, and the center is the 

location of the extracted feature point. 

 

FIGURE 2. Detection results of feature points in roadway images 

B.  INITIAL MATCHING OF FEATURE POINTS 

 

Feature matching is the process of finding the same feature 

points for the same object in the adjacent frames of an image 

sequence. The ORB algorithm was used to detect and describe 

the features in the images, and feature vector registration was 

performed based on the Hamming distance between 

descriptors. Assume that A and B represent the descriptors of 

the two matching feature points, x and y represent the 

corresponding binary descriptors of the matching feature 

points, and the Hamming distance obtained by calculating the 

bitwise AND operation on the descriptors is denoted by D, as 

shown in Equations (4) and (5). The smaller the Hamming 

distance between two feature points, the higher the similarity. 

In the experiments, a match was considered successful when 

the distance is less than 128. 

 
1 0 1 2 255

1 0 1 2 255

=
 =

A x x x x

B y y y y
 (4) 

 ( )
255

1 1

0

,
=

=  i i

i

D A B x y  (5) 

In the image feature matching process, it is difficult to 

achieve absolute accuracy in the feature extraction and 

description. In addition, images captured by vehicle-

mounted cameras are susceptible to factors such as image 

noise, lighting changes, and image rotation, which can 

cause changes in the image features and result in erroneous 

matches during the initial matching process.     Fig.3 shows 

the initial matching results of two adjacent frames in a 

shaky video that contains erroneous matching point pairs 

that must be removed in subsequent processing. 
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FIGURE 3. Matching results of feature points; Ia : Jitter the first frame of the video;  Ib: Jitter the second frame of the video 

 

C. ELIMINATION OF INCORRECT MATCHING POINTS 

BASED ON GMS 

 

After initial matching, there were pairs of incorrectly 

matched points. Removing erroneous matching points from 

the initial matching can improve matching accuracy and 

reduce matching errors. In addition, it can save computing 

resources and image processing time, which is a key step in 

improving motion estimation accuracy between frames in 

shaky videos. The Random Sample Consensus (RANSAC) 

algorithm is a robust method for removing erroneous 

matching points. The main idea is to randomly select a 

subset of data from the dataset to estimate the model 

parameters and then verify all data to filter out the required 

dataset. However, the RANSAC algorithm requires 

multiple random samplings and model validation, resulting 

in a high computational complexity and poor real-time 

performance. To address this issue, a grid-based motion 

statistics (GMS) algorithm for erroneous matching removal 

is proposed to improve the erroneous matching removal 

ability while shortening the overall running time of the 

algorithm. 

The GMS algorithm is an image registration algorithm 

based on grid partitioning and statistical properties of motion. 

Its core idea is to use the ORB algorithm for image feature 

extraction and description and to distinguish between correct 

and incorrect matches using neighborhood support estimation 

based on grid motion statistics. [27] Assuming that M and N 

feature points exist in the matching image a
I   and the image to 

be matched b
I , respectively, their corresponding feature point 

sets are denoted as ,M N .  1 2, , , , =
i N

x x x x  is a set 

of all feature point-matching pairs from image a
I  to image b

I , 

where i
x  represents a matching pair of points. By analyzing 

the local support of feature point matching, we divide   into 

a true match set and a false match set. Compared to incorrect 

matching pairs, correct matching pairs have more features in 

the neighborhood that fit the matching relationship. Given this 

difference, incorrect matching points can be eliminated, as 

shown in Fig. 4.. The neighborhood feature support estimate 

is given by Equation (6). 

 1= −
i i

S  (6) 

Here, i
S represents the value of neighborhood support, 

 
i  is the matching subset of the matching region  ,a b  

corresponding to i
x , and -1 denotes the removal of the 

original feature points from the matching set. To speed up the 

discrimination between correct and incorrect matches, the 

image was divided into = G g g  grids and a 3 3  

3×region, as shown in Fig. 5, was selected. The neighborhood 

support 
ij

S for each unit to  ,i j can be obtained as follows: 

 
9

1

=

=

= k k

k

ij a b
k

S x  (7) 

Where K represents the number of regions for cell division, 

and  k k
a b

x represents the matches between cells ,k k
i j . As 

the grid is partitioned, the probability of differentiation 

between correct and incorrect matches gradually increases. 

According to the neighborhood support degree
ij

S calculated 

using Equation (7) and the empirical threshold  , the feature 

matching pairs can be divided into a correct matching set and 

an incorrect matching set using Equation (8). 

   ,  
,

,

   =− 


i j i i
T if S n

cell pair i j
F other

 (8) 

where  ,T F   are two sets of correct matches and false 

matches, respectively, and ,i j  represents a pair of matching 

grid regions, representing the i-th and j-th grid regions in the 

images a
I  and b

I , respectively. i
n  is the total number of 

features in a 3 × 3 grid, and   is the weight value set to 6 =  

in the experiment. Feature matching pairs with neighborhood 

support estimation 
i j

S  greater than  i in the grid region were 

retained as reliable feature matches that satisfied the 

conditions. 

Ia Ib
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FIGURE 4. Neighborhood matching scoring model; Ia : Jitter the first frame of the video ;  Ib : Jitter the second frame of the video 

 

 

FIGURE 5. Smooth grid movement ; (a) Image Ia is meshed; (b) The area used to evaluate the degree of neighborhood support for cell {i}; (c) Image 
Ib is meshed; (d) The area used to evaluate the degree of neighborhood support for cell {j} 

 

After using an error-matching removal algorithm to remove 

error-matching points, error-matching points may still exist. 

Based on the distance relationship between all matching pairs, 

the numbers of correct and incorrect matching pairs were 

selected after image feature matching. The ability of the error-

matching rejection algorithm to reject error-matching points 

was analyzed based on the proportion of incorrectly matched 

pairs. Table 1 summarizes the number of error-matching 

points after feature matching, and the matching time for two 

adjacent image frames. The analysis compared the processing 

effects of different feature matching algorithms on two 

adjacent frames of images in the same video. Under equivalent 

conditions, although the number of feature-matching pairs 

selected by the algorithm in this study was the lowest, it paid 

more attention to the quality of the feature matching. The 

matching accuracy and matching time are better than those of 

traditional  

 

methods. Table 1 shows that the ORB+GMS algorithm 

processed   two adjacent frames of images with the highest 

matching accuracy, with an average of 99.5%, and the fastest 

matching times, with an average of 0.025 s. The matching 

accuracy was 2.3% higher than that of the SIFT+RANSAC 

algorithm, the matching time was 76% lower, the matching 

accuracy was 4.1% higher than that of the ORB+RANSAC 

algorithm, and the matching time was 16% lower. Thus, the 

feature matching algorithm with GMS fusion has the 

characteristics of high matching accuracy and good capacity 

to reduce incorrect matching spots, according to a comparative 

analysis of the results from numerous group tests. The 

accuracy of motion estimation between shaky video frames 

was also improved, whereas the running time of the algorithm 

was significantly decreased. 

 

 

TABLE 1. COMPARISON OF TEST RESULTS OF DIFFERENT ALGORITHMS   

 SIFT+ RANSAC ORB+RANSAC ORB+GMS 

matching number 327 327 206 

Number of incorrect matches 9 15 1 

match accuracy (%) 97.2% 95.4% 99.5% 

matching time (s) 0.108 0.030 0.025 

Ia Ib
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 incorrect matching Xj

 Xi supports matching
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IV. TRAJECTORY SMOOTHING BASED ON ADAPTIVE 
KALMAN FILTERING  

A.  KALMAN FILTERING 

In video stabilization systems, it is necessary to remove 

random shaking contained within through filtering to obtain 

the true motion trajectory of the camera. Common filtering 

methods include the mean, Gaussian, curve-fitting, and 

Kalman filtering. The implementation of the mean filter is 

simple; however, it easily produces an overstabilization 

phenomenon. Gaussian filtering and curve-fitting filtering 

exhibit poor real-time performance and cannot satisfy the 

requirements for real-time image stabilization. 

The Kalman filter can generate the motion estimation value 

of the current frame using only the predicted values of the 

motion parameters from the previous frame and the measured 

values of the motion parameters from the current frame [28]. 

Because it does not require prestored data, it exhibits good 

real-time performance and is widely used in the field of 

stabilization. However, the classical Kalman filter often needs 

to set fixed parameters in advance, and cannot adaptively 

update them with external noise changes. The quality of an 

algorithm depends on people's understanding of the prior 

information and their understanding of the corresponding 

function and stochastic models. If the system noise covariance 

Q is constant, the tracking features of the filter are greater 

when the measurement noise covariance R is smaller and the 

smoothing characteristics are stronger when the measurement 

noise R is larger. 

B.  IMPROVE ADAPTIVE KALMAN FILTERING BASED 

ON SAGE-HUSA 

 

To address the problem that the traditional Kalman filter 

cannot update the system noise covariance Q and 

measurement noise covariance R in real time according to the 

working conditions, the Sage-Husa adaptive Kalman filter was 

introduced into the stabilization system and improved [29]. 

Owing to the influence of the environment, the noise 

distribution in the video images captured by vehicle cameras 

during video image acquisition is not necessarily normal 

distribution. Therefore, the means of the process noise and 

measurement noise in the Adaptive Kalman Filter (AKF) is 

not zero and are denoted as ˆ
k

q  and k̂
r , respectively. The state 

and observation equations are shown in Equations (9) and 

(10), respectively. 

 1 1 1
ˆ− − −= + +

k k k k
X FX W q  (9) 

  

1
ˆ −= + +

k k k k k
Z H X V r   (10) 

 

In these equations, and were 

used.  is the state vector of the system at time k and  is 

a state transition matrix. where  represents the observation 

vector of the system at time k.  The is a systematic 

observation matrix.  represents the noise in the system 

state, which follows a normal distribution .  

represents the noise in the system measurement, which follows 

a normal distribution (0, )
k

N R . The AKF mainly consists of 

prediction and correction. The specific steps are as follows:  

(1) The state–space equation of the system is established. If 

the estimated value of the state at moment k-1 is ˆ
k

x , then 

the estimated value of the state ˆ −
kx   at the next moment k 

is given by Equation (11).  

 1 1− −= +
k k k

X FX q  (11) 

(2) The prior estimation error covariance representing the 

system state uncertainty at time k was calculated. If the 

posterior estimation error covariance at time k-1 is Pk-1, 

the prior estimation error covariance matrix  at time 

k is given by Equation (12). 

 
1 1

−
− −= +T

k k k
P FP F Q  (12) 

(3) The Kalman filter gain, K, was updated. As shown in 

Equation (13), the Kalman filter gain represents the 

proportion of model prediction and measurement errors in 

the process of optimal state estimation. The smaller the 

measurement noise covariance R, the larger is the gain k. 

 1

1
ˆ( )− − −

−= +T T

k k K k
K P H HP H R  (13) 

(4) Compute the residual . 

 1
ˆ ˆ −

−= − −
k k k k

Z HX r  (14) 

(5) The state vector is updated as follows:. According to the 

state-estimated value  obtained in the prediction 

process, the state-estimated value  at moment k was 

corrected by combining the difference between the actual 

observed value and the estimated observed value. 

 ( )ˆ ˆ ˆ− −= + −
k k k k k

X X K Z HX  (15) 

(6) Update the posterior estimation error covariance matrix 

 ( ) −= −
k k k

P I K H P  (16) 

(7) Compute the weight of the exponential decay memory, 

denoted by , as shown in Equation (17). Here, b is the 

decay factor, set to 0.98 in our experiments. 

 ( )1 1− −= +
k k k

d d d b  (17) 

(8) Update     

 ( ) ( )1 11 − −= − + −
k k k k k k

q d q d X X  (18) 

 ( ) ( )1 1
ˆ1  − −= − + + −T T

k k k k k k k k k k
Q d Q d K K P FP F  (19) 

 ( ) ( )11 −= − + −
k k k k k k k

r d r d Z H X  (20) 

 ( ) ( )11   −
−= − + −T T

k k k k k k k k k
R d R d H P H  (21) 

The Sage-Husa adaptive Kalman filter algorithm constantly 

corrects the prediction values using observation values, 

ultimately achieving the purpose of reducing the error of the 

traditional model and improving the accuracy of the filter. 

From Equation (21), if the measurement noise of the actual 

system is smaller than the estimated value of the theoretical 

model, the   T

k k
 will be relatively small. If the initial state 

noise is set to a large value, it will cause − T

k k k
H P H  to be 

relatively large. In combination with the two situations 

described above, it is easy to result in 0  −− T T

k k k k k
H P H

, which in turn causes  to lose positive definiteness and 
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leads to filter divergence. To avoid this problem and ensure 

the convergence and stability of the filter, the size of the  

should be restricted in combination with the degree of camera 

shaking. The specific steps are as follows: 

(1) First, the deviation between the estimated value of the 

previous frame and the observed value is calculated to 

measure the degree of camera shaking. Specifically, the 

formula shown in Equation (22) was used. 

 1−= −
k k

J J J  (22) 

(2) When the degree of camera shaking on the imaging 

platform is large,  should be assigned as small a value 

as possible. Otherwise, when the degree of camera 

shaking is low,  should be assigned a higher value. To 

avoid producing filtering divergence, a filtering 

convergence check condition was introduced to limit the 

value range of the measurement noise covariance. The 

check condition for the value range of  according to 

Equation (21) is abbreviated as t and is shown in Equation 

(23). 

   −= −T T

k k k k k
t H P H  (23) 

(3) According to Equations (12) and (13), the filter gain K 

and error covariance P is related to the measurement noise 

covariance . Therefore, in conjunction with the degree 

of camera shake, the measurement noise covariance 

is calculated. 

 

( )
 ( )

( )

1 min min

max max

1

ˆ1    

ˆ   or  

ˆ1          other

−

−

 − + =  


− +

k k k

k

k k k

d R d R t R

R R abs J k a t R

d R d t

 (24) 

In this equation, parameter a is a threshold value used to 

determine the degree of camera shake. In the experiment, 'a' is 

set to 3. When the degree of jitter is too large, increase the 

value of 'R' to achieve the desired smoothing effect. Here, 

 min max,R R is the minimum and maximum range of values 

used to measure noise. By the aforementioned processing, the 

AKF (Adaptive Kalman Filter) has improved adaptive 

capability and reliability. In addition, it is theoretically 

difficult to analyze the observability and stability of adaptive 

filtering. As can be seen from Equations (13) and (15), the 

filtering gain k
K and error covariance k

P are mainly related to 

the measurement noise ˆ
k

R . Compared to the system noise 

covariance ˆ
k

Q , ˆ
k

R has a greater impact on filtering. To ensure 

the stability of filtering, the number of adaptive parameters 

should be reduced in experiments, and the Sage-Husa 

algorithm should be simplified by only updating the 

measurement noise covariance ˆ
k

R  adaptively, reducing the 

computational burden of the filtering system and improving 

the real-time performance of filtering. The modified Equation 

(18) would be: ˆ =
k

Q Q .In the experiment, Q  was set to 0.03. 

    Following the acquisition of the camera motion trajectory, 

low-pass filtering was used to eliminate high-frequency 

shaking. Fig. 6 shows the motion trajectory graphs of the 

camera in various motion directions after filtering and 

smoothing.  Fig.6(a), 6(c), and 6(e) show the motion trajectory 

graphs of the camera in the horizontal, vertical, and rotational 

directions, respectively, after filtering and smoothing using the 

Sage-Husa adaptive Kalman filter. Fig.6(b), 6(d), and 6(f) 

show the motion trajectory graphs after improving the Sage-

Husa adaptive Kalman filter. From Fig.6(a) and  6(e), it can be 

observed that the reasons for the vibration of the camera 

carrier in underground mines are mainly focused on the 

horizontal and rotational directions. Because the underground 

environment of mines is relatively severe, video acquisition 

equipment is easily affected by noise such as camera vibration, 

pixel error, and nonlinear distortion. These noises affect the 

quality of the video images, thereby affecting motion 

smoothing. In addition, the narrow space of underground 

mines and the different coupling and propagation of 

electromagnetic interference compared with the ground make 

the situation worse. The shape, size, medium, metal support, 

and ventilation of the tunnel affect the coupling and 

propagation of the electromagnetic interference. Therefore, 

when the vehicle is driving, the sources of electromagnetic 

interference that they receive will also be different.  

Electromagnetic interference affects the quality of video 

signal transmission, thereby affecting motion smoothing. 

When the camera moved horizontally, as shown in Fig.6(a), 

the maximum gain K of the Kalman filter in the green box 

region a, green box region b, and green box region c is -50.2, 

206.2, and -41, respectively. When the camera moves 

rotationally, as shown in Fig.6(e), the maximum gain K of the 

Kalman filter in the green box region d and green box region 

e is 19.64 and -10, respectively. Owing to the interference of 

noise, some abnormal values of the Kalman filter gain K occur 

during the filtering process, resulting in an excessive influence 

of the observation data on the state estimation. This causes the 

state estimation to be unstable, thereby reducing the accuracy 

of the filter. The measurement covariance k
R   is related to gain 

K of the Kalman filter. When gain K occurs abnormally, it 

causes the measurement covariance R to lose its positive 

definiteness, resulting in filtering divergence. Therefore, to 

obtain reliable motion-smoothing effects, the filter parameters 

should be optimized in conjunction with the degree of camera 

vibration during the filtering process. When filtering 

divergence occurs, the measurement noise covariance usually 

has an abnormally large or a small value. According to 

Equations. (23) and (24), the current filtering divergence is 

determined based on whether it satisfies the convergence 

conditions. If the conditions are met, the Sage-Husa adaptive 

Kalman filter is updated. Otherwise, the degree of camera 

vibration was calculated using Equation (22), and the range of 

 was limited in conjunction with the degree of camera 

vibration to suppress the possibility of filtering divergence. 

This ensures the appropriate size of the filtering adaptability 

while also ensuring the stability and effectiveness of 

smoothing. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

FIGURE 6.  AKF filtering effect before and after improvement. (a) Horizontal motion trajectory filtered by AKF; (b) Improved AKF filtered horizontal 
motion trajectory; (c) Vertical motion trajectory filtered by AKF; (d) Improved AKF filtered vertical motion trajectory; (e) Rotation motion trajectory 
filtered by AKF ;(f) Improved AKF filtered rotation motion trajector
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V. TEST AND ANALYSIS 

To verify the effectiveness of the algorithm in this 

study, an Automated Guided Vehicle (AGV) image 

acquisition system was used to collect jittery video 

sequences of its movement in a coal mine tunnel. Because 

the coal mine environment is relatively special, 

explosion-proof requirements exist for all the electronic 

devices. The structure of the AGV car is shown in Fig.7, 

with explosion-proof cameras on both sides of the vehicle 

body, and lighting equipment in the middle. The 

experimental conditions used for the tests are illustrated 

in Fig.8. From Fig.8, it can be observed that the road 

conditions of the coal mine lane are relatively harsh, and 

the vehicle is prone to jitter while driving. The jitter video 

captured by the onboard camera was processed using 

Opencv and the VSCode programming tool on a PC with 

an Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz. The 

algorithm proposed in this study was implemented in 

Python, and a stability algorithm based on grid motion 

statistics and adaptive Kalman filtering was validated. 

 

FIGURE 7. Experimental equipment; (a) driverless vehicle equipped with an image acquisition system. (b) Lighting equipment with explosion-proof 
function, (c) Camera with explosion-proof function. 

 

 

                                                  (a)                                                                                         (b) 

FIGURE 8.  Experimental environment; (a) Driverless vehicle driving tests.  (b) Road conditions in coal mine roadways. 

(a)
(c)

(b)
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A. FEATURE POINTS OFFSET ANALYSIS BEFORE AND 

AFTER STABILIZATION  

After stabilizing the shaky video acquired by the vehicle 

camera, the image stabilization effect was evaluated using the 

offset of the image feature points before and after the 

stabilization. Image feature points are often located at key 

locations in a video image, such as the edges, corners, and 

centers. The position data of the feature points were presented 

in the video image before video stabilization. The positional 

data of the feature points vary with the video frame. To 

stabilize a shaky video, it is necessary to first identify the 

image feature points and calculate their position information 

of those feature points. Algorithms for video image processing 

can identify and extract the position data of feature points 

before stabilizing the video. Before stabilizing the video, the 

offset of the feature points can be calculated using their 

location information of feature points once they have been 

identified and extracted. The offset of the feature points before 

stabilizing the video is shown in Equation (25), where  and 

 represent the positions of the image feature points in the 

video sequence of frames i and j, respectively. After 

calculating the offset of the feature points before stabilizing 

the video, the same principle is used to calculate the offset of 

the image feature points after stabilizing the video. 

  = −
ij xi yj

x p p  (25) 

The feature point offset between the corresponding 

positions in successive images in a shaking video series 

reflects the intensity of shaking. Shaking decreased as the 

feature point offset  decreased. Table 2 and Fig.9 show the 

feature point offsets in the horizontal, vertical, and rotational 

directions before and after stabilization of the shaking video 

sequence. According to Fig. 9, the feature point offset 

trajectory swings about the horizontal axis, and the more 

intense the camera platform shakes, the higher is the 

fluctuation. The feature point offset is substantially smaller 

and typically smoother after image stabilization than before, 

and is much closer to zero. The mean feature point offset in 

the horizontal direction decreased by 52%, mean feature point 

offset in the vertical direction decreased by 79%, and mean 

pixel deviation in the rotational direction decreased by 75% 

after the shaking video sequence was processed using the 

proposed stabilization algorithm. The video processed using 

the algorithm in this study had a 41% decrease in horizontal 

mean deviation, 69% decrease in vertical mean deviation, and 

68% decrease in rotational mean deviation when compared to 

the jitter video smoothed using the conventional Kalman 

filtering algorithm. The experiment shows that the proposed 

method has a good impact on stability and successfully lowers 

the amount of shaking in the video sequence. 

 

 

TABLE2. ANALYSIS OF MEAN OFFSET OF CORRESPONDING FEATURE POINTS 

BEFORE AND AFTER STABILIZATION 

 

 
Horizontal 

offset/pixel 

Vertical 

offset/pixel 

Angular 

offset/pixel 

Before 

stabilization 
2.28 2.32 0.0024 

After conventional 

KF stabilization 
1.86 1.55 0.0019 

After improving 

AKF stabilization 
1.08 0.48 0.0006 
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(c) 

FIGURE 9. Feature point offset analysis before and after video 
stabilization. (a) the feature point offsets horizontally; (b) the feature 
point offsets vertically; (c) the feature point offset in the rotation 

 

B.   SIMILARITY ANALYSIS BETWEEN FRAMES 

BEFORE AND AFTER STABILIZATION  

The peak signal-to-noise ratio (PSNR) is often used as a 

quality factor for evaluating stabilization accuracy. This 

reflects the similarity between adjacent frames of an image 

sequence after stabilization processing. The similarity 

between neighboring video frames increases with increasing 

PSNR, which improves the video stabilization [30]. The 

PSNR was calculated using Equation. (26).   represents two 

adjacent frames of images and MSE is the Mean Square Error, 

which represents the difference between the two images. The 

MSE calculation is given by Eq. (27). 

 ( ) ( )
2

1

1

255
, 10lg

,
−

−

=
k k

k k

PSNR f f
MSE f f

 (26) 

 ( ) ( ) ( )( )
2

1 1

1 1

1
, , ,− −

= =

= −
M N

k k k k

m n

MSE f f f m n f m n
MN

 (27) 

In order to verify the effectiveness of the algorithm, we 

selected the classic YouTube Stabilizer[20] and the vehicle-

mounted fast video stabilization algorithm that uses Kalman 

filtering for motion smoothing[31] to compare. Table 3 presents 

the mean PSNR values of the different stabilization algorithms 

before and after the processing. The experiment revealed that 

the stabilization procedure significantly increased the PSNR 

values over the original videos, indicating that the video 

became more stable and the disparity in grayscale across video 

sequences decreased. The PSNR mean values of the jittery 

videos processed by the algorithms in references [20] and 

references [31] were 28.83 dB and 27.63 dB, respectively, 

which were increased by 9.18 dB and 8.48 dB compared to the 

original video. The PSNR mean value of the jittery video 

sequence processed by the algorithm proposed in this article 

was increased by 10.77 dB compared to the original video, 

which was increased by 1.09 dB and 2.29 dB compared to the 

algorithms in [20] and [31], respectively. Therefore, the 

algorithm proposed in this study is more suitable for 

processing jittery video images on mobile car platforms in 

underground coalmines. 

 
TABLE 3. COMPARISON OF PSNR MEAN VALUES AFTER IMAGE 

STABILIZATION BY DIFFERENT ALGORITHMS 

 
Original 

video 

YouTube 

[20] 
KF [31] 

Proposed 

method 

PSNR mean 

(db) 
19.15 28.83 27.63 29.92 

 

FIGURE 10. Comparison of PSNR mean values after image                                          
stabilization by different algorithms. 

 

VI. CONCLUSIONS 

A video stabilization technique based on grid motion 

statistics and adaptive Kalman filtering was proposed to 

address the problem of image blur in automotive video-

monitoring systems. The algorithm was applied to collect 

video data from coal mine tunnels by using an AGV 

mobile car. Methods for feature point recognition and 

matching have been researched based on the properties of 

automobile video data. The research focused on how to 

better separate the jitter noise during motion and obtained 

the following conclusions: 

 
(1) The accuracy and real-time performance of the 

stabilization were enhanced by employing a fusion GMS  
algorithm to reduce erroneous matching. The research 
revealed that the feature matching method with fusion 
GMS boosted the matching accuracy compared to the 
conventional SIFT and ORB matching algorithms by 
2.3% and 4.1%, respectively, while decreasing 
the matching time between adjacent video frames by 76% 
and 16%, respectively.  

(2) Using an improved adaptive Kalman filter algorithm 
based on Sage-Husa effectively improved the 
stabilization effect of jitter videos. The experiment 
showed that the PSNR mean value of the stabilized jitter 
video increased by 10.27 dB, thereby proving the 
effectiveness and correctness of the proposed algorithm. 

Underground images of a coal mine are characterized by 

low illumination and high dust. Therefore, the quality of the 

acquired images is generally poor. To obtain a better video 

image stabilization effect, we plan to integrate on-board IMU 
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information based on this algorithm to achieve video image 

stabilization. 
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