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Abstract

In this article, we rediscuss the parameter estimation in a bistatic multiple-
input multiple-output radar system with electromagnetic vector sensor (EMVS)
and propose an improved approach for all signal subspace-based estimation
algorithms. First, the signal subspace is obtained by directly performing SVD
or high-order SVD on the signal matrix or the signal tensor. Then, the ele-
vation angle is automatically estimated by exploiting the rotation invariance
of the receive-transmit array manifold and the Joint diagonalization technol-
ogy. Then, the estimated elevation angle is taken as prior information, and
the spatial response vector is recovered from the entire signal subspace us-
ing least-squares by exploring the property of the Kronecker product. Next,
the azimuth angle is estimated by the ‘Vector Cross-Product’ strategy. Fi-
nally, the polarization parameters are calculated based on the least-squares
method. The proposed algorithm is analyzed from the aspects of identifi-
ability and complexity. The proposed signal subspace acquisition method
is less computationally intensive. The improved parameter estimation ap-
proach can realize automatic parameter pairing and have a better parameter
estimation performance than the previous corresponding algorithms when it
works on the subspace obtained in different ways. Simulation results verify
the performance improvement of the proposed algorithm.
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1. Introduction

Multiple-input multiple-output is an emerging direction estimation tech-
nology in radar systems since it has unique advantages and outstanding per-
formance compared to the traditional phased array radar system [1, 2, 3].
The estimation of the direction-of-departure (DOD) and direction-of-arrival
(DOA) has been extensively studied for multiple-input multiple-output radar
[4, 5, 6, 7, 8]. However, the number of literature studied on two-dimensional
(2D) problems, namely azimuth, and elevation, 2D-DOD, and 2D-DOA es-
timation, is limited [9, 10, 11]. Chen and Zhang developed a PM-based
algorithm for 2D-DOD and 2D-DOA estimation algorithm in MIMO radar
with arbitrary arrays[9]. An improved ESPRIT-bassed algorithm was intro-
duced for 2D-DOD, and 2D-DOA estimation in MIMO radar with arbitrary
arrays [10]. In [11], a new approach that combines ESPRIT and joint diag-
onalization technology was proposed for 2D-DOD and 2D-DOA estimation
in bistatic MIMO radar with an L-shaped array. These methods developed
for 2D-DOD and 2D-DOA estimation are based on scalar sensors. A typical
character of [9, 10, 11] is that the antenna array is nonlinear, e.g., L-shape,
rectangular, or arbitrary shape. As an alternative to the scalar sensor, the
electromagnetic vector sensor (EMVS) brings new development space for tar-
get positioning [12]. The EMVS at a certain point in space can provide a
2D direction finding [13]. Besides, it can also provide the polarization state
of the input signal, which provides new potential possibilities for detecting
invisible targets.

The use of EMVS for direction finding has become a hot research topic,
and various estimators have been proposed in [12, 13, 14, 15, 16]. A general
bistatic MIMO-EMVS radar with multiple transmit and receive EMVSs was
introduced in [17], and a ESPRIT-like algorithm was proposed to estimate
2D-DOD, 2D-DOA, 2D transmit polarization angle (TPA) and 2D receive
polarization angle(RPA). First, the signal subspace is obtained by perform-
ing eigen decomposition (EVD) on the covariance matrix of the received
data. Next, a rotation matrix is obtained from the 6N/6M rows of the signal
subspace by exploiting the rotation invariance of the receive/transmit array
manifold and use it to recover the receive/transmit spatial response vector
from these rows where N/M is the number of receive/transmit arrays. The
2D-DOA and 2D-DOD are estimated via ‘Vector Cross-Product’ idea using
the recovered spatial response vector. Then, the 2D-TPA and 2D-RPA are
estimated by least-squares method. Finally, the orthogonality of the virtual
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steering vector and the noise subspace is used to the pairing of the transmit
and receive parameters. In [18], the signal subspace is obtained by directly
performing high-order SVD on the covariance tensor, then all parameters
are estimated by using the same process as that in [17]. The HOSVD based
algorithm can improve the signal subspace estimation accuracy to improve
the parameter estimation performance, but it suffers a high computational
complexity. To avoid decomposition, the signal subspace is obtained by the
propagator method in [19]. Then, all parameters are estimated by using the
same process in [17], except the elevation angle is estimated from the ro-
tation matrix. The above algorithms only select 6N/6M rows of the signal
subspace to estimate all parameters and do not fully utilize the entire signal
subspace. Furthermore, in [20], by exploiting the rotation invariance of the
virtual array manifold, the elevation angle is estimated from the entire signal
subspace obtained by PM. However, other parameters estimation process is
the same as that in [17], except no need for the other pairing process. It is
a pity that only the elevation angle estimation make full use of the entire
signal subspace. We can know that all algorithms based on signal subspace
do not make full use of the entire signal subspace to estimate all parameters
through the above introduction. They only select 6N/6M rows of the signal
subspace to estimate the parameter and waste most of the signal subspace,
which will cause performance degradation. Besides, as shown in [17], param-
eter estimation accuracy is also affected by the position of the selected part
in the signal subspace. Different positions of the selected part in the signal
subspace will bring different estimation results. So it is difficult to determine
which part can get the best estimation effect. All the algorithms mentioned
above, except HOSVD, do not make full use of the inherent multi-dimensional
structure of the matched filters, resulting in some performance loss. The au-
thors in [21] make full use of the inherent multi-dimensional structure, and
introduce the trilinear decomposition to obtain the estimation of the loading
matrices, and use those loading matrices to realize the separate estimate of
the receive and transmit parameters. At the same time, the transmit and
receive parameters are automatically paired.

In this paper, we introduce two effective ways to get signal subspace and
propose an improved approach suitable for all signal subspace-based algo-
rithms in bistatic EMVS-MIMO radar parameter estimation to save compu-
tational load and make full use of the entire signal subspace in the bistatic
EMVS-MIMO radar. The main contributions of this paper are as follows:
(1)Two effective ways to obtain the signal subspace are introduced to re-
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duce the computational complexity, namely, directly performing singular
value decomposition (SVD) on the data matrix or performing high-order
SVD (HOSVD) on the data tensor to get the signal subspace. (2) To make
full use of the virtual array manifold of the MIMO radar and the entire sig-
nal subspace, an improved approach suitable for all signal subspace-based
algorithms is proposed. The transmit/receive parameters do not affect the
receive/transmit parameters estimation is proved. (3) The computational
complexity and the number of identifiable targets of the proposed algorithm
are analyzed and compared with the existing algorithms. Numerical simula-
tions are further used to verify the effectiveness of the proposed algorithm.
What needs special emphasis is that although in the new parameter estima-
tion approach, it combines the ESPRIT and “Vector Cross-Product” ideas
to estimate the parameters, the difference from the existing algorithms are:
(1) The transmit/receive elevation angle is estimated by exploiting the ro-
tation invariance of the virtual array manifold of the MIMO radar, instead
of the transmit/receive array manifold. The joint diagonalization technology
is introduced to ensures the pairing estimation of the receive and transmit
elevation angle, and no additional pairing process is required. (2) The trans-
mit/receive spatial response vector is recovered from the 36NM rows of the
signal subspace, instead of the 6M/6N rows of the signal subspace. As
above, all parameters estimation are obtained from the whole signal sub-
space instead of the 6M or 6N rows of the signal subspace. Therefore, when
the improved approach is applied to the signal subspace obtained by dif-
ferent ways, a certain degree of performance improvement will be obtained
compared with the original parameter estimation method.

The rest of this paper is organized as follows: The signal model for bistatic
EMVS-MIMO radar is introduced in section 2, the signal subsapce obtain by
perform SVD on the data matrix and perform HOSVD on the data tensor
are presented in section 3, the improved signal subspace-based parameter
estimation approach is introduced in section 4. The performance including
identifiability, complexity, and CRB are derived in section 5. Several numeri-
cal results are provided to indicate the effectiveness of the proposed algorithm
in section 6. Finally, a conclusion is drawn in section 7.
Notation : We use symbols (•)T, (•)H, (•)−1 and (•)∗ to represent transposi-
tion operator, conjugate transposition operator, matrix inverse operator and
conjugate operator, respectively. ⊕, ⊙ and ⊗ represent the Hadamard prod-
uct, Khatri-Rao product and Kronecker product, respectively. vec{•} de-
notes straightening the matrix A ∈ C

N×M into a column vector a ∈ C
MN×1,
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in which a(m−1)N+n = An,m. angle{a} stands for the phase of a; The ’Vector
Cross-Product’ between a1 = [a1, a2, a3]

T and a2 = [a4, a5, a6]
T is defined

as a1 ⊛ a2 =





0 −a3 a2
a3 0 −a1
−a2 a1 0









a4
a5
a6



.

2. Signal model

Consider the same bistatic EMVS-MIMO radar system scenario to that
in Chintagunta and Palanisamy [17], which is equiped with an M -element
EMVS transmit arrays and an N -element EMVS receive arrays. Both of
them are uniform linear array (ULA). Suppose there are K far-field point-
like targets located at the same range bin. The 2D-DOD pair and 2D-DOA
pair of the kth target are (θt,k, φt,k) and (θr,k, φr,k), respectively, where θt,k,
θr,k are the elevation angles, φt,k, φr,k are the azimuth angles. The transmit
and the receive steering vector of the k-th target can be expressed as [17]

bt,k = at,k ⊗ ct,k (1a)

br,k = ar,k ⊗ cr,k (1b)

where at,k = [1, ej2πdtsin(θt,k)/λ, · · · , ej2π(M−1)dtsin(θt,k)/λ]T ∈ C
M×1 and ar,k =

[1, ej2πdrsin(θr,k)/λ, · · · , ej2π(N−1)drsin(θr,k)/λ]T ∈ C
N×1 in which λ, dt, dr are the

wavelength, the spacing of adjacent transmit array, the spacing of adjacent
receive array, respectively, ct,k/cr,k stands for the spatial response of an EVS
associated with the transmitter/receiver. Moreever, ct,k and cr,k can be ex-
pressed in detail as

ct,k = Ft,kht,k =






ct1,k, ct2,k, ct3,k
︸ ︷︷ ︸

cT
t1,k

, ct4,k, ct5,k, ct6,k
︸ ︷︷ ︸

cT
t2,k







T

, (2a)

cr,k = Fr,khr,k =






cr1,k, cr2,k, cr3,k
︸ ︷︷ ︸

cT
r1,k

, cr4,k, cr5,k, cr6,k
︸ ︷︷ ︸

cT
r2,k







T

, (2b)

in which
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Ft,k =











cos(φt,k)cos(θt,k) −sin(φt,k)
sin(φt,k)cos(θt,k) −cos(φt,k)

−sin(θt,k) 0
−sin(φt,k) −cos(φt,k)cos(θt,k)
cos(φt,k) −sin(φt,k)cos(θt,k)

0 sin(θt,k)











(3a)

Fr,k =











cos(φr,k)cos(θr,k) −sin(φr,k)
sin(φr,k)cos(θr,k) −cos(φr,k)

−sin(θr,k) 0
−sin(φr,k) −cos(φr,k)cos(θr,k)
cos(φr,k) −sin(φr,k)cos(θr,k)

0 sin(θr,k)











(3b)

and

ht,k =

[
sin(γt,k)e

jηt,k

cos(γt,k)

]

(4a)

hr,k =

[
sin(γr,k)e

jηr,k

cos(γr,k)

]

(4b)

where γt,k, γr,k ∈ [0 π/2) are the polarization angles, ηt,k, ηr,k ∈ [−π π) are
the polarization phase difference. Besides,

‖ct1,k‖F = ‖ct2,k‖F = ‖cr1,k‖F = ‖cr2,k‖F = 1 (5)

and

vt =
ct1,k

‖ct1,k‖F
⊛

c∗t2,k

‖ct2,k‖F
=





sin(θt,k)cos(φt,k)
sin(θt,k)sin(φt,k)

cos(θt,k)



 (6a)

vr =
cr1,k

‖cr1,k‖F
⊛

c∗r2,k

‖cr2,k‖F
=





sin(θr,k)cos(φr,k)
sin(θr,k)sin(φr,k)

cos(θr,k)



 (6b)

Then the received signal in the lth snapshot can be expressed as [17]

Xl = BrΛlB
T
t S+Nl (7)

where Br = [br,1,br,2, · · · ,br,K ] = Ar ⊙ Cr ∈ C
6N×K , Bt = [bt,1,bt,2, · · · ,

bt,K ] = At⊙Ct ∈ C
6M×K are the transmit and receive array manifold, respec-

tively, in whichAr = [ar,1, ar,2, · · · , ar,K ] ∈ C
N×K ,Cr = [cr,1, cr,2, · · · , cr,K ] ∈
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C
6×K , At = [at,1, at,2, · · · , at,K ] ∈ C

M×K , and Ct = [ct,1, ct,2, · · · , ct,K ] ∈
C

6×K ; Λl = diag(s
′

l), in which s
′

l = [ρ1(l), ρ2(l), · · · , ρK(l)] ∈ C
K×1 and ρk(l)

stands for the reflection coefficient of the kth target during the lth snapshot,
S ∈ C

6M×Q are the orthogonal signal emitted by the transmit arrays, and
Nl ∈ C

6N×Q stands for the noise matrix. The output of matched filters can
be expressed as

Yl = XlS
H
[
SSH

]−1
= BrΛlB

T
t +N

′

l (8)

where N
′

l = NlS
H(SSH)−1 is the noise matrix after matched filters.

3. Signal subspace acquisition method

3.1. Definitions related to tensor

First, some definition and properties about tensor are introduced for the
following analysis, which is present in [22].
Definition 1. (Unfolding or Matrixcization)

The mode-n unfolding of an N -th order tensor X ∈ C
I1×I2×···×IN is de-

noted by X(n). The (i1, i2, · · · , iN) element of X maps to the (in, j)th element
of X(n), where

j = 1 +
N∑

k=1,k 6=n

[

(ik − 1)

(
k−1∏

m=1,m 6=n

Im

)]

(9)

Definition 2. (Mode-n tensor-matrix product)
The mode-n product of an N -th order X ∈ C

I1×I2×···×IN with a matrix
A ∈ C

Jn×In is denoted by Y = X×nA, where Y ∈ C
I1×I2×···×In−1×Jn×In+1×···×IN

and Yi1,i2,··· ,in−1,jn,··· ,iN =
∑In

in=1 Xi1,i2,··· ,in−1,in,··· ,iNajn,in . Moreover, the mode-
n product satisfies the following properties

X ×m A×n B = X ×n B×m A, (m 6= n) (10)

X ×n A×n B = X ×n (BA),A ∈ CJ×In ,B ∈ C
In×J (11)

[X ×1 A1 ×2 A2 × · · · ×N AN ](n) =

An · X(n) · [An+1 ⊗An+2 · · · ⊗AN ⊗A1 · · · ⊗An−1]
T

(12)

Definition 3. (High-order SVD, HOSVD )
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The HOSVD of an N -th order tensor X ∈ C
I1×I2×···IN is given by X =

G ×1U1×2U2×3 · · · ×N UN , where Un ∈ C
In×In represents the left singular

matric obtained by performing SVD on X(n), i.e, {X(n) = UnΣnV
H
n }Nn=1, G ∈

C
I1×I2×···×IN is the core tensor which satisfies the all orthogonality conditions.

Meanwhile, the core tensor can be written as G = X×1U
H
1 ×2U

H
2 ×3· · ·×NU

H
N .

3.2. proposed signal subspace acquisition method

Generally, the signal subspace can be obtained by the following ways:
(1)Perform SVD on the data matrix or EVD on the covariance matrix of the
data matrix to get the signal subspace; (2)Adopt the propagation method
to get the signal subspace through the covariance matrix of the data matrix;
(3) Perform HOSVD on the data tensor or the covariance tensor of the data
tensor to get the signal subspace. The signal subspace mentioned above
generally refers to that spans the same space as the receive-transmit array
manifold.

When 36NM > L, we directly perform SVD or HOSVD on the data
matrix or data tensor to save computation load [7]. Otherwise, we perform
EVD or HOSVD on the covariance matrix of the data matrix or the covari-
ance tensor of the data tensor. The process that through performing EVD
on covariance matrix, performing HOSVD on covariance tensor and PM to
get the signal subspace have been introduced in the literatures [17, 18, 19],
respectively. This paper only presents the approach that performs SVD or
HOSVD on the data matrix or the data tensor to get the signal subspace.

First, we introduce the method that directly performs SVD on the data
matrix. In order to take advantage of the high degree of freedom of the
MIMO radar, the received data matrix in each snapshot (8) is straightened
into a column vector, and then (8) can be rewritten as

yl = vec(Yl) = [Br ⊙Bt]s
′

l + n
′

(l) = Brts
′

l + n
′

l (13)

whereBrt = [Br⊙Bt] ∈ C
36MN×K is the joint receive-transmit array manifold

and n
′

l = vec(N
′

l) ∈ C
36MN×1. Suppose the number of snapshots is L, then

the received multi-snapshot data can be written into the matrix form as

Y = [y1,y2, · · · ,yL] ∈ C
36MN×L = BrtS

′

+N
′

(14)

where S
′

= [s
′

1, s
′

2, · · · , s
′

L] ∈ C
K×L and N

′

= [n
′

l,n
′

2, · · · ,n
′

L] ∈ C
36MN×L.

The SVD of Y can be expressed as Y = UΛV, the left singular value
vectors corresponding to the firstK large singular values are selected to form
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the signal subspace (marked as Uys). It is clear that Uys spans the same
space as the joint receive-transmit array manifold Brt.

Next, we introduce the method that directly performs HOSVD on the
received data tensor. By stacking the matrices Yl, (l = 1, 2, · · · , L) along
the third dimension to construct a data tensor Y ∈ C

6N×6M×L, which is
given by

Y::l = BrΛlB
T
t +N

′

l (15)

And we have Y =
[
Y(3)

]T
[7]. As introduced in [7], the signal subspace is

estimated by direct processing on the measurement tensor Y when 36MN >
L. The HOSVD of Y can be expressed as

Y = G ×1 U1 ×2 U2 ×3 U3 (16)

where G ∈ C6N×6M×L stands for the core tensor and Ui, (i = 1, 2, 3) is the
left singular vector matrix of the i-mode matrix unfolding of Y as {Y(i) =
UiΣiV

H
i }3i=1. Then we can define a subspace tensor U as

U = Gs ×1 U1s ×2 U2s (17)

where Gs = Y ×1 U
H
1s ×2 U

H
2s ×3 U

H
3s ∈ C

K×K×K represents the signal com-
ponent in G, and the column vectors in Uis, (i = 1, 2) are composed of the
singular vectors in Ui, (i = 1, 2) corresponding to the first K large singular
values. Insert Gs into eq(17), and combine with the definition 1, we have

U = Y ×1

(
U1sU

H
1s

)
×2

(
U2sU

H
2s

)
×3 U

H
3s (18)

Then the signal subspace is given by Uhs = [U(3)]
T, by utilizing eq(18)

and definition 1, we have

Uhs =
[
(U1sU

H
1s)⊗ (U2sU

H
2s)
]
YU∗

3s (19)

Where Y =
[
Y(3)

]T
. Genearlly, the signal subspace can be estimated by

using the truncated SVD of Y, i.e. Y ≈ UysΣysV
H
ys, insert it into eq(19),

we have
Uhs =

[
(U1sU

H
1s)⊗ (U2sU

H
2s)
]
UysΣysV

H
ysU

∗
3s (20)

Due to Y(3) = U3sΣ3sV
H
3s and Y =

[
Y(3)

]T
, we have U∗

3s = Vys and
Σys = Σ3s. To simplify analysis, we multiply eq(19) by Σ−1

3s . Therefore,
eq(20) can be rewritten as

Uhs =
[
(U1sU

H
1s)⊗ (U2sU

H
2s)
]
Uys (21)

9



Eq(21) describes the relationship between Uhs and Uys, where Uhs is the
projection of Uys on the Kronecker product of the space spanned by 1-mode
vectors U1sU

H
1s and space spanned by 2-mode vectors U2sU

H
2s. Like Uys, Uhs

spans the same space as the joint receive-transmit array manifold Brt.

4. Parameter estimation approach

4.0.1. Previous signal subspace-based algorithms

As mentioned in the introduction, the ESPRIT algorithm in [17], the
HOSVD algorithm in [18], and the PM algorithm in [19] are all selecting a
part of the signal subspace to estimate all parameters. The signal subspace
obtained by EVD in [17], HOSVD in [18], and PM in [19] are all marked as
Us. When estimating the receive parameters, the selected part of the signal
subspace can be expressed as

Er = JrUs ∈ C
6N×K (22)

where Jr = [06N×6pN | I6N |06N×(36NM−6(p+1)N)] with p = 0, 1, · · · , 6M −1. A
diagonal matrix Φr = diag([ejπdrsin(θr,1)/λ, ejπdrsin(θr,2)/λ, · · · , ejπdrsin(θr,K)/λ])
related to receive elevation angle is calculated using Er by exploiting the
rotation invariance of the receive array manifold. Then the receive spatial
response vector cr,k(k = 1, 2, · · · , K) is recovered from Er using the estimated
diagonal matrix Φr. The receive elevation angle θr,k and azimuth angle φr,k

are estimated using ‘Vector Cross-Product’ in [17, 18], receive polarization
parameters γk and ηk are estimated via LS principle. Different from the
receive elevation angle estimation in [17, 18], θr,k is calculated using the
estimated diagonal matrix Φr. When estimating the transmit parameters,
the selected part of the signal subspace can be expressed as

Et = JtUs ∈ C
6M×K (23)

where Jt = [I6M ⊗ eTq ], in which eq is a 6N × 1 vector with qth entry is one
and others are zeros, and q = 1, 2, · · · , 6N . Similarly, use Et to calculate the
diagonal matrix Φt = diag([ejπdtsin(θt,1)/λ, ejπdtsin(θt,2)/λ, · · · , ejπdtsin(θt,K)/λ]) re-
lated to the transmit elevation angle by exploiting the rotation invariance of
the transmit array manifold. The transmit spatial response vector ct,k(k =
1, 2, · · · , K) is recovered from Et using the estimated diagonal matrix Φt.
The transmit elevation angle θt,k and azimuth angle φt,k are estimated using
‘Vector Cross-Product’ in [17, 18], transmit polarization parameters γk and
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ηk are estimated via LS principle. θt,k is also estimated using the estimated
diagonal matrix Φr, and other parameters estimation is the same as that in
[17, 18].

Different from the above three algorithms, the PM algorithm in [20] uses
the 36NM rows of signal subspace to estimate the transmit and receive eleva-
tion angle by exploiting the rotation invariance of the joint receive-transmit
array manifold, which will be introduced in the next section. But after
that, the PM algorithm in [20] also just select a part of signal subspace as
eq(22)/eq(23) to estimate the receive/transmit azimuth angle and polariza-
tion parameters by adopting the ‘Vector Cross-Product’ and LS ideas in [17].

It can be seen from the above analysis that all methods based on signal
subspace only select 6N/6M rows of 36NM rows in the signal subspace to
estimate all transmit/receive parameters, except for the PM algorithm in [20]
use the whole signal subspace to estimate the transmit and receive elevation
angle. They only selected a small part of the signal subspace and wast most
of the signal subspace. Besides, as shown in [17], the accuracy of the transmit
and receive parameter estimation is also related to the value of p and q, and
different values of p and q will bring different estimation results.

4.0.2. Proposed signal subspace-based approach

To make full use of the entire signal subspace, we propose an improved
approach applicable to all signal subspace-based algorithms where the all
parameters are estimated by usig the 36NM rows of the signal subspace,
instead of 6N/6M rows of the signal subspace.

No matter which method is used to obtain the signal subspace, all of them
are uniformly denoted as Ûs for the convenience of the following expressions.
From the analysis in [20], we know that Ûs spans the same space as Brt.
Therefore, there excite a full-rank matrix satisfying

Br,t = ÛsΓ (24)

Define four selection matrices as
{

J1 =[IN−1 0(N−1)×1]⊗ I36M

J2 =[0(N−1)×1 IN−1]⊗ I36M
(25a)

{

J3 =I36N ⊗ [IM−1 0(M−1)×1]

J4 =I36N ⊗ [0(M−1)×1 IM−1]
(25b)
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Then we can find that

J2Br,t = J1Br,tΦr (26a)

J4Br,t = J3Br,tΦt (26b)

where Φr and Φt have been given above. Insert (24) into (26), we have

J2ÛsΓ = J1ÛsΓΦr (27a)

J4ÛsΓ = J3ÛsΓΦt (27b)

Then, we calculate

Ψr = (J1Ûs)
†J2Ûs = ΓΦrΓ

−1 (28a)

Ψt = (J3Ûs)
†J4Ûs = ΓΦtΓ

−1 (28b)

Perform eigenvalue decomposition onΨr andΨt, respectively. Mark their
eigenvalues as Φ̂r and Φ̂t, respectively, and mark the corresponding eigenvec-
tors as Γ̂1 and Γ̂2. It is easy to see that Φ̂r, Φ̂t, Γ̂1 and Γ̂2 are the estimates
of Φr, Φt, Γ, respectively. Due to the non-uniqueness of eigenvalue decom-
position, the position of diagonal elements of Φ̂r and Φr may be different,
so do Φ̂t and Φt are. To ensure the paired estimation of the transmit and
the receive elevation angle, we adopt the joint diagonalization of Ψr and Ψt.
A common approach is to perform EVD on one of the matrices and use its
eigenvectors matrix to diagonalize the other matrix, i.e.

Ψr = Γ̂Φ̂rΓ̂
−1

(29a)

Φ̂r = Γ̂
−1
ΨrΓ̂ (29b)

where Φ̂r = diag(λ̂r,1, λ̂r,2, · · · , λ̂r,K) and Φ̂t = diag(λ̂t,1, λ̂t,2, · · · , λ̂t,K). The
transmit and receive elevation angles can be obtained via

θ̂r,k = arcsin{angle(λ̂r,k)λ/(2dr)} (30a)

θ̂t,k = arcsin{angle(λ̂t,k)λ/(2dt)} (30b)

The elevation angle estimation process introduced above is all almost
the same as that in [20], except the joint diagonalization process. After
obtaining elevation angle estimates, we start to recover the spatial response
vectors cr,k and ct,k from the 36NM rows of the signal subspace to estimate

12



other parameters, instead of from the 6N or 6M rows of the signal subspace.
This approach is entirely different from all previous methods based on signal
subspace.

The joint receive-transmit array manifold can be recovered via

B̂rt = UsΓ̂ (31)

In fact, by using the property of Kronecker-product, the joint receive-
transmit steering vector can be rewritten as

art,k =(ar,k ⊗ cr,k)⊗ (at,k ⊗ ct,k)

= [(ar,k ⊗ I6) cr,k]⊗ [(at,k ⊗ I6) ct,k]

= [(ar,k ⊗ I6)⊗ (at,k ⊗ I6)] (cr,k ⊗ ct,k)

(32)

Let crt,k = cr,k ⊗ ct,k denotes the joint receive-transmit spatial response

vector of the kth target. Since the elevation angle estimation (θ̂r,k, θ̂t,k) and

the joint receive-transmit array manifold estimation use the same matrix Γ̂,
thus the elevation angle estimation of the kth target and the joint receive-
transmit array vector B̂rt(:, k) are paired, in which B̂rt(:, k) is the kth column
of matrix B̂rt. By utilizing (32), crt,k can be estimated by last-squares (LS)
principle via

min
crt,k

∥
∥
∥[(âr,k ⊗ I6)⊗ (ât,k ⊗ I6)] crt,k − B̂rt(:, k)

∥
∥
∥

2

F
(33)

where âr,k = [1, λ̂r,k, · · · , λ̂N−1
r,k ]T and ât,k = [1, λ̂t,k, · · · , λ̂M−1

t,k ]T. The LS
solution for crt,k is

ĉrt,k = ([(âr,k ⊗ I6)⊗ (ât,k ⊗ I6)])
†
B̂rt(:, k) (34)

Combine crt,k = cr,k ⊗ ct,k, so ĉrt,k can be rewritten as ĉrt,k = ĉr,k ⊗
ĉt,k, in which ĉr,k ∈ C

6×1 and ĉt,k ∈ C
6×1 are the estimates of cr,k and

ct,k, respectively. Let c
′

r,k and c
′

t,k be the rough estimates of ĉr,k and ĉt,k,
respectively, and they can be calculated via

ĉ
′

r,k(j, 1) =
1

6

6∑

j=1

ĉrt,k(6j − 5 : 6j, 1)(j = 1, 2, · · · , 6)

=
1

6

6∑

j=1

ĉt,k(j, 1)ĉr,k = ĉst,kĉr,k

(35a)
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ĉ
′

t,k(j, 1) =
1

6

6∑

i=1

ĉrt,k(6(i− 1) + j, 1)(j = 1, 2, · · · , 6)

=
1

6

6∑

i=1

ĉr,k(j, 1)ĉt,k = ĉsr,kĉt,k

(35b)

where ĉst,k = 1
6

∑6
j=1 ĉt,k(j, 1) and ĉsr,k = 1

6

∑6
j=1 ĉr,k(j, 1). It should be em-

phasized that ĉ
′

r,k is the product of the vector ĉr,k and the complex number

ĉst,k, and ĉ
′

t,k is the product of the vector ĉt,k and the complex number ĉsr,k.
After obtaining the estimated ĉr,k and ĉt,k, the azimuth angle and the polar-
iztion parameters can be estimated through ’Vector Cross-Product’ method
in [17]. Let ĉ

′

r1,k
∈ C

3×1 and ĉ
′

r2,k
∈ C

3×1 be the first and last three elements

of ĉ
′

r,k, respectively. And let ĉ
′

t1,k
∈ C

3×1 and ĉ
′

t2,k
∈ C

3×1 be the first and

last three elements of ĉ
′

t,k, respectively. Utilize (6), we can estimate vr,k and
vt,k via

v̂r,k =
ĉ

′

r1,k∥
∥ĉ

′

r1,k

∥
∥
F

⊛
ĉ

′∗
r2,k∥

∥ĉ
′

r2,k

∥
∥
F

=
ĉst,kĉr1,k

∥
∥ĉst,kĉr1,k

∥
∥
F

⊛
ĉs∗t,kĉ

∗
r2,k∥

∥ĉst,kĉr2,k
∥
∥
F

=
ĉr1,k

‖ĉr1,k‖F
⊛

ĉ∗r2,k

‖ĉr2,k‖F
=





sin(θ̂r,k)cos(φ̂r,k)

sin(θ̂r,k)sin(φ̂r,k)

cos(θ̂r,k)





(36a)

v̂t,k =
ĉ

′

t1,k∥
∥ĉ

′

t1,k

∥
∥
F

⊛
ĉ
′∗
t2,k∥

∥ĉ
′

t2,k

∥
∥
F

=
ĉsr,kĉt1,k

∥
∥ĉsr,kĉt1,k

∥
∥
F

⊛
ĉs∗r,kĉ

∗
t2,k∥

∥ĉsr,kĉt2,k
∥
∥
F

=
ĉt1,k

‖ĉt1,k‖F
⊛

ĉ∗t2,k

‖ĉt2,k‖F
=





sin(θ̂t,k)cos(φ̂t,k)

sin(θ̂t,k)sin(φ̂t,k)

cos(θ̂t,k)





(36b)

where ĉr1,k and ĉr2,k are the first and last three elements of ĉr,k, respectively.
ĉt1,k and ĉt2,k are the first and last three elements of ĉt,k, respectively. As we
can see from Eq.(36), ĉst,k in ĉ

′

r,k and ĉsr,k in ĉ
′

t,k can be eliminated by ‘Vector
Cross-Product’. The following receive/transmit azimuth angle estimation
will not be affected by ĉst,k/ĉ

s
r,k.

Then, φr,k and φt,k can be estimated by

φ̂r,k = arctan

(
v̂r,k(2)

v̂r,k(1)

)

(37a)
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φ̂t,k = arctan

(
v̂t,k(2)

v̂t,k(1)

)

(37b)

Once (θ̂r,k, φ̂r,k) and (θ̂t,k, φ̂t,k) are obtained, we can construct the transmit

and receive spatial angular matrices F̂r,k and F̂t,k according to (3), respec-
tively. Then, hr,k and ht,k can be estimated via

ĥr,k = F̂
†
r,kĉ

′

r,k = ĉst,k

[
sin (γ̂r,k) e

jη̂r,k

cos (γ̂r,k)

]

(38a)

ĥt,k = F̂
†
t,kĉ

′

t,k = ĉsr,k

[
sin (γ̂t,k) e

jη̂t,k

cos (γ̂t,k)

]

(38b)

Finally, (γr,k, ηr,k) and (γt,k, ηt,k) can be estimated via







γ̂r,k = arctan

(∣
∣
∣
∣
∣

ĥr,k(2)

ĥr,k(1)

∣
∣
∣
∣
∣

)

η̂r,k = angle

(

ĥr,k(2)

ĥr,k(1)

) (39a)







γ̂t,k = arctan

(∣
∣
∣
∣
∣

ĥt,k(2)

ĥt,k(1)

∣
∣
∣
∣
∣

)

η̂t,k = angle

(

ĥt,k(2)

ĥt,k(1)

) (39b)

From Eq.(39), we can know that when calculating γ̂r,k and η̂r,k, ĉ
s
t,k in

ĥr,k can be eliminated by division, and the ĉsr,k in ĥt,k also can be eliminated
by division when calculating γ̂t,k and η̂t,k. The receive elevation angle es-

timate θ̂t,k(k = 1, 2, · · · , K) and the transmit elevation angle estimate θ̂t,k
are automatically paired by using joint diagonalization. Other receive and
transmit parameters correspond one-to-one with the receive and transmit
elevation angles, so the above algorithm can ensure automatic matching of
all parameters. Although the azimuth angle and the polarization parameters
are estimated by the ‘Vector Cross-Product’ and LS ideas like that in [17],
respectively, we proved that the transmit/receive parameters does not affect
the receive/transmit parameters estimation in the proposed approach, which
is also not reflected in previous subspace-based algorithms.
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5. Performance Analysis

5.1. Identifiability

When the proposed parameter estimation approach is applied to the
signal subspace obtained by the two propsoed methods (marked the two
algofithm as ImESPRIT-D algorithm and ImHOSVD-D algorithm, where
the signal subsapce is obtained by performing SVD/HOSVD on data ma-
trix/tensor), the elevation angles θr,k and θt,k are estimated by exploiting the
invariant property of the virtual array manifold, and other receive/transmit
parameters have a one-to-one correspondence with θr,k/θt,k. Thus, the max-
imum number of identifiable targets is limited by the rank of Ψr and Ψt.
When the signal subspace is obtained by directly performing SVD on the ma-
trix Y , the maximum rank of Ψr and Ψt are 36M(N − 1) and 36N(M − 1),
respectively. Therefore, the maximum number of identifiable targets of the
ESPRIT-data algorithm (marked as Ke) is

Ke = min{36M(N − 1), 36N(M − 1)} (40)

When the signal subspace is obtained by performing high-order SVD on
the tensor Y , the ranks of Ψr and Ψt are restricted by the ranks of U1s and
U2s, which is max{6M, 6N}. Therefore, the maximum number of identifiable
targets of the HOSVD-data algorithm (marked as Kh) is

Kh = max{6M, 6N} (41)

The identifiability of the ESPRIT alforithm in [17], the HOSVD algorithm
in [18], and the PARAFAC algorithm in [21] are are min{6(M−1), 6(N−1)}.
The identifiability of the PM algorithm in [20] is min{36M(N−1), 36N(M−
1)}. Therefore, we can conclude that the identifiability of the proposed
ESPRIT-data algorithm is the same as that of the PM algorithm, and both
have better identifiability than other algorithms. Besides, the proposed
HOSVD-data also has better identifiability than the ESPRIT, the HOSVD
and the PARAFAC algorithms.

5.2. Computational Complexity

In the algorithm introduced in this article, the computation load is mainly
concentrated in three processes, one is the signal subspace acquisition pro-
cess, the second is the elevation angle estimation process, and the third is
the spatial response vector recovery process. In the proposed signal subspace
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Table 1: Computational complexity

Algorithm Complexity

ImESPRIT-D
O{108NMLK}+ 72K2(2NM −M −N)
+37(36)2NMK

ImHOSVD-D
O{324NMLK}+ 72K2(2MN −N −M)
+37(36)2NMK

PARAFAC in [21]
6npK

2(M +N + L) + 12K2(N +M − 2)
+O{K3}

PM in [20] 362N2M2L+ 72K2(3NM −N −M) +O{K3}
ESPRIT in [17] O{363N3M3}+ 362N2M2K2

HOSVD in [18] O{4× 363N3M3}+ 362N2M2K2

acquisition process, according to [7], the complexity of performing SVD on
matrix Y is O(36NMLK), the complexity of performing HOSVD on tensor
Y is O(3 × 36NMLK). In the proposed parameter estimation process, the
main complexity of elevation angle estimation process is 2×36(N−1)MK2+
2K3+2×36(M−1)NK2. The main complexity of joint receive-transmit spa-
tial response vector recovery process is K[(36)3NM + (36)2NM ]. Let np be
the number of iterations of the PARAFAC algorithm in [21]. Table 1 list the
main computational loads of the proposed ImESPRIT-D algorithm, the pro-
posed ImHOSVD-D algorithm, the PM in [20], the HOSVD algorithm in [18],
and the ESPRIT algorithm in [17], the PARAFAC algorithm in [21]. It can
be roughly judged from the table 1 that the computational complexity of di-
rectly performing SVD/HOSVD on the data matrix/tensor is lower than that
of performing EVD/HOSVD on the covariance matrix/tensor. Therefore, the
computational complexity of the proposed ImESPRIT-D and ImHOSVD-D
is lower than that of ESPRIT and HOSVD, respectively.

5.3. Cramer-Rao bound (CRB)

Let Θ = [θr,1, · · · , θr,K , θt,1, · · · , ηt,K ] ∈ C
8K×1 be the parameters needed

to be estimated. According to [21], the CRB on Θ is given by

CRB =
σ2

2L

{
Re
[(
BH

rt,∆Π
⊥

Brt
Brt,∆

)
⊕
(
RT

S
′ ⊗ I8

)]}−1
(42)

WhereΠ⊥

Brt
= I36NM−Brt(B

H
rtBrt)

−1BH
rt, in whichBrt is the joint receive-

transmit array manifold; R
S
′ = S

′

S
′H/L, in which L is the number of pulses;
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σ2 is the noise power; Brt,∆ =
[
∂Brt

∂θr,1
, · · · , ∂Brt

∂θr,K
, ∂Brt

∂θt,1
, · · · , ∂Brt

∂ηt,K

]

. The detailed

derivation process of CRB can be referred to [21].

6. Simulation

In this section, 200 Monte Carlo trials are taken to evaluate the perfor-
mance of the proposed algorithm. The PM algorithm in [20], the ESPRIT
algorithm in [17], the HOSVD algorithm in [18], the PARAFAC algorithm
in [21] and the CRB are introduced as comparisons. Except for special in-
struction, the bistatic EMVS-MIMO radar is equipped with M = 6 transmit
antennas and N = 8 receive antennas. Both the transmit and receive arrays
are ULAs arranged in half-wavelength. The transmit baseband code matrix
is S = (1 + j)/

√
2H6M , where H6M is composed of the first 6M rows of the

Q × Q Hadamard matrix. Here, Q is set to 512. Suppose there are three
uncorrelated far-field point-like targets. The angle information of these tar-
gets are θt = (40◦, 20◦, 30◦), φt = (15◦, 25◦, 35◦), γt = (10◦, 22◦, 35◦), ηt =
(36◦, 48◦, 56◦), θr = (24◦, 38◦, 16◦), φr = (21◦, 32◦, 55◦), γr = (42◦, 33◦, 60◦),
ηr = (17◦, 27◦, 39◦). The reflection coefficient of targets obey Gaussian distri-
bution. The additive noise is assumed to be a spatial white complex Gaussian
noise. The performance of the algorithm is evaluated by Root Mean Square
Errors (RMSE), which is defined as

RMSE =
1

K

K∑

k=1

√
√
√
√

1

Mc

Mc∑

mc=1

(

ζ̂k,mc
− ζk

)2

(43a)

where K is the number of targets, Mc is the number of Monte Carlo trials,
ζk,mc

is the estimate of ζk in the mcth Monte Carlo trial. As in [2], to simplify
the RMSE results, we only display the average RMSE of the direction angle
estimation (marked as RMSE performance of DAE), namely 2D-DOA and
2D-DOD, and the average RMSE of the polarization parameters estimation
(marked as RMSE performance of PAE), namely 2D-TPA and 2D-RPA. A
PC (with Interl(R) i7-10750H CPU, 64G RAM ) and MATLAB R2020a are
used to run the simulation.

First, the proposed parameter estimation approach was applied to the
signal subspaces obtained by the PM in [20], EVD in [17], and HOSVD in
[18] to prove that the proposed parameter estimation approach can improve
parameter estimation accuracy compared with the original parameter estima-
tion approach. Fig.1 (a) and (b) depict the RMSE performance of different
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Figure 1: RMSE performance comparison. (a) RMSE performance of DAE. (b) RMSE
performance of PAE.

algorithms to estimate the direction angle and polarization parameters, re-
spectively. As shown in Fig.1, whether it is the direction angle estimation
or the polarization parameters estimation, the RMSE performance of the
proposed approach is better than that of the corresponding traditional pa-
rameter estimation approach. This improvement may can from the truth
that the proposed approach uses the 36NM rows instead of 6N/6M rows of
the signal subspace to estimate all parameters.

In the following simulations, the average running time (ART) is used
to compare the computational complexity of each algorithm. The proposed
ImESPRIT-D algorithm, the proposed ImHOSVD-D algorithm, the PM al-
gorithm in [20], the ESPRIT algorithm in [17], the HOSVD algorithm in
[18], and the PARAFAC algorithm in [21] are tested from three aspects:
the RMSE performance, the average running time (ART), the probability
of successfully detecting the target (PSD), thus to show that the proposed
ImESPRIT-D and the ImHOSVD-D algorithms have a slight computational
complexity and a better parameter estimation performance. Suppose that
target can be successfully detected as long as the absolute error of the esti-
mated angle is under ρe.

Fig.2 depicts the performance of different algorithms versus SNR, where
L = 100 and ρe = 1◦. Fig.2 (a)-(b) show that the RMSE performance
of different algorithms gradually improves as the SNR increases. The pro-
posed ImHOSVD-D algorithm has the best RMSE performance over other
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Figure 2: Performance versus SNR. (a) RMSE performance of DAE versus SNR. (b)
RMSE performance of PAE versus SNR. (d) PSD versus SNR. (d) ART versus SNR.

algorithms, and the proposed ImESPRIT-D algorithm has a better RMSE
performance than the PM and ESPRIT algorithms. The reason has been
explained in the first simulation. The proposed ImHOSVD-D algorithm has
the best PSD performance, and the ImESPRIT-D algorithm has a better
PSD performance than the PM, the ESPRIT algorithms, as shown in Fig.2
(c). From Fig.2 (d), we know that the ART of the proposed ImESPRIT-D
algorithm is much shorter than that of the ESPRIT algorithm, and the ART
of the proposed ImHOSVD-D algorithm is also much shorter than that of
the HOSVD algorithms, even shorter than that of the ESPRIT algorithm.
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Figure 3: Performance versus L. (a) RMSE performance of DAE versus L. (b) RMSE
performance of PAE versus L. (d) PSD versus L. (d) ART versus L.

It can be concluded from Fig.2 that the computational complexity of per-
forming SVD/HOSVD on the data matrix/tensor is much lower than that
of performing EVD/HOSVD on the covariance matrix/tensor, which is con-
sistent with the theoretical analysis result of computational complexity. So
that when the proposed parameter estimation approach is applied to the two
signal subspaces obtained by the proposed methods, the new algorithms can
save computation load and provide a better estimation performance at the
same time.

Fig.3 depicts the performance of different algorithms versus L, where
SNR= 10dB and ρe = 0.15◦. The same conclusion as the second test can
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Figure 4: Performance versus N. (a) RMSE performance of DAE versus N. (b) RMSE
performance of PAE versus N. (c) PSD versus N. (d) ART versus N.

be drawn from Fig.3(a)-(c) that the proposed ImHOSVD-D algorithm has
the best RMSE and PSD performance and the proposed ImESPRIT-D algo-
rithm has a better RMSE performance than the PM and ESPRIT algorithms.
The ART of the HOSVD and ESPRIT algorithms is basically unchanged, as
shown in Fig.3(d). Because the most time-consuming process of these two
algorithms is EVD and high-order SVD, increasing L will not increase the
order of the covariance matrix, so their ART does not change much with the
increase in L. Besides, the proposed ImHOSVD-D algorithm is more econom-
ical than the HOSVD algorithm, and the proposed ImESPRIT-D algorithm
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Figure 5: Performance versus K. (a) RMSE performance of DAE versus K. (b) RMSE
performance of PAE versus K. (c) PSD versus K. (d) ART versus K.

is also more economical than the ESPRIT algorithm.
Fig.4 depicts the performance of different algorithms versus N , where

SNR= 10dB, L = 100, and ρe = 0.15◦. The RMSE performance of different
algorithms improves less as N increases, as shown in Fig.1(a)-(b). The ART
of different algorithms gradually increases as the increase of N . Similarly,
the proposed ImHOSVD-D algorithm has the best RMSE and PSD perfor-
mance and is more economical than the HOSVD; the proposed ImESPRIT-D
algorithm is more economical and has a better RMSE performance than the
ESPRIT and PM algorithms.
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Fig.5 displays the performance of different algorithms versus K, where
SNR= 10dB, L = 100, and ρe = 0.15◦. The targets are selected from the
front K targets from the following targets: θt = (10◦, 15◦, 25◦, 30◦, 35◦, 50◦,
58◦, 67◦), φt = (30◦, 56◦, 15◦, 36◦, 65◦, 22◦, 40◦, 48◦), γt = (14◦, 30◦, 54◦, 62◦, 38◦

, 46◦, 22◦, 70◦), ηt = (18◦, 64◦, 34◦, 56◦, 48◦, 72◦, 30◦, 40◦), θr = (12◦, 52◦, 27◦,
37◦, 20◦, 40◦, 46◦, 40◦) φr = (62◦, 13◦, 54◦, 28◦, 38◦, 34◦, 46◦, 21◦), γr = (35◦, 15◦

, 25◦, 65◦, 45◦, 55◦ , 5◦, 75◦), ηr = (81◦, 31◦, 51◦, 61◦, 45◦, 55◦, 5◦, 75◦). As shown
in Fig.5 (d), the ART of different algorithms hardly increases with the in-
crease in K. Similar to the previous result, the proposed ImHOSVD-D al-
gorithm has the best RMSE and PSD performance and a shorter ART than
that of the HOSVD algorithm; the proposed ImESPRIT-D algorithm has a
better RMSE performance and a shorter ART than that of the PM and ES-
PRIT algorithms. Besides, the proposed ImESPRIT-D algorithm also has a
better PSD performance than the PM and ESPRIT algorithms when K < 6.

7. Conclusion

In this paper, two economical methods to obtain signal subspace and a
more accurate approach for parameter estimation based on signal subspace
are introduced for joint 2D-DOD, 2D-DOA, and polarization parameters esti-
mation without pairing. When the improved parameter estimation approach
is applied to the signal subspace obtained by performing EVD/HOSVD on
the covariance matrix/ tensor or the PM algorithm, the estimation perfor-
mance can be improved compared with the existing estimation methods.
When the parameter estimation approach is applied to the signal subspace
obtained by the proposed two methods, the new algorithms can get more
accurate estimation results and save computational load.
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