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Abstract

Specification, modeling and analysis of interactions
among peers that communicate via messages are becoming
increasingly important due to the emergence of service ori-
ented computing. Collaboration diagrams provide a con-
venient visual model for specifying such interactions. An
interaction among a set of peers can be characterized as a
conversation, the global sequence of messages exchanged
among the peers, listed in the order they are sent. A collab-
oration diagram can be used to specify the set of allowable
conversations among the peers participating to a compos-
ite web service. Specification of interactions from such a
global perspective leads to the realizability problem: Is it
possible to construct a set of peers that generate exactly
the specified conversations? In this paper we investigate
the realizability of conversations specified by collaboration
diagrams. We formalize the realizability problem by mod-
eling peers as concurrently executing finite state machines
and we give sufficient realizability conditions for a class of
collaboration diagrams.

1. Introduction

Collaboration diagrams are useful for modeling interac-
tions among distributed components without exposing their
internal structure. In particular, collaboration diagrams
model interactions as a sequence of messages which are
recorded in the order they are sent. Such an interaction
model is becoming increasingly important in service ori-
ented computing where a set of autonomous peers interact
with each other using synchronous or asynchronous mes-
sages. Web services that belong to different organizations
need to interact with each other through standardized in-
terfaces and without access to each other’s internal imple-
mentations. Formalisms which focus on interactions rather
than the local behaviors of individual peers are necessary
for both specification and analysis of such distributed appli-
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cations.

The need to develop mechanisms for specifying inter-
actions in composite services is well recognized in the
web services area. For example, Web Services Choreog-
raphy Description Language (WS-CDL) [21] is an XML-
based language for describing the interactions among ser-
vices. WS-CDL specifications describe “peer-to-peer col-
laborations of Web Services participants by defining, from
a global viewpoint, their common and complementary ob-
servable behavior; where ordered message exchanges result
in accomplishing a common business goal.” Collaboration
diagrams provide a suitable visual formalism for modeling
such specifications.

However, characterization of interactions using a global
view may lead to specification of behaviors that may not
be implementable. In this paper we study the problem of
realizability which addresses the following question: Given
an interaction specification, is it possible to find a set of
distributed peers which generate the specified interactions.

In order to study the realizability problem we define a
formal model for collaborations diagrams. We model a dis-
tributed system as a set of communicating finite state ma-
chines [7]. A collaboration diagram is realizable if there
exists a set of communicating finite state machines which
generate exactly the set of conversations specified by the
collaboration diagram. We present sufficient conditions for
realizability of a class of collaboration diagrams.

Although realizability problem for Message Sequence
Charts (MSCs) has been studied extensively [2, 3, 19], to
the best of our knowledge, realizability of collaboration dia-
grams has not been studied before. Collaboration diagrams
provide a different view of interactions than the one pro-
vided by MSCs. MSCs show the local orderings of the mes-
sage send and receive events, whereas the collaboration dia-
grams show the global ordering of the message send events.
The ordering of the message receive events in collaboration
diagrams corresponds to a “don’t care” condition, i.e., re-
ceive events can be ordered in any way as long as the send
events follow the specified order. Due to these differences,



earlier results on realizability of MSCs are not applicable to
the realizability of collaboration diagrams.

Rest of the paper is organized as follows. In Section 2 we
introduce a formal model for collaboration diagrams and we
define the set of conversations specified by a collaboration
diagram. In Section 3 we present a formal model for a set
of autonomous peers communicating via messages and we
define the set of conversations generated by such peers. In
Section 4 we discuss the realizability of collaboration dia-
grams. In Section 5 we give sufficient conditions for realiz-
ability of a class of collaboration diagrams. In Section 6 we
discuss the related work and in Section 7 we conclude the

paper.
2. Collaboration Diagrams

In this paper we focus on the use of collaboration dia-
grams for specification of interactions among a set of peers.
We model each peer as an active object with its own thread
of control. We model the interactions specified by a collab-
oration diagram as conversations [8, 9], sequences of mes-
sages exchanged among the peers listed in the order they
are sent. This provides an appropriate model for the web
services domain where a set of autonomous peers commu-
nicate with each other through messages.

A collaboration diagram (called communication diagram
in [20]) consists of a set of peers, a set of links among
the peers showing associations, and a set of message send
events among the peers. Each message send event is shown
by drawing an arrow over a link denoting the sender and the
receiver of the message. Messages can be transmitted using
synchronous (shown with a filled solid arrowhead) or asyn-
chronous (shown with a stick arrowhead) communication.
During a synchronous message transmission, the sender and
the receiver must execute the send and receive events simul-
taneously. During an asynchronous message transmission,
the send event appends the message to the input queue of the
receiver, where it is stored until receiver consumes it with
a receive event. Note that, a collaboration diagram does
not show when a receive event for an asynchronous mes-
sage will be executed, it just gives an ordering of the send
events.

In a collaboration diagram each message send event has
a unique sequence label. These sequence labels are used
to declare the order the messages should be sent. Each se-
quence label consists of a (possibly empty) string of let-
ters (which we call the prefix) followed by a numeric part
(which we call the sequence number). The numeric order-
ing of the sequence numbers defines an implicit total order-
ing among the message send events with the same prefix.
For example, event A2 can occur only after the event Al,
but B1 and A2 do not have any implicit ordering. In addi-
tion to the implicit ordering defined by the sequence num-

bers, it is possible to explicitly state the events that should
precede an event e by listing their sequence labels (followed
by the symbol “/”’) before the sequence label of the event e.
For example if an event e is marked with “B2,C3/A2” then
A2 is the sequence label of the event e, and the events with
sequence labels B2, C3 and A1 must precede e.

The prefixes in sequence labels of collaboration dia-
grams enable specification of concurrent interactions where
each prefix represents a thread. Note that, here, “thread”
does not mean a thread of execution. Rather, it refers to a
set of messages that have a total ordering and that can be
interleaved arbitrarily with other messages. The sequence
numbers specify a total ordering of the send events in each
thread. The explicitly listed dependencies, on the other
hand, provide a synchronization mechanism between dif-
ferent threads.

In a collaboration diagram message send events can be
marked to be conditional, denoted as a suffix “[condition]”,
or iterative, denoted as a suffix “*[condition]”, where condi-
tion is written in some pseudocode. In our formal model we
represent conditional and iterative message sends with non-
determinism where a conditional message send corresponds
to either zero or one message send, and an iterative message
send corresponds to either zero or one or more consecutive
message sends.

2.1. An Example

As an example, consider the collaboration diagram in
Figure 1 for the Purchase Order Handling service described
in the Business Process Execution Language for Web Ser-
vices (BPEL) 1.1 language specification [6]. In this exam-
ple, a customer sends a purchase order to a vendor. The
vendor arranges a shipment, calculates the price for the or-
der including the shipping fee, and schedules the production
and shipment. The vendor uses a shipping service to arrange
the shipment, an invoicing service to calculate the price, and
a scheduling service to handle the scheduling. To respond to
the customer in a timely manner, the vendor performs these
three tasks concurrently while processing the purchase or-
der. There are two control dependencies among these three
tasks that the vendor needs to consider: The shipment type
is required to complete the final price calculation, and the
shipping date is required to complete the scheduling. After
these tasks are completed, the vendor sends a reply to the
customer.

The web service for this example is composed of five
peers: Customer, Vendor, Shipping, Scheduling, and In-
voicing. Customer orders products by sending the order
message to the Vendor. The Vendor responds to the Cus-
tomer with the orderReply message. The remaining peers
are the ones that the Vendor uses to process the product or-
der. The Shipping peer communicates with the shipReq,



:Customer

1:order A2,B3,C2/2:orderReply

1/A1:shipReq
—

jﬁ :Invoicing
:Vendor B3:invoice

1/C1:productSchedule

: :Shippin
A2:shipInfo

1/B1:productinfo
_—

A1/B2:shipType
—_—

—_—

A2/C2:shipSchedule

3 :Scheduling

Figure 1. An example collaboration diagram for a composite web service.

and shipInfo messages, the Scheduling peer with the prod-
uctSchedule, and shipSchedule messages, and the Invoicing
peer with the productinfo, shipType, and invoice messages.

Figure 1 shows the interactions among the peers in the
Purchase Order Handling service using a collaboration di-
agram. All the messages in this example are transmitted
asynchronously. Note that the collaboration diagram in Fig-
ure 1 has four threads (the main thread, which corresponds
to the empty prefix, and the threads with labels A, B and C)
and the interactions between the Vendor and the Shipping,
Scheduling and Invoicing peers are executed concurrently.
However, there are some dependencies among these concur-
rent interactions: shipType message should be sent after the
shipReqg message is sent, the shipSchedule message should
be sent after the shipInfo message is sent, and the orderRe-
ply message should be sent after all the other messages are
sent.

2.2. A Formal Model

Based on the assumptions discussed above we formal-
ize the semantics of collaboration diagrams as follows. A
collaboration diagram D = (P, L, M, E, D) consists of

e aset of peers P,

asetoflinks L € P x P,

a set of messages M,

a set of message send events E, and

a dependency relation D C E x E among the message
send events.

The sets P, L, M and E are all finite. To simplify our
formal model, we assume that the asynchronous messages
M# and synchronous messages M ° are separate (i.e., M =
MA U MS and M4 N M® = (), and that each mes-
sage has a unique sender and a unique receiver denoted by

send(m) € P and recv(m) € P, respectively. (Note that,
messages in any collaboration diagram can be converted to
this form by concatenating each message with tags denot-
ing the synchronization type and its sender and its receiver.)
For each message m € M, the sender and the receiver of m
must be linked, i.e., (send(m), recv(m)) € L.

The set of send events E is a set of tuples of the form
(I,m,r) where [ is the label of the event, m € M is a mes-
sage, and r € {1,7?,} is the recurrence type. We denote
the size of the set £ with |E| and for each event e € E
we use e.l, e.m, and e.r to denote different fields of e. The
labels of the events correspond to the sequence labels, and
we assume that each event in E has a unique label. Each
event e € F denotes a message send event where the peer
send(e.m) sends a message e.m to the peer recv(e.m). The
recurrence type r € {1, 7, *} determines if the send event
corresponds to

e asingle message send event (r = 1),
e a conditional message send event (rr =7), or
e an iterative message send event (r = x).

The dependency relation D C E x E denotes the or-
dering among the message send events where (e1,e2) € D
means that e; has to occur before eo. We assume that there
are no circular dependencies, i.e., the dependency graph
(E, D), where the send events in E form the vertices and
the dependencies in D form the edges, should be a directed
acyclic graph (dag). Given a collaborations diagram D, we
call an event ey with pred(e;) = 0 an initial event of D
and an event ey where forall e € E ep ¢ pred(e) a final
event of D. Note that since the dependency relation is a dag
there is always at least one initial event and one final event
(and there may be multiple initial events and multiple final
events).

Given a dependency relation D C E X E let pred(e)
denote the predecessors of the event e where ¢/ € pred(e)
if there exists a set of events ey, e, ..., e, Where & > 1,



e =ej,e=eg, andforalli € [1..k — 1], (e;,e,41) € D.
A dependency (¢/,e) € D is redundant if there exists an
e’ € pred(e) such that ¢/ € pred(e”). We assume that
there are no redundant dependencies in D. Since we do
not allow any redundant dependencies in D, we call ¢’ an
immediate predecessor of e if (¢, e) € D.

1:order

1/B1:productinfo 1/A1:shipReq  1/C1:productSchedule

A1/B2:shipType A2:shipInfo

B3:invoice A2/C2:shipSchedule

A2,B3,C2/2:orderReply

Figure 2. Dependencies among the message
send events in the Purchase Order example.

Figure 2 shows the dependency graph for the the collab-
oration diagram of the Purchase Order example shown in
Figure 1. In this example event 1 is an initial event and
event 2 is a final event. Event 2 has three immediate prede-
cessors: A2, B3 and C2.

Let D = {P,L, M, E, D} denote the formal model for
the collaboration diagram of the Purchase Order example
shown in Figure 1. The elements of the formal model are as
follows (where we denote the peers and messages with their
initials or first two letters):

e P={C,V,Sh,1,Sc} is the set of peers,

o L = {(C,V), (V,Sh),(V,
links among the peers,

I),(V,Sc)} is the set of

e M = {o,0R, sR,slI, pI,sT, i,pS, sS} is the set of
messages, where
- C = send(o) = recv(oR),

-V = recw(o) = send(oR) = send(sR)
recv(sl) = send(pl) = send(sT) = recv(I) =
send(pS) = send(sS),

- Sh = send(sI) = recv(sR),
- I =recv(pl) = recv(sT) = send(I),
— Sc = recv(pS) = recv(sS),

(

1,0,1), (2,0R,1), (Al,sR,1), (A2,s1,1),
1)3 (32 ST 1) (B'?)vlv 1)3 (Clvpsv 1)3
1)} is the set of events, and

= {
BlI
€2, 8,

o~~~

e D = { (e1,ea1), (ea1,ea2), (e1,eB1), (ea1,en2),
(eB1,eB2), (em2,eB3), (e1,ec1), (eaz,ec2),
(ec1,ec2), (eaz,e2), (ems,e2), (eca,e2)} is the
dependency relation (where we identify the events
with their labels).

Given a collaboration diagram D = (P, L, M, E, D) we
denote the set of conversations defined by D as C(D) where
C(D) C M*. A comversation ¢ = mimg... M, is in
C(D), ie., 0 € C(D), if and only if o € M* and there
exists a corresponding matching sequence of message send
events v = ejes . . . e, such that

1. foralls € [171] e; = (li,mi,m) ek
2. foralli,j € [1.n] (e;,e5) €D =i < j

3. for all e € FE (for all ¢
(er =% Ver=7)

€ [l.n] e, # e) =

4. for all e € E if there exists ¢,j € [l..n] such that
i # jNe; =ejthene;.r = *.

The first condition above ensures that each message in the
conversation o is equal to the message of the matching send
event in the event sequence . The second condition en-
sures that the ordering of the events in the event sequence
~ does not violate the dependencies in D. The third con-
dition ensures that if an event does not appear in the event
sequence -y then it must be either a conditional event or an
iterative event. Finally, the fourth condition states that only
iterative events can be repeated in the event sequence 7.

For example, a possible conversation for the collabora-
tion diagram shown in Figure 1 is o, sR, sI, pS, pl, sS,
sT', i, oR. The matching sequence of events for this conver-
sation that satisfy all the four conditions listed above are:
(1,0,1), (A1,sR,1), (A2,sI,1), (C1,pS,1), (B1,pI, 1),
(C2,55,1), (B2,sT,1), (B3,i,1), (2,0R, 1).

3. Execution Model

We model the behaviors of peers that participate to a col-
laboration as concurrently executing finite state machines
that interact via messages [11, 13]. We assume that the
machines can interact with both synchronous and asyn-
chronous messages. We assume that each finite state ma-
chine has a single FIFO input queue for asynchronous mes-
sages. A send event for an asynchronous message appends
the message to the end of the input queue of the receiver,
and a receive event for an asynchronous message removes
the message at the head of the input queue of the receiver.
The send and receive events for synchronous messages are
executed simultaneously and synchronous message trans-
missions do not change the contents of the message queues.
We assume reliable messaging, i.e., messages are not lost or
reordered during transmission.



Formally, given a set of peers P = {p1,...,pn}
that participate in a collaboration, the peer state machine
for the peer p; € P is a nondeterministic FSA A; =
(M;, T;, 84, F;, 0;) where M; = M U M7 is the set of
messages that are either received or sent by p;, T; is the fi-
nite set of states, s; € T is the initial state, F; C T is the
set of final states, and 6; C T; x ({I,?} x M; U{e}) x T;
is the transition relation. A transition 7 € J; can be one of
the following three types: (1) a send-transition of the form
(t1,'m, t2) which sends out a message m € M, from peer
p; = send(m) to peer recv(m), (2) a receive-transition of
the form (1, ?m, t2) which receives a message m € M;
from peer send(m) to peer p;, = recv(m), and (3) an e-
transition of the form (¢4, €, t2).

Let Ay, ..., A, be the peer state machines (implemen-
tations) for a set of peers P = {p1,...,pn} that partici-
pate in a collaboration where A; = (M;, T}, s;, F;, 0;) is the
state machine for peer p;. A configuration is a (2n)-tuple
of the form (Q1,t1, ..., Qn, tn) Where for each j € [1..n],
Q; € (MJA)*, t; € Tj. Here t;,Q; denote the state and
the queue contents of the peer state machine A; respec-
tively. For two configurations ¢ = (Q1, t1, ..., Qn, t,) and
d =(Q1,1),...,Q,, 1), we say that c derives ¢, written as
¢ — ¢, if one of the following three conditions hold:

e One peer executes an asynchronous send action (de-
noted as ¢ ™ c), ie., there exist 1 < 4,57 < n
and m € MiA N MJA, such that, p;, = send(m),
p; = recv(m) and:

1. (f,i, !m,té) € 0,

2. Q; = Qjm,

3. Qr = Q) foreach k # j, and
4.t} =ty for each k # 1.

e One peer executes an asynchronous receive action (de-

m € M, such that, p; = recv(m) and:

? . . .
noted as ¢ - ), i.e., there exists 1 < 7 < n and

1. (t;,?m,t;) €6,

2. Qi =mQ,

3. Qr = Q) foreach k # i, and
4.t} =ty for each k # 1.

e Two peers execute synchronous send and receive ac-
tions (denoted as ¢ ghig c),ie.,thereexistl <i,7 <n
and m € M7 N MJS, such that, p; = send(m),
p; = recv(m) and:

1. (ti, !m,t;) € 4;,

2. (tj, ?m,t;-) € 5j,

3. Qi = Q). foreach k, and

4. t), =t foreach k # i and k # j.

e One peer executes an e-action (denoted as ¢ S ), 1.e.,
there exists 1 < 7 < n such that:

1. (ti,€,t,£) € 0,
2. Qr = Q) foreach k € [1..n], and
3. ¢ =ty foreach k # i.

Now we can define the runs of a set of peer state
machines participating in a collaboration as follows: Let
Az, ..., A, be a set of peer state machines for the set of
peers P = {p1,...,p,} participating in a collaboration, a
sequence of configurations v = cgc; ... cy is a partial run
of Ay,..., A, if it satisfies the first two of the following
three conditions, and ~ is a complete run if it satisfies all
three conditions:

1. The configuration ¢y = (e, s1,...,¢€, Sy, ) is the initial
configuration where s; is the initial state of .4; for each
i € [1l..n)].

2. Foreach j € [0..k — 1], ¢; — ¢jt1.

3. The configuration ¢, = (€,t1,...,¢€ty,) is a final
configuration where ¢; is a final state of A; for each
i€ [l.n)].

Given a run ~y the conversation generated by ~, denoted
by C(vy) where C(y) € M*, is defined inductively as fol-
lows:

e If |y| < 1, then C(vy) is the empty sequence.
o If v =+'cc/, then

- C(y)=C(®eymife m
- C(y)=C(Heymife g
- C(v) = C(v'c) otherwise.

A sequence o is a conversation of a set of peer state ma-
chines A,, ..., A,,denotedas o € C(A4,...,A,),if there
exists a complete run - such that o = C(v), i.e., a con-
versation of a set of peer state machines must be a conver-
sation generated by a complete run. The conversation set
C(Ay,..., Ay,) of aset of peer state machines Ay, ..., A,
is the set of conversations generated by all the complete runs
Of.Al, cen ,.An.

We call a set of peer state machines A1, ..., A, well-
behaved if each partial run of Ay, ..., A, is a prefix of a
complete run. Note that, if a set of peer state machines are
well-behaved then the peers never get stuck (i.e., each peer
can always consume all the incoming messages in its input
queue and reach a final state).

Let D be a collaboration diagram. We say that the peer
state machines A1, ..., A, realize D if C(A1,...,A,) =
C(D). A collaboration diagram D is realizable if there ex-
ists a set of well-behaved peer state machines which realize
D.



4. Realizability of Collaboration Diagrams

1:order
—_—
:Customer :Store
2:ship
e
:Shippin :Depot

Figure 3. Unrealizable collaboration diagram.

Not all collaboration diagrams are realizable. For exam-
ple, Figure 3 shows a simple collaboration diagram that is
not realizable. The conversation set specified by this col-
laboration diagram is {order ship}, i.e. this collaboration
diagram specifies a single conversation in which, first, the
Customer has to send the order message to the store, and
then the Shipping department has to send the ship message
to the Depot. However, this conversation set cannot be gen-
erated by any implementation of these peers. Any set of
peer state machines which generates the conversation “or-
der ship” will also generate the conversation “ship order”.
The Shipping department has no way of knowing when the
order message was sent to the Store, so it may send the ship
message before the order message which will generate the
conversation “ship order”. Since the conversation “ship or-
der” is not included in the conversation set of the collabora-
tion diagram shown in Figure 3, this collaborations diagram
is not realizable. To resolve this problem we have to require
that, after receiving the order message, the Store sends a
message to the Shipping department to inform it. The col-
laboration diagram shown in Figure 4 includes this fix and
its conversation set {order orderInfo ship} is realizable.

1:order
—_—

:Customer :Store

2:orderIanO/

3:ship
—_—

:Shippin

:Depot

Figure 4. Realizable collaboration diagram.

Figure 5 shows another simple collaboration diagram
that is not realizable. The conversation set specified by this
collaboration diagram is {order bill}, i.e. the only conver-
sation specified by this collaboration diagram requires that
the Customer sends the order message to the Store first and

then the Accounting department sends the bill message to
the Customer. Similar to the earlier example, this conversa-
tion set cannot be generated by any implementation of these
peers. Any set of peer state machines which generates the
conversation “order bill” will also generate the conversation
“bill order”. This time the Accounting department has no
way of knowing when the order message was sent to the
Store, so it may send the bill message before the order mes-
sage which will generate the conversation “bill order”, and
since that is not included in the conversation set the collab-
oration diagram is not realizable. Similar to the example
above, we can fix this problem if the Store sends a message
to the Accounting department to inform it after it receives
the order message as shown in Figure 6.

1:order
R —
:Customer :Store
2:bill T
:Accounting

Figure 5. Unrealizable collaboration diagram.

1:order
e
:Customer :Store

3:biIIT /
2:orderlnfo

:Accounting

Figure 6. Realizable collaboration diagram.

It is not too difficult to figure out realizability of the sim-
ple collaboration diagrams shown in Figure 3, Figure 4, Fig-
ure 5, and Figure 6. However, it is not that straightforward
to figure out the realizability of the collaboration diagram
shown in Figure 1. In the next section we will define a set
of conditions which can be used to determine realizability
of collaborations diagrams automatically. Based on these
conditions we can automatically show that the collaboration
diagram shown in Figure 1 is realizable.

5. Sufficient Conditions for Realizability

In this section we will give sufficient conditions for re-
alizability of a class of collaborations diagrams which are



common in practice. Recall that the events in a collabora-
tion diagram consist of a set of threads, where the set of
events in each thread is totally ordered. In the class of col-
laboration diagrams we will focus on, a message can only
appear in the events that belong to one thread; i.e., we do
not allow the same message to appear in the events of two
different threads. After formally defining this class of col-
laboration diagrams we give sufficient conditions for their
realizability.

We call a collaboration diagram separated if each mes-
sage appears in the event set of only one thread, i.e., given
a separated collaboration diagram D = (P,L, M, E, D)
with k threads, the event set ' can be partitioned as £ =
Ule FE; where E; is the event set for thread ¢, M; =
{e.m | e € E;} is the set of messages that appear in the
event set E; and ¢ # j = M; N M; = (). Recall that, the
events in each F; are totally ordered since they belong to the
same thread. Note that dependencies among the events of
different threads are still allowed in separated collaboration
diagrams. The collaboration diagrams in Figure 1, Figure 3,
Figure 4, Figure 5, and Figure 6 are separated whereas the
collaboration diagram in Figure 7 is not separated. Based
on our experience, requiring a collaboration diagram to be
separated is not a big restriction. So far all the collaboration
diagrams we have seen in the literature have been separated
collaboration diagrams.

Given an event e = (I, m,r) in a collaboration diagram
D = (P,L,M,E,D)lete = (I'ym',r") be an immedi-
ate predecessor of e if it exists (i.e., (¢/,e) € D). We call
the event e well-informed if one of the following conditions
hold:

1. e = ey i.e., e is an initial event of C, or

2.1 = lorm' € M?°, and send(m) € {recv(m’),
send(m’)}, or

3. 7" # 1and m’ € M# and send(m) = send(m') and
recv(m) = recv(m’) and m # m’ and r = 1.

According to this definition, there are three types of well-
informed events. First, all the initial events are well-
informed. Second, if an immediate predecessor of an event
e is either a synchronous message send event, or if it is
not a conditional or iterative event, then for e to be well-
informed, the sender of the message for e has to be either
the receiver or the sender of the message for its immedi-
ate predecessor. Finally, if an immediate predecessor of an
event e is either a conditional or an iterative asynchronous
message send event, then, to be well-informed, e cannot be
a conditional or iterative event and it must have the same
sender and the receiver but a different message than its im-
mediate predecessor.

A1:x
A2y B3:z

[o

o
(5]

Bl:y
—_—
B2:x

Figure 7. Unrealizable collaboration diagram
with well-informed events.

Theorem 1 A separated collaboration diagram D = (P,
L, M, E, D) is realizable if all the events e € E are well-
informed.

The proof of this property is given in [1]. The realiz-
ability condition for separated collaboration diagrams given
above can be checked in linear time. As mentioned above,
the collaboration diagrams shown in Figure 3, Figure 4, Fig-
ure 5, and Figure 6 are all separated collaboration diagrams.
However, the collaboration diagrams shown in Figure 3 and
Figure 5 violate the realizability condition given above and
they are not realizable, whereas the the collaboration dia-
grams shown in Figure 4 and Figure 6 satisfy the realizabil-
ity condition given above and hence they are realizable.

Note that, in Figure 3 the sender for the final event (i.e.,
the event labeled 2) is the peer Shipping and this peer is not
the receiver or the sender of the message for event 1 which is
the immediate predecessor of event 2. Hence event 2 is not
well-informed. However, in Figure 4 the sender for the final
event (i.e., the event labeled 3) is the receiver of the message
for event 2 which is the immediate predecessor of event 3.
Hence, in Figure 4, the final event is well-informed. In fact
all the events in Figure 4 are well-informed and therefore it
is realizable.

Similarly, in Figure 3 the sender for the event 2 is Ac-
counting and Accounting is not the receiver or the sender of
the message for event 1 which is the immediate predecessor
of event 2. Hence event 2 is not well-informed. However,
in Figure 6 the sender for the event 3 is the receiver of the
message for event 2 which is the immediate predecessor of
event 3. In Figure 6 all events are well-informed and it is
realizable.

Finally, the collaboration diagram shown in Figure 1 is
realizable since all the events shown in Figure 1 are well-
informed.

Now, we will give an example to show that well-
informedness of the events alone does not guarantee real-
izability of a collaboration diagram which is not separated.
Consider the collaboration diagram given in Figure 7. This
collaboration diagram has two threads (A and B) and it is
not separated since both threads have send events for mes-
sages = and y. Note that all the events in this collaboration
diagram are well-informed. The conversation set specified
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Figure 8. A collaboration diagram with no
corresponding Message Sequence Charts.

Figure 9. A Message Sequence Chart with no
corresponding collaboration diagram.

by this collaboration diagram consists of all interleavings of
the sequences xy and yxz which is the set {zyyxz, zyzyz,
TYT2ZY, YTZTY, YTT2yY, Yyrryz, yryrz}. However any set
of peer state machines that generate this conversation set
will either generate the conversation xyzxy or will not be
well-behaved. Consider any set of peer state machines that
generate this conversation set. Consider the partial run in
which first peer P sends « and then the peer Q sends y. From
the peer Q’s perspective there is no way to tell if y was sent
first or if x was sent first. If we require peer @ to receive
the message = before sending y (hence, ensuring that z is
sent before y) then we cannot generate the conversations
which start with the prefix yz. Hence, peer Q can continue
execution assuming that the conversation being generated
is yxzxy and send the message z before peer P sends an-
other message. Such a partial execution will generate the
sequence xyz which is not the prefix of any conversation
in the conversation set of the collaboration diagram. There-
fore such a partial execution will either lead to a complete
run and generate a conversation that is not allowed or it will
not lead to any complete run, either of which violate the
realizability condition.

6. Related Work

Message Sequence Charts (MSCs) [14] provide another
visual model for specification of interactions in distributed
systems. MSC model has also been used in modeling and

verification of web services [10]. As opposed to the collab-
oration diagrams which only specify the ordering of send
events, in the MSC model ordering of both send and receive
events are captured. Another difference between the collab-
oration diagram model and the MSC model is the fact that
MSC model gives a local ordering of the send and receive
events whereas a collaboration diagram gives a global or-
dering of the send events. It is possible to show that there
are collaboration diagrams which specify interactions that
cannot be specified using MSCs and there are MSCs which
specify interactions that cannot be specified using collabo-
ration diagrams.

The examples in Figure 8 and Figure 9 demonstrate the
differences between the MSC and collaboration diagram
models. Consider the collaboration diagram shown in Fig-
ure 8 which states that the peer P should send the message
x before peer R sends the message y. There is no way to
express this ordering using a MSC since the senders of mes-
sages y and x are different. Even if peer P makes sure that
it sends message = before it receives message y (as shown
in Figure 8), this does not guarantee that message ¥y is sent
after message x is sent (note that these are asynchronous
messages).

Figure 9, on the other hand, shows an MSC which spec-
ifies and ordering of send and receive events which cannot
be specified using a collaboration diagram. The MSC in
Figure 9 states that the peer ) should receive message x
before it receives message y, however, it does not specify
any ordering between the send events for messages = and
y. The collaboration diagram in Figure 9 also leaves the
ordering of send events for messages x and y unspecified,
however, there is no way of restricting the ordering of the
receive events in collaboration diagrams.

The realizability problem for MSCs [2] and its ex-
tensions such as high-level MSC (hMSC) [19] and MSC
Graphs [3] have been studied before. However as we dis-
cussed above, the type of interactions specified by collabo-
ration diagrams and MSCs are different.

There has been earlier work on using various UML dia-
grams in modeling different aspects of service compositions
(for example [4, 18, 5]). However, we are not aware of any
work that focuses on realizability of interactions specified
as collaboration diagrams.

In [15], interactions among agents are represented using
various UML diagrams, including collaboration diagrams,
however, the realizability problem is not investigated. In
[16, 17], Dooley graphs are used to model conversations.
Although some of the conditions on Dooley graphs pre-
sented in these earlier works are similar to the realizability
conditions presented in this paper, they do not address the
realizability problem discussed in this paper. Moreover, the
computational model we present in this paper is different
and involves both synchronous and asynchronous commu-



nication, and the interaction model we use has both condi-
tional and iterative send events.

In our earlier work we have studied the realizability of
conversations specified using automata, called conversation
protocols [8, 11, 12, 13, 9]. Conversations protocols pro-
vide a different model for specifying conversations. Unlike
collaboration diagrams, conversation protocols allow spec-
ification of arbitrary cycles. In fact, conversation protocols
can be used for specification of any conversation set that is
regular (i.e., that can be recognized by a finite state automa-
ton). For example, given two messages x and y, the con-
versation set specified by the regular expression (zy)* can
be easily specified using a conversation protocol. However,
this conversation set cannot be specified using collabora-
tion diagrams since the only loop construct in collaboration
diagrams allows repetition of a single send event. In [1]
we show that conversation protocols are more expressive
than collaboration diagrams. The fact that collaboration di-
agrams provide a more restricted language for specification
of interactions can also mean that one can find more effi-
cient techniques for checking their realizability. In fact, the
realizability condition for the collaboration diagrams given
in this paper can be checked more efficiently than the realiz-
ability conditions for conversation protocols given in [11].

7. Conclusions

Analysis of interactions specified by collaborations dia-
grams is becoming increasingly important in the web ser-
vices domain where autonomous peers interact with each
other through messages to achieve a common goal. Since
such interactions can cross organizational boundaries, it is
necessary to focus on specification of interactions rather
then the internal structure of individual peers. In this paper
we argued that collaboration diagrams are a useful visual
formalism for specification of interactions among web ser-
vices. However, specification of interactions from a global
perspective inevitably leads to the realizability problem. In
this paper, we formalized the realizability problem for col-
laboration diagrams and gave sufficient conditions for real-
izability.
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