
SOCA (2008) 2:187–201
DOI 10.1007/s11761-008-0031-6

ORIGINAL RESEARCH PAPER

Service-oriented visualization applied to medical data analysis

Elena Zudilova-Seinstra · Ning Yang · Lilit Axner ·
Adianto Wibisono · Dmitry Vasunin

Received: 17 August 2007 / Revised: 13 June 2008 / Accepted: 29 August 2008 / Published online: 23 September 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract With the era of Grid computing, data driven
experiments and simulations have become very advanced
and complicated. To allow specialists from various domains
to deal with large datasets, aside from developing efficient
extraction techniques, it is necessary to have available com-
putational facilities to visualize and interact with the results
of an extraction process. Having this in mind, we develo-
ped an Interactive Visualization Framework, which supports
a service-oriented architecture. This framework allows, on
one hand visualization experts to construct visualizations
to view and interact with large datasets, and on the other
hand end-users (e.g., medical specialists) to explore these
visualizations irrespective of their geographical location and
available computing resources. The image-based analysis of
vascular disorders served as a case study for this project.
The paper presents main research findings and reports on the
current implementation status.

Keywords Service-oriented visualization ·
Grid/Web services · Image-based medical analysis ·
Workflow management

E. Zudilova-Seinstra (B) · N. Yang · L. Axner
Section Computational Science, Informatics Institute,
University of Amsterdam, Amsterdam, The Netherlands
e-mail: E.V.Zudilova-Seinstra@uva.nl

N. Yang
e-mail: N.Yang@uva.nl

L. Axner
e-mail: L.Abrahamyan@uva.nl

A. Wibisono · D. Vasunin
Systems and Networking Engineering Group, Informatics Institute,
University of Amsterdam, Amsterdam, The Netherlands
e-mail: A.Wibisono@uva.nl

D. Vasunin
e-mail: D.Vasunin@uva.nl

1 Introduction

With the fast development of information technologies the
amount of data at one’s disposal is enormous. Data is produ-
ced at different scales, arrives from various sources
(sensors, instruments, simulations, databases, direct mani-
pulations, etc.) and has different structures. The data explo-
sion has led to very large detailed datasets and the amount of
details in these datasets continues growing at explosive rates.
Sheer sizes, large-scale multi-regional and multi-institution
collaborations have resulted in the distribution of the data
around the world. Both our work and everyday life become
more and more dependent on distributed computing.

Nowadays the data processing requirements are highly
variable, both in the type of resources required and the proces-
sing demands made upon these systems. For medical appli-
cations remote access to the patient data, medical knowledge
bases and special medical instruments are of utmost impor-
tance [19]. Processing, visualization and integration of large
medical datasets are the major cornerstones of the modern
Healthcare.

The Grid technology was introduced recently to enlarge
concepts of distributed processing, visualization and inte-
gration of information from various sources. The advent of
Grid computing paradigm and the linkage to Web services
provide fresh challenges and opportunities for data delivery,
information management and the close coupling of simu-
lation and visualization [18]. Connectivity between distant
locations, interoperability between different kinds of sys-
tems and resources and high levels of computational per-
formance are some of the most promising characteristics of
the Grid.

Interactivity is among important requisites of Grid com-
puting [10,15,17]. However, the question of how to provide
end-users with intuitive means to view and interact with large

123

188 SOCA (2008) 2:187–201

datasets and related computations remains open. Even though
the importance of user-centred design has been already stres-
sed in literature [7,11], many on-going e-Science projects
still do not consider that their tools and applications will also
be used by non-computer experts. Medical specialists, for
instance, are not willing or able to spend substantial time on
programming and learning how to use a new visualization
system [28].

To address this research concern, we designed and imple-
mented an Interactive Visualisation Framework (IVF) sui-
table for the work of both visualization experts and end-users.
IVF is aimed to assist in building distributed visualizations
and their execution on the Grid. It allows experts to deve-
lop visualization routines for end-users while end-users are
able to intuitively explore their data by running these rou-
tines irrespective of the geographical location and available
computing resources.

IVF supports a service-oriented visualization model. This
model is based on the traditional visualization pipeline of
Harber and McNabb [9] and suggests that each intermediate
visualization sub-process is potentially transformable into
an independent Grid/Web service. Thanks to the granula-
rity of a service-oriented architecture users can compose and
steer distributed visualization pipelines running on the Grid.
Furthermore, intermediate visualization stages can be assi-
gned to heterogeneous computing resources considering their
complexity.

To demonstrate that a proposed architecture is suitable for
medical visualization, we applied the IVF framework to the
image-based analysis of vascular disorders. We focused on
the visualization of both experimental and simulated medi-
cal data. The iso-surface extraction technique was applied to
visualize the patient’s vascular condition. Streamline-based
visualization was chosen to represent results of the blood flow
simulation. The visualization part has been performed using
the Kitware Visualization Toolkit (VTK) [35]. A collection
of VTK-based Grid/Web services has been developed in this
project as part of the IVF framework. To allow users to inter-
actively compose distributed visualization pipelines, IVF has
been integrated with the VLAM-G environment, which is
a Grid-based portal for the remote experiment control and
scientific workflow management [25].

The paper presents main findings of this research project
and is organised as follows. We provide an overview of rela-
ted work and discuss the motivation of the project in Sect. 2.
We then introduce a service-oriented approach to data visua-
lization and discuss a possible medical data analysis scenario
in Sect. 3. We describe the architectural design of the IVF
framework in Sect. 4 and present a visualization case study
in Sect. 5. In Sect. 6, the process of building visualization
services from the VTK pipelines is explained in detail. We
report on the current implementation status of the frame-
work in Sect. 7. Results of performance measurements can

be found in Sect. 8. We finalize with conclusions and discus-
sion in Sect. 9.

2 Background

Vascular diseases are the leading cause of death and disa-
bility all over the world, especially in developed countries.
According to the Canberra Fact Report,1 “For a 40 year old,
the risk of having a vascular disease at some point in time in
their future life is 1 in 2 for men and 1 in 3 for women”. The
total burden of vascular diseases is expected to increase over
the coming decades due to the growing number of elderly
people, among whom these diseases are most common.

In general, vascular diseases fall into two main categories
[2]: aneurisms and stenosis. An aneurysmal disease is a bal-
loon like swelling of the artery. Stenosis is a narrowing of the
artery. To redirect the blood flow or to repair the weakened
artery, a vascular reconstruction procedure can be applied. A
criterion for the success of a vascular procedure is the nor-
malization of the blood flow in the affected area. The pro-
cedure may include balloon angioplasty, adding shunts or
bypasses in the case of aneurysms or applying thrombolysis
techniques, bypasses or stent placement for a stenosis.

The best treatment is not always obvious because of the
complexity of the human vascular system and because of
other diseases that a patient may have. Modelling of the blood
flow in human vascular structures helps to obtain an exten-
sive knowledge about its behaviour and to develop solutions
for the treatment of vascular disorders [28]. Datasets genera-
ted via numerical modelling/simulation can be very difficult
to interpret. This challenge can be tackled by extracting rele-
vant information available in numerical datasets and creating
efficient visualizations of such data.

Visualization is an important component of today’s medi-
cal systems for training, diagnosis and treatment planning
[19]. In the past ten years, it has evolved from a tool used by
a few people into an indispensable approach towards impro-
ving understanding of extremely large medical datasets (both
experimental and simulated) currently being produced.

Although a powerful graphics workstation equipped with
a single display system can be sufficient for medical visuali-
zation in many cases, restriction to local hardware and soft-
ware resources makes it difficult for researchers to easily
share their visualizations. Also, sizes of numerical datasets
and the amount of details in these datasets may vary. Pro-
cessing and visualization of large and/or complicated data
often require powerful computational resources, which are
not ultimately available at the user site, especially if the users

1 Fact report: Heart, stroke and vascular diseases: AIHW Cat. No.
CVD27. Canberra: AIHW and National Heart Foundation of Australia,
Cardiovascular Disease Series No. 22, 2004.

123

SOCA (2008) 2:187–201 189

are clinicians. So aside from developing efficient extraction
techniques, it is important to have facilities available (with
adequate permissions) to visualize results of the extraction
process irrespective of local resources.

Grid computing provides excellent opportunities in this
respect [7,8] and hence there have already been several
attempts made to build Grid enabled visualization frame-
works. For instance, the ongoing RealityGrid [18] project
uses visualization as part of a bespoke application to visua-
lize the output of simulations running on the Grid. In the gViz
project [26], an extension to the NAG IRIS Explorer [33] was
developed, which allows individual visualization modules to
be prepared and executed using remote Grid resources. The
Grid Visualization Kernel (GVK) developed as part of the
CrossGrid project is a middleware extension built on top of
the Globus Toolkit. GVK allows remote interactive visua-
lization of both experimental data and acquired simulation
results [14,20].

Unfortunately, existing frameworks have drawbacks cau-
sed by the visualization models they support. None of tra-
ditional visualization models fully comply with needs and
requirements of distributed computing.

Models such as visualization cycle model [23], visualiza-
tion pipeline model [9,24], data-pull models [21] and refe-
rence visualization models [5,13] are based on the major
linkage of visualization sub-processes. In the Grid environ-
ment, this linkage often results in under utilisation of cer-
tain machines for time longer than actually visualization runs
[4,11].

Moreover, to allow interactive user steering over the inter-
mediate visualization stages, external monitoring tools need
to be developed. When frequently evoked, these tools can
significantly slowdown the visualization process [15,26].

Another concern is related to the necessity of having spe-
cial visualization hardware on the user site. Currently visua-
lization front-ends are simply excluded from modelling. As
a result, users having visualization equipment that differs
from the specified configuration are simply unable to explore
all visualization and interaction features provided by Grid
enabled frameworks [29].

3 Applying a service-oriented approach to data
visualization

To provide better user experience and to allow motivated
allocation of Grid resources, we developed a service-oriented
visualization model. This model originates from the traditio-
nal visualization pipeline model introduced by Harber and
McNabb [9] and is based on the principle that any visuali-
zation sub-process can be transformed into an independent
Grid/Web service [3] (see Fig. 1). In a proposed architec-
ture, each visualization service performs a specific role and

can be executed on a different logical machine at a different
geographical location.

For instance, the reading service takes care of the data
delivery. It delivers original raw data to the visualization site
or to a specific data repository. The reading service can be
implemented as an interface to a database or to a simple file or
it can be also deployed as a complex service bringing together
data from multiple sources. When processing of multiple data
sources is required, conversion can be also included into a
reading service.

The filtering service takes a data stream from the reading
service and reduces its size by keeping the content required
for this particular visualization only. This often implies that
certain mathematical calculations have to be performed (e.g.,
interpolation).

The mapping service is responsible for mapping data to
visual representations. At this visualization stage the data is
converted into geometry to be rendered. An example is the
iso-surface extraction, which calculates a boundary between
two regions and generates a surface at that boundary.

The rendering service takes a geometry generated by the
mapping service and renders this geometry as the final image
so that the user can view and interact with it.

Thanks to the granularity of a proposed architecture, ser-
vices can be assigned to different computing resources based
on their complexity. For instance, the rendering service can
be provided with a more significant computational power
than the mapping service responsible only for the conversion
of the filtered data into geometrical primitives.

In general, a service-oriented visualization model can be
represented as it is shown in Fig. 2, where each transfor-
mation sub-process is represented as an independent service.
However, it would be also possible to combine several visua-
lization stages. For instance, to reduce data transfer between
components of a distributed visualization pipeline it might
be useful to combine mapping and rendering or reading and
filtering stages within one Grid/Web service.

Interactive steering plays an important role in service-
oriented visualization. To allow the interactive configura-
tion of and control over a complete pipeline, we replaced
the traditional forward data flow between services with a
bi-directional one. Due to this bi-directionality, visualization
parameters and the data about viewing conditions can be pas-
sed from one service to another also in a bottom-up manner.
The last is vital for the generation of stereo images for auto-
stereoscopic systems [4,16]. To allow the flexible configura-
tion of the visualization front-end, available display systems
can be viewed as data resources.

Figure 3 shows visualization services in a scenario and the
image-based medical data analysis path using these services,
where the numbered lines are steps of the analysis path. The
path begins when the user (clinician) passes medical data
(experimental and/or simulated) to the client application (1),

123

190 SOCA (2008) 2:187–201

Fig. 1 From a visualization
pipeline to a service-oriented
model [29]

Fig. 2 A generic
service-oriented visualization
model

Fig. 3 Generic medical data
analysis scenario

123

SOCA (2008) 2:187–201 191

which quires a service registry for the location of service
providers (2 and 3). Then using GUI client tools, the user
composes a service-oriented visualization pipeline from
Grid/Web services S1, S2, . . ., Sn provided by the service
providers (4). The client then invokes services specified in a
pipeline (5–14). The result of an upstream service is trans-
mitted as the input of the next downstream service. Finally,
the result of the last queried service is passed by the client
to the image viewer running on the active display at the spe-
cified location and the user explores the final image to plan
the future treatment of the patient (15).

As can be seen from the scenario above, service-oriented
visualization allows end-users (e.g., medical specialists) to
explore data visualisations irrespective of their geographical
location and available computing resources. However, the
major advent of a proposed architecture is its suitability for
the work of visualization experts as well. Experts can develop
visualization pipelines for end-users without a necessity of
having local resources dedicated to each visualization task.
Interactive steering makes it possible for experts to control
every stage of a visualization pipeline (its input and output)
and hence to find the optimal solution to a visualization pro-
blem much faster. Moreover, resource sharing provides nice
opportunities for collaborative work, including collaboration
between experts and end-users.

4 Architectural elements

An Interactive Visualization Framework (IVF) developed in
this project supports a service-oriented visualization model
and is aimed at assisting users in building distributed visuali-
zation pipelines and their execution on the Grid. IVF consists
of the following main components: the client, visualization
services and the central data repository.

The client plays a central role in the whole process (Figs. 3
and 4). The composition of a visualization pipeline takes
place on the client and the communication between services
goes through the client as well [29]. The client is able to
find, locate and obtain necessary services and to broadcast
events between services. The client transmits result of an
upstream service as the input of the next downstream service.
Essentially, the client is a thin client because all of the main
processes are done by the services that it utilizes.

Services are responsible for transformational sub-process
from the visualization pipeline shown in Fig. 2. Each service
contains a visualization core and tools to interact with the
client (handler in Fig. 4) and to access the data repository
(GridFTP client in Fig. 4). Visualization services act inde-
pendently without any knowledge about possible existence
of other services. The service invocation is performed in a
client-server manner as it is shown in Fig. 4.

Steering user interfaces to services are not in existence for
the overall duration of the visualization process but can be
invoked any time. A user may adjust visualization parame-
ters (i.e., sample rate, region of interest, etc.) stop, pause or
continue the execution of a running visualization service.

The central data repository (GridFTP server in Fig. 4) is
responsible for hosting data from the client and intermediate
data generated by visualization services. A centralized repo-
sitory allows better data management and synchronisation
compared to multiple repositories for each service [18].

A fragment of the IVF data flow is shown in Fig. 5. The
client invokes a service by sending a message, which specifies
the location of the data to be processed. The invoked service
then takes this indicated data, processes it and stores results
in a repository. After that, the service sends a message to the
client specifying location of the new derived data. A service
invoked next by the client takes this data from a repository,
generates new results and stores them again in a repository.
The process continues until the final image is rendered and
displayed to the user.

Fig. 4 Architectural design

Fig. 5 An example of the data flow in an Interactive Visualization
Framework

123

192 SOCA (2008) 2:187–201

5 A visualization case study

The image-based analysis of vascular disorders served as a
case study for this project. We focused on the visualization
of both experimental and simulated medical datasets.

The experimental data about the patient’s vascular condi-
tion can be obtained via medical imaging modalities [28]
such as Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), Positron Emission Tomography (PET), etc.
The choice of an imaging modality is usually determined by
the structure or anomaly that needs to be observed given that
some modalities are better suited for certain applications than
others.

The volumetric data produced by imaging modalities can
vary from relatively small (e.g., 64 × 64 × 32 voxels) to
very large (e.g., 2048 × 2048 × 1024 voxels). In most cases,
the data consists of a single scalar value per pixel but it is
also possible to obtain three samples per pixel e.g., if the
data is stored in the DICOM format [30]. Datasets produced
by medical imaging modalities cannot be analyzed in their
original numerical representations. A conversion to a visual
representation needs to take place.

In this project, the iso-surface extraction technique has
been applied to visualize the MRI data of the patient’s vascu-
lar condition. It allows the representation of human vascular
structures as surfaces (see Fig. 6a).

Surfaces are generally constructed using polygons as pri-
mitives. One of the most popular algorithms for the iso-
surface extraction is the marching cubes algorithm [12]. In a
3D scalar field, cells are defined as cubes with eight vertices.
The algorithm assumes a linear variation in each direction
within the cell. The idea is to march through the domain cell
by cell and determine whether the surface passes through
the cell. According to the set of vertices of the cell that are
inside or outside the surface, a lookup table with the possible
combinations of how the surface passes through the cell is
applied to determine the polygons to be used.

Visualization of the patient data can be enriched with the
user interaction techniques. For instance, as it is shown in
Fig. 6b, it is possible to interactively select a region of inter-
est for the further thorough inspection, which may include
simulation of specific blood flow parameters.

To model the microscopic properties of the blood flow
while exploring it macroscopic properties, the lattice-
Boltzmann method (LBM) is often applied. The main idea
behind LBM is mapping the average motion of the fluid/blood
particles on the lattice [2]. The LBM solver developed at the
Section Computational Science of the University of Amster-
dam allows to simulate the time-harmonic blood flow in
the human vascular system and extracts the flow specific
parameters (velocity, pressure and sheer stress) before and
after a surgical intervention in order to predict its possible
outcome.

The simulated flow data consists of vectors and scalars
mapped to properties of visual objects such as location, orien-
tation, size, colour and transparency. There exist several
methods to visualize the flow data e.g., vector field visua-
lization, animated particles, glyph visualization, streamline-
based visualization, etc. [19].

In this project, streamline-based flow visualization has
been applied to represent the simulated blood flow in a selec-
ted region of interest (Fig. 6c, d). Streamline-based visualiza-
tion represents a set of paths traced out by massless particles
as they move within a flow [17]. Particles follow the motion
of the flow originating from one or more seed points that
can be set manually by a user or pre-configured based on the
known flow parameters. As the particle propagates, it leaves
a trace called a streamline.

Streamlines are computed based on a numerical integra-
tion method [22], where the integration step together with
the speed of flow determines the detail of the particle trace.
Smaller steps result in more detailed streamlines. However,
the achieved accuracy may cost additional computations and
be very time consuming. On the other hand, when a big

Fig. 6 Iso-surface extraction
(left); streamline-based flow
visualizations (middle);
combined visualizations (right)

123

SOCA (2008) 2:187–201 193

integration step is applied, this may cause the neglection of
the areas of interest.

We have chosen the streamline-based visualization tech-
nique as it is one of the few flow visualization techniques
where user interaction plays significant role [6]. The user can
interactively change the number of streamlines, adjust their
location and distribution radius and apply different colour
palettes.

Using streamlines, the user (e.g., medical specialist) can
investigate how the flow curves and whether it diverges or
converges at specific points. To make it easier for users to
analyze the behaviour of the blood flow, streamlines can be
displayed in combination with the patient data where stream-
lines are positioned inside the arterial structures as it is shown
in Fig. 6e, f. Also, to assist in analysis, a tube with rectan-
gular shape can be wrapped around the path to improve the
visibility of a streamline.

6 Visualization services

In this project, the actual visualization part has been perfor-
med using the Kitware Visualization Toolkit (VTK) 4.4.2
[35].

The VTK iso-surface extraction pipeline can be construc-
ted as it is shown in Fig. 7, left. Because the patient specific
data of vascular geometry is provided as a structured points
VTK file, the iso-surface extraction pipeline starts from the
reading sub-process handled by vtkStructuredPointsReader
class. The purpose of vtkStructuredPointsReader is to ingest
the initial data, create a derived data object and pass this
object to the next pipeline module. vtkContourFilter class
is the second module of the iso-surface extraction pipeline.
This module generates iso-surfaces or iso-lines from the
input dataset. Further on, the pipeline contains vtkPolyData

Mapper class that maps polygonal data (passed by vtkCon-
tourFilter) to the graphics primitives, which are later proces-
sed by rendering software and hardware. vtkRenderer class is
the last VTK module of the pipeline. This module is respon-
sible for rendering graphics primitives into the final image
(3D arterial structures).

The LBM solver simulates flow data as a structured points
VTK file. Consequently, the streamline-based flow visuali-
zation pipeline (Fig. 7, right) starts from the reading sub-
process handled by vtkStructuredPointsReaderclass. The
derived data object is then passed to vtkStreamLine filter,
which generates streamlines for an arbitrary dataset. By
adjusting the integration step parameter, a time increment
for the generation of streamline seed points can be chan-
ged. In order to yield an interesting result, the position of
each streamline has to be properly defined. vtkPointSource
class serves this purpose. vtkPointSource generates random
points in a sphere space with the specified center, radius and
number of seed points. vtkTubeFilter is an additional filter
applied to generate tubes wrapped around streamlines. Next,
the pipeline contains vtkPolyDataMapper and vtkRenderer.
These two VTK classes serve similar purposes as explained
for the iso-surface extraction pipeline. vtkLookupTable class
is used to apply the colour palette to streamtubes. In this pro-
ject, we mainly experimented with the blood flow velocity.
In Figs. 6, 8 and 9, red colour corresponds to the highest
velocity values, blue colour—to the lowest ones.

As stated earlier in this paper, any visualization sub-
process or group of sub-processes can be transformed into
an independent Grid/Web service. To perform this transfor-
mation, main conceptual blocks need to be defined for each
visualization pipeline shown in Fig 7. These blocks can then
be transformed into visualization services.

The VTK iso-surface extraction pipeline can be divided
into two major blocks (see Fig. 7, left): Surface-reader

Fig. 7 From traditional
pipelines to visualization
services (left) iso-surface
extraction; (right)
streamline-based flow
visualization

123

194 SOCA (2008) 2:187–201

Fig. 8 Service-oriented
visualization pipelines: a
iso-surface extraction pipeline;
b streamline-based visualization
pipeline; c combined
visualization pipeline

Fig. 9 Composition of the
distributed streamline-based
visualization pipeline and the
final result

123

SOCA (2008) 2:187–201 195

and Renderer. Surface-reader consists of vtkStructured
PointsReader and vtkContourFilter classes. This block is
responsible for reading a raw dataset and for the extraction
of iso-surfaces from this dataset. Renderer contains vtkPo-
lyDataMapper and vtkRenderer classes. This block is res-
ponsible for mapping graphics primitives into an image and
for rendering the final image. To save derived polygonal
data as an intermediate dataset, we wrapped Surface-reader
with vtkPolyDataWriter class and enriched Renderer with
vtkPolyDataReaderclass to be able to read from the inter-
mediate dataset generated by Surface-reader. These allow
visualization blocks to be executed independently (on dif-
ferent hosts) and perform the same functionality as if they
are merged.

In a similar way, the VTK streamline-based flow visua-
lization pipeline can be split into three major blocks (see
Fig. 7, right): StructuredPoints-reader, Streamer and Rende-
rer. The first block contains vtkStructuredPointsReader class.
The second one consists of vtkStreamLine, vtkTubeFilter and
vtkPointSource. The last one includes vtkPolyDataMapper
and vtkRenderer classes. It has the same name and serves
the same functionality as the Renderer block from the iso-
surface extraction pipeline. Additional VTK reader and
writer objects were embedded into each block to serve as
interfaces between the pipeline and intermediate datasets.

In total, four visualization services have been developed
in this project as part of the IVF framework:

(1) The Surface-reader service is responsible for reading
and filtering sub-processes2 in the iso-surface extraction
pipeline;

(2) The StructuredPoints-reader service is responsible for
the reading sub-process in the streamline-based flow
visualization pipeline;

(3) The Streamer service is responsible for the filtering sub-
process in the streamline-based flow visualization pipe-
line;

(4) The Renderer service is responsible for mapping and
rendering sub-processes3 (applicable to both pipelines).

We kept block names from Fig. 8 to represent services. The
aforementioned Grid/Web visualization services can be used
for the construction of the following distributed pipelines:
the iso-surface extraction pipeline (Fig. 8a), the streamline-
based flow visualization pipeline (Fig. 8b) and the combined
visualization pipeline (Fig. 8c).

2 Reading and filtering were combined to avoid additional data transfer,
which for the iso-surface extraction is more time-consuming than when
both sub-processes run on the same logical machine.
3 Mapping and rendering were combined due to their tight coupling in
the VTK implementation.

7 Implementation

We now discuss our implementation and reasons behind the
selection of various tools.

To deploy the IVF framework, we choose the Globus Tool-
kit 4 (GT4). The Globus Toolkit [31] has been developed
to support the development of service-oriented distributed
computing applications and infrastructures. GT4 represents
a significant advance compared to the GT3 implementation
of Web services functionality. It includes a Java WS core
component that provides Grid/Web services container as a
hosting environment for GT4 standard services and customi-
zed services of users.

In this project, the Web Services Resource Framework
(WSRF) has been implemented via the GT4 Java WS Core.
The Simple Object Access Protocol (SOAP) [7] is used as
a communication protocol. Data transfer is performed via
GridFTP [32]. We have decided to apply GridFTP instead
of the traditional HTTP protocol because GridFTP is more
efficient for the transfer of large datasets.

We choose to implement and advertise Grid/Web visua-
lization services through Web Service Definition Language
(WSDL) documents. When registered with a Universal Des-
cription Discovery and Integration (UDDI) server, a WSDL
document enables remote users to find publicly available
visualization resources and to connect automatically.
Steering interfaces to services and the IVF client have been
implemented in Java. We selected Java as this can run cross-
platform without modification, and the majority of the Grid
tools are implemented in Java. A GUI to the client is deve-
loped using Java Swing package.

The implementation also involved the use of two external
libraries such as VTK and Mesa 3D graphics library. The use
of VTK 4.4.2 highlighted some limitations of this system.
For instance, VTK needs to load data from a local file. This
problem was overcome by copying the remote output to a
local file. Unfortunately, this solution requires the remote
process to have completed before the service using VTK can
start.

To allow users to construct interactively service-oriented
visualization pipelines in an intuitive and flexible manner,
we integrated the IVF framework with the VLAM-G (Grid-
based Virtual Laboratory AMsterdam [27]) at a later stage
of the project. VLAM-G is a Grid enabled problem-solving
environment developed within the Virtual Laboratory for
e-Science project [34]. VLAM-G allows scientific program-
mers to develop scientific portals where computing resource
access details are hidden from end-users (scientists). These
portals provide access to the user interfaces to various scienti-
fic studies e.g., information gathering, data processing, visua-
lization, interpretation and documentation.

VLAM-G is developed under the assumption that all avai-
lable computing resources have the Grid middleware installed

123

196 SOCA (2008) 2:187–201

(Globus [31]) and have inbound and outbound communica-
tions that allow to create the data streams between the work-
flow processes located on geographically distributed Grid
resources. VLAM-G provides generic tools for managing
data and software resources for supporting scientific work-
flows.

Workflow technologies are emerging as the dominating
approach to coordinate groups of distributed services to
achieve a shared task or goal [27]. In the VLAM-G workflow,
modules are the basic construction blocks. Each module is
responsible for the performance of a specific computational
task and consists of the processing and service parts. The pro-
cessing part is the application code, which implements the
program logic. The service part provides facilities for trans-
ferring the data between modules and supports the run time
control interface over these modules.

VLAM-G consists of seven principle components (see
Fig. 10 [27]): the graphical user interface (GUI), Process
Flow Template (PFT) Assistant, Collaboration System, Ses-
sion Manager, Module Repository, Run Time System (RTS)
and Virtual laboratory Information Manager for Cooperation
(VIMCO).

The GUI is the only part of VLAM-G that the user inter-
acts directly with. Using the VLAM-G GUI, the user can
create his/her own experiment (Fig. 9) by connecting out-
put of one module with the input(s) of other module(s). For
this, a module can be simply dragged from a list of available
modules and dropped into the composition window to form a
workflow topology. At run time, this workflow topology will
be executed on the underlying Grid infrastructure (Fig. 11).
The connection validity for each pair of modules is checked
automatically prior to the execution. The PFT Assistant adds
to the process by suggesting the user appropriate modules or
experimental topologies.

Each module in the VLAM-G framework is provided with
a description file in the Module Description Format [25],

Fig. 10 VLAM-G architecture adapted from [27]

which contains information about module resource require-
ments also called as quality of service requirements (QoS).
Furthermore, VLAM-G can import existing Grid/Web ser-
vices as modules if access to their WSDL files is provided.

When the experiment is ready to be executed it is passed
in XML form via the Session Manager to RTS. The Session
Manager makes it possible to the user to work with multiple
studies (execute one study while preparing another one) and
provides a single access point to VIMCO (preparation) and
RTS (execution).

VIMCO provides access to the study and experiment des-
criptions that are stored in application specific databases.
RTS takes care of scheduling, instantiating and monitoring
computational modules from the experiment defined. It
makes extensive use of Globus services to perform these
tasks. The Collaboration System offers audio and video com-
munication, an electronic whiteboard and access to other col-
laborative facilities enabling cooperation between scientists
participating in the experiment.

To allow the IVF visualization services to be controlled
from VLAM-G, we modified all WSDL files. In particu-
lar, the conversion from the document-literal encoding to
the Remote Procedure Call literal encoding has been perfor-
med to allow the automatic generation of client stubs, which
are required by the VLAM-G RTS Manager to be able to
access the IVF visualization services. The RTS Manager is a
GT4-based service that uses standard security and notifica-
tion interfaces provided by GT4. The notification mechanism
allows the user to monitor progress of the pipeline execution.

Two service-oriented visualization pipelines composed
using VLAM-G tools are shown in Figs. 9 and 11 along
with the results of their successful execution. More detai-
led information about VLAM-G can be found in our earlier
publications [1,25,27].

8 Experiments and results

We mainly experimented with the distributed streamline-
based flow visualization pipeline. The heterogeneous com-
puting resources have been used for performing experiments.
Available hardware configurations included:

(1) Intel Pentium 4 CPU 2.80 GHz, 512 MB RAM, graphics
card: 64 MB NVIDIA GeForce4 MX 440 AGP 8x

(2) Intel Xeon CPU 3.0 GHz, 4128 MB RAM, graphics
card: 256 MB NVIDIA Quadro FX 3000 (we experi-
mented with both on-screen and off-screen rendering)

In total, three experiments have been conducted. The aim
of the first experiment was to verify whether Grid/Web
services responsible for different visualization sub-processes
had different computational demands.

123

SOCA (2008) 2:187–201 197

Fig. 11 Execution of the
distributed iso-surface extraction
pipeline and the final result

Execution time4 of three visualization services (Stream
Points-reader, Streamer and Renderer) was measured and
compared depending on the size of an original raw dataset:
1 MB (81.874 data points), 30 MB (1.314.648 data points)
and 70 MB (2.495.004 data points). Each dataset contained
results of the LBM simulation performed for a specific region
of interest.

Overall, the first hypothesis was well supported by the
experimental data. As it is shown in Fig. 12a, the Stream
Points-reader service requires the least processing power
compared to the Streamer and Renderer services. Still, the
Renderer service remains the most time consuming com-
pared to the Streamer service. Consequently, the Renderer
service should be assigned to the most powerful computing
resource.

With the increase in the data size, the need in heteroge-
neous resources becomes more evident. It can be seen in
Fig. 12 that the deviation in execution time measured for two
different hardware configurations becomes essential when
relatively big datasets (≥30 MB) are processed.

In the described experimental setting, both configurations
were equally well suited to perform light-weight filtering and
mapping-rendering tasks. Hence, there is no need to assign
the Renderer service to a more powerful computing resource
if the size of an original raw dataset is ∼1 MB (Fig. 12c). The
same concerns the Streamer service (Fig. 12b).

4 Execution time is time taken by a Grid/Web service to process its
sequence of activities.

As for heavy-weight tasks, when the size of a simula-
ted dataset is more than 30 MB, for both the Streamer and
Renderer services the difference in execution time becomes
noticeable (Fig. 12b, c). However, the Renderer service still
remains the most time consuming and the deviation gets even
stronger when a 70 MB dataset has to be processed. Thus, in
this last situation, it would be beneficial to have the Renderer
service assigned to a more powerful resource.

In the second experiment, we investigated the impact of
the visualization parameter “number of streamlines” on the
choice of a computing resource for the Renderer service to
be assigned to. Our initial hypothesis was that this parameter
would have a significant influence. However, it was unclear
to us prior to the experiment whether this impact would vary
depending on the size of a raw dataset.

Time required to map and render different number of
streamlines is shown in Fig. 13. We compared mapping-
rendering time of the same VTK structured points datasets
of three different sizes as in the first experiment. For better
comparison, different integration steps have been applied to
each dataset: 1 - to a 1 MB dataset, 100 - to a 30 MB dataset
and 200 - to a 70 MB dataset.

According to Fig. 13, a more powerful computer (with
the graphics card NVIDIA Quadro FX 3000) can perform
mapping-rendering faster. The difference in performance
becomes visible when the number of streamlines reaches the
range of 40–50 for relatively big datasets (≥ 30 MB) and
60–70 for small datasets (∼1 MB).

Furthermore, mapping-rendering time is much lower when
off-screen rendering on a computer with a more powerful

123

198 SOCA (2008) 2:187–201

Fig. 12 Execution time of visualization services (integration step—
150): a SreamPoints-reader; b Streamer; c Renderer

graphics card is applied compared to on-screen rendering
performed on the same machine. The reason lies in the imple-
mentation of the VTK library. During on-screen rendering
data has to be moved from the main RAM to the graphics
card RAM, while during off-screen rendering main RAM
is used directly via the Mesa API [35]. As can bee seen in
Fig. 13, the time difference becomes significant when the
number of streamlines reaches 75 (irrespective to the size of
an original dataset).

Overall, the results of the second experiment do not contra-
dict with our hypothesis. Mapping-rendering time is stron-
gly affected by the number of streamlines to be visualized.
In the described experimental setting, a more powerful gra-
phics station becomes beneficial when the number of stream-
lines reaches 50. However, performance gained also depends
on the size of an original structured points dataset. Hence,
when assigning the Renderer service to a dedicated compu-
ting resource, it is important to take both criteria into account.
In this particular implementation, off-screen rendering is pre-
ferable over on-screen rendering.

Fig. 13 Mapping-rendering time required to generate different number
of streamlines: a 1 MB dataset, integration step 1; b 30 MB dataset,
integration step 100; c 70 MB dataset, integration step 200

In the final third experiment, we measured round-trip time
of the execution of the distributed streamline-based flow
visualization pipeline (Figs. 14 and 15) and of the execution
of the distributed iso-surface extraction pipeline (Fig. 16).
We considered round-trip time as the elapse time from the
moment the IVF client starts the transfer of a raw dataset
to the moment the client receives the final image. We used
homogeneous computing resources of the configuration 1 to
perform this experiment.

Total round-trip time has been broken down to the follo-
wing components:

• data reading and writing, including intermediate data
objects (“R/W”);

• data transfer via the GridFTP protocol (“GridFTP”);
• SOAP-messaging (“SOAP”);
• other related issues e.g., loading of the VTK and Mesa

libraries (“Others”)

123

SOCA (2008) 2:187–201 199

Fig. 14 Breakdown of round-trip execution time of the distributed
streamline-based flow visualization pipeline for varying number of
streamlines (70 MB dataset, integration step 200)

Fig. 15 Breakdown of round-trip execution time of the distributed
streamline-based flow visualization pipeline for varying dataset size
(integration step 150)

Fig. 16 Breakdown of round-trip execution time of the distributed iso-
surface extraction visualization pipeline for varying dataset size

As can be seen from the charts, the most essential contribu-
tions to round-trip time are from the “R/W” and “GridFTP”
components, which grow with the increase in the number of
streamlines to be visualized (Fig. 14) and with the increase
in the size of an original dataset (Figs. 15 and 16).

These results can be explained as follows. In the distribu-
ted streamline-based flow visualization pipeline (Fig. 14), the
StreamPoints-reader and Streamer services generate inter-

mediate data objects. Sizes of these intermediate objects
vary depending on such parameters as the integration step
and number of streamlines. Sometimes sizes of intermediate
datasets can exceed the size of an original raw data by an
order of magnitude. Consequently, the time required for rea-
ding/writing increases with big numbers of streamlines.

On the other hand, the sizes and number of generated
intermediate objects as well as the size of the final image
are strongly dependent on a selected region of interest (raw
dataset). Hence, with the growth of original data, the time
required for reading/writing increases as well. As can be seen
in Figs. 15 and 16, this applies to both distributed pipelines.

As it was explained in Sect. 4, intermediate data objects
are stored in a centralized data repository and retrieved from
this repository upon request of a visualization service. This
is achieved through the GridFTP protocol. The time spent on
the data transfer via GridFTP depends on the size of the data
to be transferred. Consequently, the contribution to round-trip
time is strongly affected by both the size of an original dataset
and by the visualization parameters applied (i.e., number of
streamlines).

In the distributed iso-surface extraction pipeline however
the contributions of reading/writing and the GridFTP trans-
fer are much less compared to the distributed streamline-
based pipeline. This happens because within the distributed
streamline-based pipeline intermediate data objects are gene-
rated twice (by the StreamPoints-reader service and by the
Streamer service) whilst within the iso-surface pipeline it is
done only once (by the Surface-reader service).

As for the SOAP-messaging, its contribution to round-trip
time remains constant. SOAP messages contain only control
data (i.e., reference information and visualization parame-
ters) sent over the network. These data do not change with
the increase in the number of streamlines or with the growth
of a raw data.

9 Discussion and conclusions

Traditional visualization models do not fully exploit fea-
tures and benefits of distributed computing oriented mostly
toward service-oriented architectures such as WSRF, Open
Grid Services Architecture (OGSA), Globus [7,8,31], etc. To
facilitate user-friendly interactivity and motivated resource
allocation on the Grid, new visualization models need to be
developed and applied.

Having this in mind, we designed and implemented an
Interactive Visualization Framework (IVF) and demonstrated
that a distributed service-oriented architecture across the Grid
is applicable to the area of medical data visualization.

The IVF framework supports a service-oriented visualiza-
tion model. This model originates from the traditional visua-
lization pipeline of Harber and McNabb [9] and suggests
that intermediate transformation visualization sub-processes

123

200 SOCA (2008) 2:187–201

included into this pipeline can be deployed as independent
Grid/Web services. A service-oriented architecture allows
interactive user steering over distributed visualizations run-
ning on the Grid and provides possibilities for assigning
heterogeneous computing resources to different visualiza-
tion sub-processes.

IVF is suitable for the work of both visualization experts
and end-users (e.g., medical specialist). It allows experts to
build visualization pipelines for complex data analysis avoi-
ding a need of having local resources dedicated to each visua-
lization task. Moreover, steering of each intermediate stage of
a pipeline enables experts to experiment with different visua-
lization schemes for finding an optimal solution to the visua-
lization problem. As for end-users, they are able to explore
visualizations irrespective of their geographical location and
available computing resources.

The image-based analysis of vascular disorders served as
a case study for this research project. We experimented with
two medical datasets: the experimental data of a patient’s vas-
cular condition and the simulated blood flow data, which can
be used to predict the outcome of a vascular reconstruction
procedure.

IVF provides a collection of independent Grid/Web ser-
vices that can be used to visualize these data. Each service is
responsible for a specific visualization sub-process. To allow
interactive composition of distributed pipelines from avai-
lable visualization services, IVF has been integrated with
the VLAM-G environment for scientific workflow manage-
ment [25]. Using the GUI provided by VLAM-G, the user
can browse and select among available services and check
the connection validity between selected services. Three dis-
tributed visualization pipelines can be constructed from the
Grid/Web services developed in this project: the iso-surface
extraction pipeline, the streamline-based flow visualization
pipeline and the combined visualization pipeline.

Using IVF, medical specialists are no longer restricted by
hardware and software limitations and can perform image-
based analysis on very large datasets. IVF allows the
high-quality interactive visualizations to be delivered to the
physically remote users, whose local resources would be
otherwise overwhelmed.

Spreading visualization sub-processes over the Grid as
independent services assigned to heterogeneous computing
resources considering their complexity leads to the better
efficiency in the execution of visualization tasks. Moreo-
ver, the motivated resource allocation allows to avoid the
under utilization of certain machines for the time longer than
actually visualization runs, which is normally the case when
all visualization modules are linked together (in traditional
visualization models).

Performance measurements indicate that different compu-
ting resources should be assigned to reading, filtering
and mapping-rendering services. In particular, the two last

services require more powerful machines and faster graphics
cards. Experimental data shows that when rendering combi-
ned with mapping is assigned to a powerful graphics station,
much better performance can be achieved. In addition, visua-
lization parameters (e.g., the number of streamlines) and the
size of an original raw dataset have significant impact on
computational needs related to each stage of the visualiza-
tion pipeline.

We do not argue that our approach provides the most
efficient resource allocation scheme. But it is definitely a
valuable solution when a distributed environment contains
heterogeneous computer systems.

Currently IVF supports only visualization services deve-
loped in this project. However, our ultimate goal is to allow
functionalities from different vendors to be brought together
and combined within a single pipeline. This will allow any
individual component in a pipeline to be swapped by an alter-
native one, which is faster or cheaper or simply more reliable.
Another open question is how to organize multiple steering
in such a way that each user may hold the information about
his/her visualization pipeline separately.

Next to this, we would like to experiment with different
visualization front-ends. The developed infrastructure allows
diverse equipment to be utilized, including stereoscopic and
auto-stereoscopic immersive systems. Therefore, with regard
to the display diversity, the next step of this project will be
to investigate possibilities to generate visualizations in an
adaptive manner based on display parameters and the viewing
situation (for auto-stereoscopic systems [4,16]).

Acknowledgments This research is partially funded by the NWO/
VIEW “A Multi-modal Visualization Environment for Interactive Ana-
lysis of Medical Data” project, the BSIK “Virtual Laboratory for
e-Science” project and the NWO/Token 2000 “Distributed Interactive
Medical Exploratory for 3D Images” project.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Afsarmanesh H et al. (2003) VLAM-G, A grid-based virtual labo-
ratory. Int J Future Gener Comput Syst 19:1167–1176

2. Axner L, Hoekstra AG, Sloot PMA (2007) Simulating time har-
monic flows with the lattice Boltzmann method. Phys Rev E 75, 3,
036709, pp 1–7

3. Charters SM, Holliman NS, Munro M (2004) Visualisation on
the grid: a web service approach. In: Proceedings of the UK
eScience third All-Hands Meeting, Nottingham Conference Cen-
ter, 31 August–3 September 2004

4. Charters SM, Holliman NS, Munro M (2003) Visualisation in
e-Demand: a grid service architecture for stereoscopic
visualisation. In: Proceedings of the. UK eScience Second All-
Hands Meeting, Nottingham Conference Center, 2–4 September
2003

123

SOCA (2008) 2:187–201 201

5. Chi EH (2000) A taxonomy of visualisation techniques using the
data state reference model. In: Proceedings of the IEEE symposium
on information visualisation, pp 69–75

6. Fayyad U, Grinstein GG, Wierse A (2002) Information visualisa-
tion in data mining and knowledge discovery. Morgan Kaufmann,
San Francisco

7. Foster I, Kesselman C (1998) The grid: blueprint for a new com-
puting infrastructure. Morgan Kaufmann, San Francisco

8. Foster I, Kesselman C, Nick J, Tuecke S (2002) The Physiology of
the Grid: an open grid services architecture for distributed systems
integration. Open Grid Service Infrastructure WG, Global Grid
Forum

9. Haber RB, McNabb DA (1990) Visualisation idioms: a conceptual
model for scientific visualisation systems. Visualisation in scienti-
fic computing. IEEE Press, Los Alamitos

10. Heinzlreiter P, Wasserbauer A, Baumgartner H, Kranzlmueller D,
Kurka G, Volkert J (2002) Interactive virtual reality volume visuali-
sation on the grid. In: Proceedings of DAPSYS 2002, Linz, Austria,
pp 90–97

11. Houstis E, Gallopolous S, Rice JR, Bramley R (2000) Enabling
technologies for computational science: frameworks, middleware,
and environments. Kluwer, Boston

12. Kaufman A (1994) Trends in visualisation and volume graphics,
scientific visualisation advances and challenges. IEEE Computer
Society Press, Melbourne

13. Keim DA (2001) Visual exploration of large data sets. Commun
ACM 44(8):38–44. doi:10.1145/381641.381656

14. Kranzlmueller D, Kurka G, Heinzlreiter P, Volkert J (2002) Optimi-
zations in the grid visualisation kernel. In: Proceedings of PDIVM
2002, Workshop on parallel and distributed computing in image.
Processing, Video Processing and Multimedia, IPDPS 2002 Sym-
posium, Ft. Lauderdale, FL

15. Montagnat J et al (2004) Medical images simulation, storage, and
processing on the European datagrid testbed. J Grid Comput 2:387–
400. doi:10.1007/s10723-004-5744-y

16. Jones GR, Lee D, Holliman NS, Ezra D (2001) Controlling percei-
ved depth in stereoscopic images. Stereoscopic displays and virtual
reality systems VIII. San Jose, California, SPIE, vol 4297A

17. Raskin J (2000) The humane interface: new directions for desi-
gning interactive systems. Addison-Wesley, Reading

18. Stanton J, Newhouse S, Darlington J (2002) Implementing a scien-
tific visualisation capability within a grid enabled component fra-
mework. In: The 8th international Euro-Par conference. Lecture
notes in artificial intelligence, vol 2400, pp 185–193

19. Sloot PMA et al. (2003) Grid-based interactive visualisation of
medical images. In: Norager S (ed) Proceedings of the first

European HealthGrid conference. Commission of the European
communities, Information Society Directorate-General, Brussels,
Belgium, pp 57–66

20. Tirado-Ramos A et al. (2004) Integration of blood flow visualisa-
tion on the grid: the FlowFish/GVK approach. In: Proceedings of
the 2nd European AcrossGrids conference, Nicosia, Cyprus, LNCS
3165, pp 77–79

21. Tory M, Möller T (2004) Rethinking visualisation: a high-level
taxonomy. In: IEEE symposium on information visualisation,
pp 151–158

22. Toro EF (1997) Riemann solvers and numerical methods for fluid
dynamics and a practical introduction. Springer, Berlin

23. Upson C et al (1989) The application visualisation system: a com-
putational environment for scientific visualisation. IEEE Comput
Graph Appl 9(4):30–44. doi:10.1109/38.31462

24. VIPAR—Visualisation In PARallel. http://www.man.ac.uk/MVC/
research/vipar/ (2005)

25. Wibisono A, Korkhov V, Vasunin D, Guevara-Masis V, Belloum
A, de Laat C et al (2007) WS-VLAM: towards a scalable workflow
system on the Grid. In: Proceeding of the 16th IEEE internatio-
nal symposium on high performance distributed computing, 27–29
June 2007. Monterey Bay, California

26. Wood J, Brodlie K, Walton J (2003) gViz—visualisation and stee-
ring for the grid. In: Proceedings of the UK All Hands Meeting
2003, Nottingham

27. Zhao Z, Belloum ASZ, Wibisono A, Terpstra F, de Boer PT, Sloot
PMA et al (2005) Scientific workflow management: between gene-
rality and applicability. In: Proceedings of the international work-
shop on Grid and peer-to-peer based workflows in conjunction with
the 5th international conference on quality software, pp 357–364.
IEEE Computer Society Press, Melbourne, 19–21 September 2005

28. Zudilova EV, Sloot PMA (2005) Bringing combined interaction to
a problem solving environment for vascular reconstruction. Int J
Future Gener Comput Syst 21(7):1167–1176. doi:10.1016/j.future.
2004.04.004

29. Zudilova-Seinstra EV, Yang N (2005) Towards service-based inter-
active visualization. In: Proceedings of international symposium on
ambient intelligence and life, 21 and 22 July 2005. San Sebastian,
Spain, pp 15–25

30. DICOM (Digital Imaging and Communication in Medicine). http://
medical.nema.org

31. Globus Alliance. http://www.globus.org
32. GridFTP protocol. http://dev.globus.org/wiki/GridFTP
33. Explorer IRIS. http://www.nag.co.uk/Welcome_IEC.html
34. Virtual Laboratory for e-Science. http://www.vl-e.nl
35. The Kitware Visualisation Toolkit. http://www.vtk.org

123

http://dx.doi.org/10.1145/381641.381656
http://dx.doi.org/10.1007/s10723-004-5744-y
http://dx.doi.org/10.1109/38.31462
http://www.man.ac.uk/MVC/research/vipar/
http://www.man.ac.uk/MVC/research/vipar/
http://dx.doi.org/10.1016/j.future.2004.04.004
http://dx.doi.org/10.1016/j.future.2004.04.004
http://medical.nema.org
http://medical.nema.org
http://www.globus.org
http://dev.globus.org/wiki/GridFTP
http://www.nag.co.uk/Welcome_IEC.html
http://www.vl-e.nl
http://www.vtk.org

	Service-oriented visualization applied to medical data analysis
	Abstract
	1 Introduction
	2 Background
	3 Applying a service-oriented approach to data visualization
	4 Architectural elements
	5 A visualization case study
	6 Visualization services
	7 Implementation
	8 Experiments and results
	9 Discussion and conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

