
Noname manuscript No.
(will be inserted by the editor)

Virtualised e-Learning on the IRMOS Real-time Cloud

Tommaso Cucinotta · Fabio Checconi · George Kousiouris · Kleopatra
Konstanteli · Spyridon Gogouvitis · Dimosthenis Kyriazis · Theodora
Varvarigou · Alessandro Mazzetti · Zlatko Zlatev · Juri Papay ·
Michael Boniface · Sören Berger · Dominik Lamp · Thomas Voith ·
Manuel Stein

the date of receipt and acceptance should be inserted later

Abstract Providing proper timeliness guarantees to
distributed soft real-time applications in a virtualised
infrastructure involves the careful use of various tech-
niques at different levels, ranging from real-time schedul-
ing mechanisms at the virtual-machine hypervisor level
and QoS-aware protocols at the network level, to proper
design methodologies and tools for stochastic modelling
and runtime provisioning of the applications. This pa-
per describes the way these techniques were combined
to provide strong quality of service guarantees to inter-
active soft real-time applications in the Cloud Comput-
ing infrastructure that has been developed in the con-

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7
under grant agreement n.214777 IRMOS – Interactive Realtime
Multimedia Applications on Service Oriented Infrastructures.

Tommaso Cucinotta · Fabio Checconi
Real-Time Systems Laboratory, Scuola Superiore Sant’Anna,
Pisa, Italy
E-mail: {t.cucinotta,f.checconi}@sssup.it

George Kousiouris · Kleopatra Konstanteli · Spyridon Gogouvi-
tis · Dimosthenis Kyriazis · Theodora Varvarigou
National Technical University of Athens, Greece
E-mail: {gkousiou,kkonst,spyrosg,dimos,dora}@mail.ntua.gr

Alessandro Mazzeti
eXact learning solutions S.p.A., Sestri Levante, Italy
E-mail: mazzetti@planasia.eu

Zlatko Zlatev · Juri Papay · Michael Boniface
University of Southampton, IT Innovation Centre, Southampton,
UK
E-mail: {zdz,jp,mjb}@it-innovation.soton.ac.uk

Sören Berger · Dominik Lamp
University of Stuttgart, Germany
E-mail: {soeren.berger,dominik.lamp}@rus.uni-stuttgart.de

Thomas Voith · Manuel Stein
Alcatel Lucent, Stuttgart, Germany
E-mail: {thomas.voith,manuel.stein}@alcatel-lucent.com

text of the IRMOS European Project. The efficiency
of the developed infrastructure is demonstrated by two
real interactive e-Learning applications, an e-Learning
mobile content delivery application and a virtual world
e-Learning application, both of which have been inte-
grated into the IRMOS platform.

Keywords Real-time scheduling · virtualised infras-
tructures · stochastic modelling · e-Learning.

1 Introduction

A current trend in the software engineering industry
is to rely increasingly on the distributed computing
paradigm, which is becoming mainstream and ubiqui-
tous, especially due to the high market penetration of
low-cost high-speed Internet connectivity. To this di-
rection, more and more applications are developed in
a distributed fashion to be hosted on dedicated infras-
tructures that can be easily accessed by remote users,
whether they are using local workstations, laptops, palm-
top devices or mobile phones.

This has given rise to the Cloud Computing model,
according to which distributed applications developed
by Software-as-a-Service (SaaS) providers, are made avail-
able by means of tools offered by Platform-as-a-Service
(PaaS) providers, to be deployed in a virtualised man-
ner over the resources made available by Infrastructure-
as-a-Service (IaaS) providers. Virtualised computing al-
lows for deploying multiple virtual machines (VMs),
hosting multiple Operating Systems and services therein,
over the same physical hosts, thus achieving a better
server consolidation level. Also, the application of vir-
tualisation techniques at network level, has made possi-
ble to migrate the VMs from a physical host to another



2

one, for maintenance or load-balancing reasons, in a
seamless manner.

However, as the number of VMs deployed over the
same physical resources (e.g., links and CPUs) increases,
the level of performance experienced by each VM be-
comes unstable. Indeed it depends heavily on the over-
all workload imposed by the other VMs competing for
the shared resources. Therefore for a virtualised cloud
environment to provide proper accommodation to this
increasing number of soft real-time distributed appli-
cations, proper CPU and network scheduling technolo-
gies, coupled with proper performance modelling and
runtime provisioning techniques are needed.

In this paper we present the way these techniques
have been combined into one virtualised Cloud Com-
puting service-oriented infrastructure that has been de-
veloped in the context of the IRMOS European Project1,
and we show how these concepts have been practically
applied to provide strong performance guarantees to
real interactive e-Learning applications.

2 Related Work

In this section, related works that have appeared in the
research literature are briefly summarised.

The work by Lin and Dinda in [19] presents various
similarities with the one presented in this paper. First,
an EDF-based scheduling algorithm [21] for Linux is
used on the host to schedule Virtual Machines (VMs).
Furthermore, an analysis is conducted on the applica-
tion performance, investigating the effects of scheduling
decisions and concurrent virtual machines execution.
The analysis is very thorough and interesting, however
the major limitation of the work resides in the way low-
level scheduling is achieved. In fact, the authors make
use of a scheduler built into a proper user-space pro-
cess (VSched), which exploits POSIX real-time prior-
ities in order to achieve an EDF-based scheduling of
VMs, and SIGSTOP/SIGCONT signals for realising
optionally hard resource reservations. Such an approach
presents high scheduling overheads due to the forcibly
increased number of context switches, whilst our sched-
uler [5] is directly built into the kernel and does not
introduce any additional context switch; also, VSched
cannot properly react to those situations in which a VM
blocks or unblocks, e.g., as due to I/O operations, some-
thing that is needed in order to guarantee a proper level
of temporal isolation, like done instead in our scheduler
by exploiting the CBS algorithm [1].

1 More information is available at: http://www.irmosproject.
eu.

Another very interesting work by the same authors
is [20], where the users of a virtual machine are given
the opportunity to adapt the allocated CPU through a
simple interface, based on their experience with the ap-
plication. The cost of the increase is shown, so that the
user may decide on the fly. While it is a very promis-
ing approach and would eliminate a vast number of is-
sues with regard to application QoS levels, its main
drawback is in cases of workflows. Inside a workflow,
a degradation in performance may be due to a bottle-
neck on various nodes executing a part of it. The user
will most likely be unaware of the location of the bot-
tleneck, especially in cases of non experts. Instead, the
work by Nathuji et al. [24] focuses on automatic on-
line adaptation of the CPU allocation in order to keep
a stable performance of VMs. However, the framework
does not treat a VM as a “black-box”, but it needs
application-specific metrics in order to run the neces-
sary QoS control loop, going beyond the common IaaS
business model.

Gupta et al. investigated on the performance isola-
tion of virtual machines [11], focusing on the exploita-
tion of various scheduling policies available in the Xen
hypervisor [6]. Furthermore, Dunlap proposed [9] vari-
ous enhancements to the Xen credit scheduler in order
to face with various issues related to the temporal iso-
lation and fairness among the CPU share dedicated to
each VM. However, in this work we focus on the KVM2

hypervisor, along the lines of other works of ours in
which we showed how to provide isolation of compute-
intensive [7] and network-intensive [8] VMs. Instead,
here we also address the modelling issues related to the
deployment of an e-Learning application with proper
QoS guarantees.

Shirazi et al. [26] proposed DynBench, a benchmark
for infrastructures supporting distributed real time ap-
plications. This creates dynamic conditions for the test-
ing of the infrastructures. While promising, this frame-
work is mainly oriented towards investigating the limits
of the infrastructure and not towards understanding the
application behaviour in relationship to different sched-
uler configurations.

In [10], Germain et al. present DIANE for Grid-
based user level scheduling. However, the focus is on
controlling the execution end time of long processing
applications, and not on real time interactive ones as
done in this paper. The problem of optimum allocation
of workflows of virtualised services on a set of physical
resources under a stochastic approach has been investi-
gated in [14], in the context of soft real-time interactive
applications.

2 More information at: http://www.linux-kvm.org.



3

In terms of application performance modelling in
distributed infrastructures a number of interesting works
exist. A code analysing process that allows for the sim-
ulation of system performance is described in [12]. It
models the application by a parameter-driven Condi-
tional Data Flow Graph (CDFG) and the hardware
(HW) architecture by a configurable HW graph. The
execution cost of each task block in the application
CDFG is modelled by user-configurable parameters, which
allows for highly flexible performance estimation. The
simulator takes the application CDFG and HW graph
as the input and performs a low-level simulation to
catch the detailed HW activities. While very promis-
ing, it needs the source code in order to provide the
CDFG. In our work, we deal with VMs as black boxes,
what allows for the deployment of applications where
the source code is not available for confidentiality pur-
poses.

Another interesting work is presented by Lee et al.
in [18]. The application, whose performance must be
measured, is run under a strict reservation of resources
in order to determine if the given set of reservation pa-
rameters satisfies the time constraints for execution. If
this is not the case, then these parameters are altered
accordingly. If there is a positive surplus, the resources
are decreased and if it is negative they are increased un-
til a satisfying security margin is reached. While assur-
ing high utilisation rates, the main disadvantage of this
methodology is that this must be performed for every
individual execution with the specific SLA parameters
before the actual deployment.

Bekner et al. introduce the Vienna Grid Environ-
ment (VGE) [3], a framework for incorporating QoS
in Grid applications. It uses a performance model to
estimate the response time and a pricing model for de-
termining the price of a job execution. In order to de-
termine whether the client’s QoS constraints can be ful-
filled, for each QoS parameter a corresponding model
has to be in place. However, VGE does not prescribe
the actual nature of performance models. It specifies
only an abstract interface for performance models, tak-
ing as granted that these models will be provided from
analytical modelling or historical data. But analytical
modelling in general requires a thorough knowledge of
the application, in order to deduct the equations that
depict its performance. In this work we also use analyt-
ical models, however they are coupled with a black box
approach for the parts of the application that are not
visible to the external world besides the developer.

Other works exist that address QoS assurance in
Grid environments focusing on performance prediction
[16] and control via service selection [17]. While numer-
ous promising solutions exist to the problem of perfor-

mance analysis of VMs in presence of real-time schedul-
ing, these either are not focused on critical parame-
ters that are necessary for running real time applica-
tions on SOIs, or they lack for a proper low-level real-
time scheduling infrastructure which is needed for sup-
porting temporal isolation among concurrently running
VMs.

3 Performance Isolation – The IRMOS/ISONI
Way

One of the core components which is being developed in
IRMOS is the Intelligent (virtualised) Service-Oriented
Networking Infrastructure (ISONI) [27]. It acts as a
Cloud Computing3 IaaS provider for the IRMOS frame-
work and manages a set of physical computing, net-
working and storage resources available in form of mul-
tiple nodes/sites within a provider domain (see 1).

ISONI provides those virtualised resources over which
IRMOS applications are deployed. One of the key inno-
vations introduced by ISONI is its capability to ensure
guaranteed levels of resource allocation for each indi-
vidual application instance hosted within the ISONI
domain.

This is realised by allowing applications to be de-
ployed in form of a Virtual Service Network (VSN).
This is a graph whose vertices represent individual Ser-
vice Components (SCs) of an application which may
be deployed in form of Virtual Machine Units (VMUs),
and whose edges represent communications – the vir-
tual links (VLs) – among them.

In order for the system represented by a VSN to
comply with real-time constraints as a whole, QoS needs
to be supported for all the involved resources, partic-
ularly for network links, computing hosts and storage
resources. To this purpose, VSN elements are associated
with precise resource requirements, e.g., in terms of the
required computing performance (e.g. working memory,
speed, scheduling) for each node and the required net-
working performance (e.g. bandwidth, latency, jitter)
for each link. These requirements are fulfilled thanks
to the allocation and admission control logic pursued
by ISONI for instantiating VMs within the managed
set of available physical resources, and to the low-level
mechanisms shortly described in what follows (a com-
prehensive ISONI overview is out of the scope of this
paper and can be found in [27]).

3 More information at: http://www.cloudcomputing.org/.



4

Fig. 1 Deployment of Service Components (SCs) within Virtual
Machine Units (VMUs) over IRMOS/ISONI.

3.1 Isolation of Computing

In order to provide scheduling guarantees to individual
VMs scheduled on the same system, processor and core,
IRMOS incorporates a hybrid deadline/priority (HDP)
real-time scheduler [5] developed within the IRMOS
consortium for the Linux kernel. This scheduler pro-
vides temporal isolation among multiple possibly com-
plex software components, such as entire VMs (with the
KVM hypervisor 4, a VM is seen as a process). It uses a
variation of the Constant Bandwidth Server (CBS) al-
gorithm [1], based on Earliest Deadline First (EDF),
for ensuring that each group of processes/threads is
scheduled for Q time units (the budget) every interval
of P time units (the period). The CBS algorithm has
been extended for supporting multi-core (and multi-
processor) platforms, achieving a partitioned scheduler
where the set of tasks belonging to each group may
migrate across the associated CBS scheduler instances
running on different CPUs, according to the usual multi-
processor real-time priority-based scheduling in Linux.

The scheduler exhibits an interface towards user-
space applications based on the cgroups [22] framework,
which allows for configuration of kernel-level param-
eters by means of a file system-based interface. This
interface has been wrapped within a Python API, in
order to make the real-time scheduling services accessi-
ble from within the IRMOS platform. The parameters
that are exposed by the scheduler are the budget Q and
the period P, as explained above.

3.2 Isolation of Networking

Traffic isolation of independent VSNs within ISONI is
achieved by provisioning each VSN deployment with
an individual virtual address space and by policing the

4 More information at: http://www.linux-kvm.org.

network traffic of each deployed virtual link. The auto-
mated deployment of policed virtual link overlays avoids
unwanted crosstalk between services sharing physical
network links and prevents intrusion attempts from un-
named endpoints. The traffic policing avoids that the
network traffic traversing the same network elements
causes any overload which would lead to an unduly, un-
controlled growth of loss rate, delay and jitter for the
network connections of other VSNs. A gap-less policing
ensures that the network multiplex stages always get a
controlled load of traffic. Therefore, bandwidth policing
is an essential building block to ensure QoS for the in-
dividual virtual links. It is important to highlight that
ISONI allows for the specification of the networking re-
quirements in terms of common and technology-neutral
traffic characterisation parameters, such as the needed
guaranteed average and peak bandwidth, latency and
jitter.

Depending on the specified networking requirements,
an adequate transport network is chosen in order to
meet the application requirements (see Fig. 1). By de-
fault, non-critical traffic without estimable performance
requirements can be deployed on Internet transit that
does not provide guarantees on the delivery and perfor-
mance of traffic. On the other hand, soft real-time dis-
tributed applications that rely on capacity guarantees
can be mapped onto network resources for which ISONI
controls the network utilization. The stronger the soft
real-time application requirements on delay and jitter
become for a virtual link, the shorter is the allowable
network distance of the transport resource, which leaves
either the site-local network or the use of leased lines as
suitable transport resource. Since there exist transport
network resources with classification, reservation and
other technology-individual mechanisms to enforce QoS
of traffic, an ISONI transport network adaptation layer
abstracts from transport network technology-individual
QoS mechanism like Diffserv [4], Intserv [28][29] and
MPLS [25] (see Fig.1).

3.3 Performance Modelling

One of the key steps in deploying applications with
precise real-time or generally QoS guarantees within
IRMOS is the one of building a performance model
of the application behavior. This means that, given
application-specific configurable parameters (e.g., num-
ber of users, resolution of multimedia contents, etc.),
and given possible performance levels that one may
want to achieve, it should be possible to determine what
allocation is needed on the physical resources in order
to accomplish that. This is a core information needed



5

by the SaaS provider in order to establish an accurate
pricing policy for the customer(s).

Application performance in the cloud depends on
many complex factors such as application workload,
conditions of the network paths between the user(s)
and the server(s) and the computing workload of the
physical host(s). Computing workload factors are es-
pecially significant in multi-tenant clouds where single
hosts are used to service multiple applications. How-
ever, the ISONI support for temporal isolation of VMs
with guaranteed QoS means the interference due to
shared resources becomes negligible. The immediate ad-
vantage of this is that the performance of an individual
application to be instantiated within the platform may
be easily benchmarked and modelled using tools offered
by the IRMOS PaaS (see Section 4) as a pure function
of its application-specific parameters and the amount of
allocated resources, and it turns out to be independent
of whatever else is (and/or will be) instantiated in the
domain by the provider.

4 The IRMOS PaaS

The IRMOS PaaS, namely the IRMOS Framework Ser-
vices (FS), acts as a mediator between the SaaS and the
ISONI provider. It consists of a family of services and
tools that can be used by the SaaS provider for bench-
marking, modelling and managing applications on the
service-oriented virtualized environment that is offered
by the ISONI provider. We can make the following cat-
egorization of the IRMOS FS:

– Engineering services: These include services for per-
forming application modelling, benchmarking and
performance modelling which are needed by the SaaS
provider to make an application ready to be incor-
porated and hosted in the underlying ISONI cloud.

– Management services: These include services that
support the management of the full life-cycle of the
service-oriented application. Therefore, the FS in-
clude services for discovery, negotiation, reservation,
enactment, monitoring and event handling during
the execution of an application inside the ISONI
virtualized environment.

Using the services above, a description of the VSN can
be created and used by the FS for the purpose of negoti-
ating resources with the ISONI provider. This descrip-
tion includes the required resources for the services that
make up the application and their interconnections, in-
cluding instances of the some key FS responsible for
real-time critical tasks, such as enactment and monitor-
ing. Upon agreement, the ISONI provider is responsible

for delivering a “just-in-time” deployment of the dis-
tributed application on the reserved physical resources
according to the specified QoS requirements. From then
on, the end user is able to use the application without
any knowledge of the underlying Cloud infrastructure.

4.1 Monitoring and Benchmarking

By using the FS tools, the SaaS provider is able to
model behavioral aspects of its application, which aid
in the performance modelling analysis for deriving crit-
ical information about the fluctuation of resource uti-
lization. To this direction, a number of important pa-
rameters when benchmarking the application needs to
be defined. These include the critical inputs of the ser-
vices that influence the produced workload, as well as
parameters whose values can be chosen by the customer
depending on its needs, e.g. the maximum number of
clients that are allowed to connect to an e-learning ap-
plication.

Another factor is the QoS outputs of the services
that comprise the application. These are collected and
stored during benchmark runs by the FS monitoring
system. The latter is a suite of components for moni-
toring, evaluating possible performance anomalies, and
visualizing the performance of the application inside
the VSN, along with the levels of the resources that
are offered to the application by the ISONI provider.
These components acquire this information through an
extensible interface that is used to execute application-
specific external programs to acquire high-level data
about its performance, and also to establish commu-
nication with ISONI’s monitoring system for retrieving
low-level information about computing and networking
resources of the VSN. More information about the de-
sign and implementation of the FS monitoring system
can be found in [13].

The monitoring information is aggregated and stored
in the PaaS infrastructure, and is used both for bench-
marking and performance modelling of an application
to be deployed in the ISONI. Through this exchange of
information, the FS are able to benchmark the applica-
tion and generate the rules needed for the mapping of
high level parameters (used by the SaaS provider for de-
scribing the QoS levels), to low-level parameters (used
by the ISONI provider for the deployment of the VSN).
These rules correlate the configurable workload inputs,
the QoS outputs and the hardware assignments of the
benchmark runs, and are used in conjunction with an-
alytical approaches to generate an overall end-to-end
performance model for the application. This model en-
ables various trade-offs and configurations in order to
select the most suitable combination of resources at the



6

lowest cost, while guaranteeing the QoS levels needed
by the SaaS (see Section 3.3).

4.2 Run-time QoS Provisioning

In a Cloud environment, the set of resources available
for use can be subjected to frequent changes. For ex-
ample, new resources (compute servers, file servers, etc)
may be added, old ones may be removed or become
temporarily unavailable for maintenance purposes, etc.
Furthermore, there is always the chance of bad perfor-
mance modelling that may result in deviations between
the agreed and achieved QoS levels at application run-
time.

For these reasons, there is a need of continuous ob-
servation of the resources and the application’s perfor-
mance for purposes such as fixing problems and track-
ing down their origin. Because the business entities be-
hind the SaaS, PaaS and IaaS, often have conflicting
interests and different mechanisms and levels of fault
tolerance, assessment on the source of the problem can
be a significant undertaking. To this end, monitoring
data are collected during run-time and are being eval-
uated by the FS monitoring system to identify possible
deviations, the source of the problem, and corrective
actions that could be undertaken. Typical corrective
actions include adjustments of the resource allocation
to the application resource utilization, reconfiguration
of a running steering service of the application, notify-
ing the end user and the SaaS provider when certain
events that affect the availability of the application oc-
cur, among others.

Apart from these corrective actions, the FS also en-
able the SaaS provider to define a range of application-
driven events that may automatically trigger certain
actions by the FS during the run-time of the appli-
cation. For example, it may be desirable for the SaaS
provider that the FS automatically launch a renegotia-
tion/reconfiguration process when certain usage terms
are reached. Such scenarios can be found in a variety
of soft real-time applications. In the specific case of a
virtual world application such as the one described in
Section 5.2, the number of users could be modelled into
a trigger for launching automatic renegotiation and re-
configuration of the application by the FS (see Section
8).

5 E-Learning Applications

We consider two interactive e-Learning applications with
soft real-time requirements:

Fig. 2 Components of the e-Learning application.

– Mobile Outdoor e-Learning, which is a mobile ap-
plication, applied to outdoor usage, and

– Virtual World e-Learning, an ubiquitous application
for enabling cooperative e-Learning.

5.1 Mobile Outdoor e-Learning

We focus on an e-Learning mobile instant content de-
livery application, developed to take advantage of a
service-oriented architecture paradigm, in which real-
time requirements play an important role. In this sce-
nario a user can receive on a mobile phone some e-
Learning contents relevant to the current geographi-
cal position (e.g., when approaching historical monu-
ments). It consists of a Tomcat5-based e-Learning server
that exploits a MySQL database for content manage-
ment (see Fig. 3). The application is able to receive
queries with GPS data from multiple clients, search the
database and respond with e-Learning contents corre-
sponding to the provided GPS coordinates (see Fig. 2).
The application server is provided as a Web Applica-
tion Archive (war) file, installed on Tomcat, and made
available as a Virtual Machine image within the IRMOS
infrastructure. Using ISONI, each instance of the appli-
cation can be assigned precise computing and network-
ing resources to ensure that the high-level requirements
defined within an application provider’s Service-Level
Agreement (SLA) can be met with an agreed level of
reliability.

The timing requirements of the application are mainly
related to the response times of individual requests sub-
mitted by the multitude of users.The response times
are gathered by ‘ascmon.jar’and communicated to the
FS by the ‘monitor’ script (see Fig. 3). As discussed
in Section 3.3, thanks to the deployment within IR-
MOS, these response times depend merely on high-level
application-specific parameters, i.e., on the number of
concurrent users querying the same e-Learning instance
and the size of the downloaded contents.

5 More information at: http://tomcat.apache.org



7

Fig. 3 Software architecture of the Mobile Outdoor e-Learning
application.

5.1.1 Application Client Simulation Description

In order to investigate application performance, we de-
veloped a multi-user client simulator. This is capable of
simulating the random movements of a certain num-
ber of users walking around given GPS coordinates.
Then, the simulator mimics the behaviour of the real
mobile client associated with the application: whenever
the monitored GPS coordinates move sufficiently away
from the position of the last queried content, a new
request is submitted to the server with the new user
position. The number of users and a few parameters
governing how each emulated user exactly moves (e.g.,
the user speed) determine the exact pattern of requests
submitted to the server, thus strongly impacting on the
imposed server load.

5.2 Virtual World e-Learning

In the Virtual World e-Learning application we consider
remote users interacting through avatars in a virtual
world system. The Virtual World reproduces a museum,
where works of art are associated to e-Learning lessons
(see Fig. 4). The avatars can move independently from
each other and can communicate through a chat or a
voice line. When an avatar comes close to a work of art,
he or she can invite the other avatars, through chat, to
download the corresponding lesson . Each user can play
the lesson by themselves, while communicating via chat.

This collaborative virtual world application is com-
posed by two main elements: the application service
component (ASC), dealing with user’s communication,
and the application client component (ACC or World
Player), dealing with the graphic rendering. The ASC
builds on top of an Open Wonderland server with mod-
ified modules for IRMOS adaptation and a MySQL
database for managing performance data. A detailed
architecture of the Virtual world application is shown
in Fig. 5, in which the parts that have been created or

Fig. 4 The Virtual World application

Fig. 5 Software architecture of the Virtual World e-Learning
application.

adapted to the IRMOS specifications, such as modules
for configuration and monitoring, are marked with yel-
low color. It should also be noted that the Virtual World
application provides a multi-avatar simulator for bench-
marking purposes. This tool allows the simulation of a
large number of users, which are moving continuously
to generate the maximum amount of traffic between the
clients and the server.

Compared to the Mobile Outdoor e-Learning ap-
plication, the Virtual World application is more real-
time intensive and thus requires a greater number of
high level performance parameters such as the avatar
speed, the chatting quality, etc. The Virtual World ASC
must satisfy real-time constraints (e.g. response time
and processing time), in order to support realistically
fluid movement of the avatars. The performance of this
component strongly depends on the number of con-
nected users, because the quantity of dispatched mes-
sages increases polynomially with the number of avatars.

6 Performance Estimation

In order to estimate what QoS level can be achieved
using different resource configurations, we use perfor-
mance modelling techniques. Many times, the applica-
tion internal software structure may be too complex to



8

Fig. 6 Modelled elements of the e-Learning application.

Fig. 7 Stochastic performance model: t_wan_in and
t_wan_out are modelled as exponential distributions, the
other delays as Erlang ones.

be modelled. Or, it may be unknown because develop-
ers are reluctant to share detailed information about
their application internals, for confidentiality purposes.
In other cases, the use of external libraries or compo-
nents whose internals are unknown makes it impossible
to build an exact model. So, from a modelling point of
view, it is critical to be able to identify the expected
QoS output using a black-box approach.

Therefore, we use a combination of a stochastic model
for predicting statistics over the expected run-time net-
working performance [2], and an Artificial Neural Net-
work (ANN) for identifying the dependency of a com-
ponent QoS from factors like application-level parame-
ters (e.g., number of clients) or scheduling parameters
(e.g., allocated budget and period). These two models,
put together, allow for a precise estimate of the overall
end-to-end QoS experienced by end-users.

6.1 Stochastic Performance Model

We built a Matlab model for simulating, by means of
Monte-Carlo type discrete event simulation, a system
composed of (see Figure 6): a request generator (mod-
elling the end users), a Public Wide Area Network (WAN),
a Private Network internal to an ISONI domain and
the VMU hosting the actual Application Service Com-
ponent (ASC). In order to account for interactivity, we
modelled both paths from the user to the ASC and the
other way round. The model uses a mix of exponen-
tial and Erlang probability distributions (see Figure 7)
for modelling the latencies of application requests while
traversing the involved networks, and it may also sim-
ulate packet loss due to buffer saturation in the various
networks (particularly useful for UDP-based communi-
cations).

The individual parameters of the model need to be
tuned by resorting to proper benchmarking techniques.
The behaviour of the latencies inside the ISONI inter-
nal network may be accurately estimated thanks to the
ISONI networking isolation, and they depend merely
on the requested network-level QoS parameters speci-
fied in the VSN, and the expected application request
pattern. On the other hand, parameters relative to the
QoS-unaware WAN must be estimated based on avail-
able statistics on the overall network workload fore-
seen at the time of usage of the application. However,
a widespread usage of ISONI would reduce the need
for traversing QoS-unaware networks. The behaviour of
the ASC was also estimated as an Erlang distribution.
However, due to the non-trivial dependency of the per-
formance from application-level parameters, in addition
to the resource allocation ones, the Erlang parameters
were tuned by resorting to an ANN model (see below).

The described simulator is capable of providing, for
each configuration, the full probability distribution of
the end-to-end response-times, as well as simpler statis-
tics that may be easily leveraged at design-time, such
as the average or a given percentile of the distribution.
For example, this allows for finding the configuration
parameters granting a given end-to-end response-time
with a given probability.

6.2 Artificial Neural Networks in the Model

An ANN model is used for modelling the time the server
needs in order to retrieve the results from the internal
database. The factors that are taken under consider-
ation are mainly the number of connected clients and
the scheduling decisions (Q and P parameters). Follow-
ing the black-box approach, the use of ANNs allows
for an easy addition of further inputs (or outputs) as
needed (e.g., hardware-specific parameters like the re-
served memory or processor speed), once the necessary
training data sets are collected.

The investigation of the effect of parameters like
the allocated CPU time Q over a period P is critical
due to its influence in the QoS output. The choice of
P is mainly driven by the time granularity for the al-
location needed by the application. For example, for
interactive applications, with fast response times and
relatively light computations, the granularity must be
kept small (in the order of 10–100 ms). For scientific
applications performing long and heavy computations,
large periods will result in lower overheads (500 ms and
beyond).

The outputs of the ANN have been chosen to rep-
resent the average and the standard deviation of the
expected response times, as due to the configuration



9

Table 1 Structure of Mean Response Time amd Standard De-
viation Prediction ANN.

Layer Transfer Function
Size

(Neurons)

Mean response
time

Standard
deviation

Input Tansig Logsig 5
Hidden Tansig Logsig 2
Output Linear (Purelin) Linear (Purelin) 1

Mean Absolute Error

Mean response time 2.51%
Standard deviation 2.75%

represented at the ANN inputs. These outputs are eas-
ily mapped to the Erlang parameters needed for mod-
elling the ASC temporal behaviour in the general model
in Figure 7. The ANN model structure is described in
V.C., while the data gathered as training set is pre-
sented in VI.B.

6.3 ANN Structure and Design

In order to implement the ANN, a standard form of net-
work was selected. The type of operation that was de-
sired was function approximation, in order to determine
the effect of the input parameters (number of clients,
Q, P) on the predicted output (mean value of inner
server response time and standard deviation). The col-
lection of the data set was performed with the process
described in [15]. Two more inputs were included, CPU
speed and VM memory size, but the main focus was on
the initial 3 parameters. The resulting network for the
mean time prediction was a 3-layer, feed-forward, back
propagation network, created through the GNU Octave
tool6. It was trained with the Octave ’trainlm’ func-
tion, using the Levenberg-Marquardt algorithm [23].
The structure of the network is shown in Table 1. All
the inputs and outputs are normalized in the (-1,1) in-
terval. A standard form of function approximation net-
work was used, with one hidden layer and Tansig trans-
fer functions for the input and hidden layer and linear
transfer function for the output layer.

For the standard deviation, a similar process was
followed (but with the Logsig transfer function) and
the resulting network also appears in Table 1.

7 Experimental Results

In this section we report experimental results validat-
ing the presented approach to the provisioning of per-

6 More information is available at:
http://www.gnu.org/software/octave/.

formance guarantees to the Mobile Outdoor e-Learning
application by means of proper real-time scheduling and
modelling techniques. First, the assumptions of tempo-
ral isolation over which the modelling technique relies
are validated. Then, some experimental data used for
training the ANN models is described, and finally the
accuracy of the ANN-based estimations is discussed.

7.1 Temporal Isolation by Real-Time Scheduling

We ran an experiment for the purpose of validating our
approach to the temporal isolation of VMs concurrently
running on the same CPU based on real-time schedul-
ing. To this purpose, we considered two instances of
the e-Learning application deployed on the same host
and physical core. We launched two instances of the
Mobile Outdoor e-Learning multi-user simulator sub-
mitting requests coming from 10 emulated users to the
two servers, from a second machine in an isolated net-
working context. We collected the response-times expe-
rienced by the two multi-user simulator instances under
various conditions in terms of the scheduling parame-
ters configured for the two VMs on the server host.

In Figure 8 we report the average response-time of
the first VM as a function of the CPU share (on the x-
axis) assigned to it, at varying CPU shares assigned to
the second competing VM (corresponding to the various
curves). Under the ideal conditions of perfect temporal
isolation, we would like the second competing VM work-
load, ranging from completely idle (continuous curve)
to having a 50% of load on the system (dashed curve
tagged with little triangles), to have no impact at all on
the performance of the first VM. This would correspond
to having all the curves perfectly superimposed.

As it can be seen from the experimental results, the
soft real-time scheduler achieves a nearly good approx-
imation of such a condition, realising a set of curves
which are quite close to each other, where the increase
of computing resources granted to the second VM cor-
responds to a slight decrease of the performance of the
first VM. This may be mainly attributed to an increased
contention on the cache, and constitutes a minimum of
interference which cannot be removed. Other factors of
interference which are not trivial to keep under control
are due to shared resources on the host OS, like the net-
working stack and interrupts. For example, see [8] for a
discussion of the interference due to network-intensive
VMs, and the extent to which it can be controlled by
real-time scheduling of the CPU.



10

 0

 50

 100

 150

 200

 250

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

V
M

U
1
 A

ve
ra

g
e
 R

e
sp

o
n
se

-T
im

e

VMU1 CPU Share

VM2 Idle
VM2 CPU Share: 10%
VM2 CPU Share: 20%
VM2 CPU Share: 30%
VM2 CPU Share: 40%
VM2 CPU Share: 50%

Fig. 8 Average response-time of the first VM as a function of
the CPU share (on the x-axis) assigned to it, at varying CPU
shares assigned to the second competing VM (corresponding to
the various curves).

Fig. 9 Standard Deviation with regard to changing P for 90
users.

Fig. 10 Mean value with regard to changing P for 70 users and
40% CPU share.

7.2 Experimental Performance of the e-Learning
Application

In this section, experimental performance data gath-
ered for various configurations of both application-level
and resource allocation parameters is presented. The
range of values that were altered for the configuration
parameters are:

– Number of Users: 30-150
– Q/P (CPU share) : 20-100% with a step of 20
– P: 10000–560000 (µsec) with a step of 50000

For each configuration, about 800 response times were
collected, and the corresponding average and standard
deviation figures computed. An indicative set of these
measurements is discussed below.

The effect of changing granularity on the deviation
of the response time values can be observed in Figure 9.
This is expected since with high values of P, the service
has long active and inactive periods. If the requests fall
in the active interval, they will be satisfied quickly but if
they fall in the inactive one then they will have to wait
until the next active period begins. This effect decreases
at increasing allocated CPU shares, since then the CPU
is almost dedicated to the application and whenever a
request arrives, it is served. The mean response time,
as shown in Figure 10, seems not to be affected greatly
given that the percentage of CPU assigned is the same.

In Figure 11, the comparison of the normalised prob-
ability distribution of delay times is shown for two dif-
ferent numbers of users (30 and 50 users). The differ-
ence especially in the maximum values of the distribu-
tions depicts the effect of the application workload in
the response times. Figure 12 shows the cumulative dis-
tribution function and the confidence intervals for the
same combination of number of users, given that the
CPU share allocated to the VMU remains the same.

In Figure 13 all the different configurations are shown
for two different numbers of users. In this case, each
group of columns (the first high one followed by 4 lower
ones) represents one period configuration (P) for differ-
ent CPU share percentages. The upper line is for low
utilization. While the utilization increases the response
time decreases. In the horizontal axis, the different P
configurations represent increasing period values.

From these measurements it seems interesting that
the best granularity (P) should depend also on the per-
centage of the CPU assigned to the application. In this
occasion, for low percentages of utilization it is best
to assign values near the middle of the investigated in-
terval (10000-560000 us), as is depicted in Figure 13.
For higher percentages of utilisation, lower values of P
are more beneficial for the response times of the ap-
plication. Furthermore, Figure 13 highlights the effect
of the increased CPU share allocation to the response
time.

7.3 Prediction accuracy of the ANN Model

For the estimation of the ANN accuracy, about 30%
(87 test executions) of the data set was used only for
validation. After the training of the model with the 70%
of the test cases, we applied the according inputs of
the validation cases and compared the estimated output



11

Fig. 11 Comparison of normalised probability distribution of
delay times for different number of users.

Fig. 12 Cumulative distribution function and confidence inter-
val for different number of users.

Fig. 13 Different P’s and CPU shares for 110 users.

with the observed one. The overall accuracy was around
2.5% and the error of the network for each individual
test case appears in Figure 14. For each validation case,
the network error appears in Figure 15.

The accuracy of the ANN models is evident from
these measurements, giving sufficient reliability for this
part of the overall model. The maximum deviation from
the validation cases is very satisfying and so is the mean
error for all the experiments. Furthermore, the predic-
tions are not biased, a factor that is critical for the
merging of different modelling approaches like in this
paper.

Fig. 14 Accuracy of the ANN for Mean Response Time Predic-
tion.

Fig. 15 Accuracy of the ANN for Standard Deviation Predic-
tion.

8 The Virtual World Use Case

Within the IRMOS context, the Virtual World e-Learning
application, as presented in Section 5.2, was used to
promote collaborative education through an immersive
experience. In more detail, several people (learners, teach-
ers, tutors, organizers, etc.) were allowed to meet in
an interactive three-dimensional virtual world environ-
ment and interact with 3D-objects that were linked to
e-Learning contents (Fig. 4).

This particular use case was used to demonstrate
the run-time QoS adaption capabilities behind the IR-
MOS platform as described in Section 4.2. The nego-
tiation of the Virtual World application is based on a
“pay-as-you-reserve” model, i.e. the cost fluctuates ac-
cording to the amount of resources that are reserved
to achieve the requested performance which heavily de-
pends on maximum number of avatars. Therefore in or-
der to maintain the given QoS level, any extra requests
for entrance should be rejected when the number of
avatars already in the Virtual World is maximum.

However, the IRMOS ISONI is able to support the
seamless extension of the resources, by either extending
the reserved CPU, memory, network bandwidth share



12

Fig. 16 Negotiation of automatic resource extension.

of the reserved resources or by performing other ac-
tions such as live-migrating the application onto other
physical resources. Furthermore, the IRMOS FS Moni-
toring system, as already described in Section 4, is con-
tinuously collecting high-level monitoring data during
run-time, such as the number of logged avatars and re-
quests for entrance, and can combine them into rules
that may trigger certain actions. To this end, the IR-
MOS customer is given the ability to satisfy a demand
for extra resources at run-time, in order to maintain
the overall performance without interruption. This has
been concretized by a structured negotiation in which
the customer can enable the IRMOS FS to automati-
cally re-negotiate an extension of the resources by pre-
agreeing to pay an additional cost. Fig. 16 shows the
application negotiation in which 5 additional avatars
are foreseen.

At the end of the negotiation, the resources for the
basic number of avatars (i.e. 10 avatars) are reserved
and the application is deployed. Thus up to 10 avatars
can enter the Virtual World with the guarantee that
the requested QoS level is respected. With 10 already
logged avatars, any request after that is being blocked,
while the IRMOS FS are re-negotiating with the ISONI
provider for resources that are able to sustain the 15
avatars under the same QoS level. In the background,
the allocated resources (CPU share, memory, network
bandwidth) are being increased according to the out-
put of the performance model for the new maximum
number of avatars. At the end of the re-negotiation,
a VSN able to support additional users (15 avatars in
total) is instantiated and the Virtual World applica-
tion is reconfigured to accept 15 avatars. The blocked
avatar requesting access is now allowed to enter, and
the customer is charged with the agreed additional fee.

Fig. 17 Illustrative example of the QoS adaption process using
snapshots (enclosed in a box). Moving left to right: at the first
snapshot the renegotiation is triggered, at the second snapshot
the reserved CPU share is increased, and at the last snapshot the
Virtual World application is reconfigured to accept 15 avatars.
The blocked avatars are allowed to log-in afterwards.

The entire process of renegotiation and reconfiguration,
including the addition of the blocked avatar in the Vir-
tual World is complete in less than a minute (≈ 50
secs) with the monitoring polling rate set to 10 secs for
keeping the monitoring overhead absolutely negligible.
However, if appropriate, one can increase the monitor-
ing rate, to achieve a more responsive infrastructure
at the cost of higher monitoring overheads imposed on
computing and networking resources.

Fig. 17 is an illustrative example of the renegotia-
tion process showing also the XML-based syntax of the
gathered monitoring data (see yellow box labeled ’mon-
itor script’ in Fig. 5). The monitoring parameters have
10 values, with each of them collected 10 seconds after
its previous one.

9 Conclusions

In this work, we discussed how two real e-Learning
distributed applications have been deployed with pre-
dictable and stable QoS levels within the IRMOS plat-
form. We showed how we flanked the temporal isolation
mechanisms available within the platform with proper
performance analysis, modelling and benchmarking tech-
niques, in order to investigate the performance levels
achievable by the application under the various possi-
ble configurations. Furthermore, we demonstrated the
run-time QoS adaption capabilities behind the IRMOS
platform and the way they build proper monitoring and
evaluation of application performance on top. In the
future, we plan to leverage the black-box approach for
performance estimation, so as to apply the described
technique to other applications that are already being
adapted for deployment within IRMOS, such as dis-
tributed editing of professional-quality video and a vir-



13

tual reality application. Also, we plan to extend the
used performance models by accounting for possibly
heterogeneous hardware within an ISONI domain. Fi-
nally, we plan to extensively compare the predicted
performance and the actually realised one, in presence
of a variety of other deployed workload types, from
compute-intensive to network-intensive ones.

References

1. L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the IEEE
Real-Time Systems Symposium, Madrid, Spain, 1998.

2. Matthew Addis, Zlatko Zlatev, William Mitchell, and Mike
Boniface. Modelling interactive real-time applications on ser-
vice oriented infrastructures. In 2009 NEM Summit - To-
wards Future Media Internet, September 2009.

3. S. Benkner and G. Engelbrecht. A generic qos infrastruc-
ture for grid web services. In Proceedings of the Advanced
International Conference on Telecommunications and Inter-
national Conference on Internet and Web Applications and
Services (AICT-ICIW), 2006.

4. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. RFC2475. An Architecture for Differentiated
Service, December 1998.

5. F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. Hierar-
chical multiprocessor CPU reservations for the linux kernel.
In Proceedings of the 5th International Workshop on Operat-
ing Systems Platforms for Embedded Real-Time Applications
(OSPERT), Dublin, Ireland, June 2009.

6. Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat.
Comparison of the three cpu schedulers in xen. SIGMET-
RICS Perform. Eval. Rev., 35:42–51, September 2007.

7. T. Cucinotta, G. Anastasi, and L. Abeni. Respecting tempo-
ral constraints in virtualised services. In Proceedings of the
2nd IEEE International Workshop on Real-Time Service-
Oriented Architecture and Applications (RTSOAA), Seattle,
Washington, July 2009.

8. T. Cucinotta, D. Giani, D. Faggioli, and F. Checconi. Provid-
ing performance guarantees to virtual machines using real-
time scheduling. In to appear in Proceedings of the 5th Work-
shop on Virtualization and High-Performance Cloud Com-
puting (VHPC), Ischia (Naples), Italy, August 2010.

9. G. Dunlap. Scheduler development update. Xen Summit Asia
2009, Shanghai, 2009.

10. Cecile Germain-Renaud, Charles Loomis, Jakub Moscicki,
and Romain Texier. Scheduling for responsive grids. Journal
of Grid Computing, 6:15–27, 2008. 10.1007/s10723-007-9086-
4.

11. Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and
Amin Vahdat. Enforcing performance isolation across virtual
machines in xen. In Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, Middleware
’06, pages 342–362, New York, NY, USA, 2006. Springer-
Verlag New York, Inc.

12. Zhengting He, Cheng Peng, and Aloysius Mok. A perfor-
mance estimation tool for video applications. In Proceedings
of the 12th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 267–276, Washington, DC,
USA, 2006. IEEE Computer Society.

13. Gregory Katsaros, George Kousiouris, Spyridon V. Gogouvi-
tis, Dimosthenis Kyriazis, and Theodora A. Varvarigou. A
service oriented monitoring framework for soft real-time ap-
plications. In SOCA’10, pages 1–4, 2010.

14. Kleopatra Konstanteli, Tommaso Cucinotta, and Theodora
Varvarigou. Optimum allocation of distributed service work-
flows with probabilistic real-time guarantees. Serv. Oriented
Comput. Appl., 4:68:229–68:243, December 2010.

15. G. Kousiouris, F. Checconi, A. Mazzetti, Z. Zlatev, J. Pa-
pay, T. Voith, and D. Kyriazis. Distributed interactive
real-time multimedia applications: A sampling and analysis
framework. In Proceedings of the 1st International Work-
shop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS 2010), Brussels, Belgium, July
2010.

16. G. Kousiouris, D. Kyriazis, K. Konstanteli, S. Gogouvitis,
G. Katsaros, and T. Varvarigou. A service-oriented frame-
work for gnu octave-based performance prediction. In Pro-
ceedings of the 2010 IEEE International Conference on Ser-
vices Computing (SCC), Miami, Florida, August 2010.

17. Dimosthenis Kyriazis, Konstantinos Tserpes, Andreas Meny-
chtas, Ioannis Sarantidis, and Theodora Varvarigou. Service
selection and workflow mapping for Grids: an approach ex-
ploiting quality-of-service information. Concurr. Comput. :
Pract. Exper., 21:739–766, April 2009.

18. J. W. Lee and K. Asanovic. Meterg: Measurement-based end-
to-end performance estimation technique in qos-capable mul-
tiprocessors. In Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2006.

19. B. Lin and P. Dinda. Vsched: Mixing batch and interactive
virtual machines using periodic real-time scheduling. In Pro-
ceedings of the IEEE/ACM Conference on Supercomputing,
November 2005.

20. B. Lin and P. Dinda. Towards scheduling virtual machines
based on direct user input. In Proceedings of the 2nd Interna-
tional Workshop on Virtualization Technology in Distributed
Computing, Washington,DC, November 2006.

21. C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment. J.
ACM, 20:46–61, January 1973.

22. P. Menage. CGROUPS, 2008. Available on-line at:
http://www.mjmwired.net/kernel/Documentation/cgroups.txt.

23. Jorge More. The levenberg-marquardt algorithm: Implemen-
tation and theory. In G. Watson, editor, Numerical Analysis,
volume 630 of Lecture Notes in Mathematics, pages 105–116.
Springer Berlin / Heidelberg, 1978. 10.1007/BFb0067700.

24. R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Man-
aging performance interference effects for qos-aware clouds.
In Proceedings of the 5th European conference on Computer
systems (EuroSys), Paris, France, April 2010.

25. E. Rosen, A. Viswanathan, and R. Callon. RFC3031, Multi-
protocol Label Switching Architecture. IETF, January 2001.

26. B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yana-
mula, R. Brucks, and E. Huh. Dynbench: A dynamic bench-
mark suite for distributed real-time systems. In Proceedings
of IPDPS Workshop on Embedded HPC Systems and Appli-
cations, S. Juan, Puerto Rico, 1999.

27. T. Voith, M. Kessler, K. Oberle, D. Lamp, A. Cuevas,
P. Mandic, and A. Reifert. ISONI Whitepaper, September
2008.

28. J. Wroclawski. RFC2210, The Use of RSVP with IETF In-
tegrated Services. IETF, September 1997.

29. J. Wroclawski. RFC2211, Specification of the Controlled
Load Quality of Service. IETF, September 1997.


