
SOCA
DOI 10.1007/s11761-013-0129-3

ORIGINAL RESEARCH PAPER

SOA-enabled compliance management: instrumenting, assessing,
and analyzing service-based business processes

Carlos Rodríguez · Daniel Schleicher ·
Florian Daniel · Fabio Casati ·
Frank Leymann · Sebastian Wagner

Received: 24 February 2012 / Revised: 26 October 2012 / Accepted: 11 January 2013
© Springer-Verlag London 2013

Abstract Facilitating compliance management, that is,
assisting a company’s management in conforming to laws,
regulations, standards, contracts, and policies, is a hot but
non-trivial task. The service-oriented architecture (SOA) has
evolved traditional, manual business practices into modern,
service-based IT practices that ease part of the problem: the
systematic definition and execution of business processes.
This, in turn, facilitates the online monitoring of system
behaviors and the enforcement of allowed behaviors—all
ingredients that can be used to assist compliance management
on the fly during process execution. In this paper, instead of
focusing on monitoring and runtime enforcement of rules or
constraints, we strive for an alternative approach to com-
pliance management in SOAs that aims at assessing and
improving compliance. We propose two ingredients: (i) a
model and tool to design compliant service-based processes
and to instrument them in order to generate evidence of how
they are executed and (ii) a reporting and analysis suite
to create awareness of a company’s compliance state and

C. Rodríguez (B) · F. Daniel · F. Casati
Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive 14, 38123 Povo, TN, Italy
e-mail: crodriguez@disi.unitn.it

F. Daniel
e-mail: daniel@disi.unitn.it

F. Casati
e-mail: casati@disi.unitn.it

D. Schleicher · F. Leymann · S. Wagner
Institute of Architecture of Application Systems, University
of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: daniel.schleicher@iaas.uni-stuttgart.de

F. Leymann
e-mail: frank.leymann@iaas.uni-stuttgart.de

S. Wagner
e-mail: sebastian.wagner@iaas.uni-stuttgart.de

to enable understanding why and where compliance viola-
tions have occurred. Together, these ingredients result in
an approach that is close to how the real stakeholders—
compliance experts and auditors—actually assess the state of
compliance in practice and that is less intrusive than enforc-
ing compliance.

Keywords Service-based compliance governance ·
Compliance assessment · Signaling instrumentation · Key
indicators · Root cause analysis · Reporting dashboard

1 Introduction

Compliance management [34] is an important, costly, and
complex problem: It is important because there is increas-
ing regulatory pressure on companies to meet a variety of
requirements in terms of regulations, laws, and similar (e.g.,
Basel II, MiFID, SOX). This increase has been to a large
extent fueled by high-profile bankruptcy cases (e.g., Par-
malat, Enron, WorldCom), safety mishaps (the April 2009
earthquake in L’Aquila, Italy, has already led to stricter rules
and certification procedures for buildings and construction
companies), or the recent financial crisis. Failing to meet
these requirements may imply safety risks, hefty penalties,
loss of reputation, or even bankruptcy or jail [35].

Managing and auditing/certifying compliance is a very
expensive endeavor. In their 2008–2009 Governance, Risk
Management, and Compliance Spending Report [13], AMR
Research estimated that companies would spend US$ 32B
only on governance, compliance, and risk in 2008 and more
than US$ 33B in 2009. In addition, audits are themselves
expensive and invasive activities, costly not only in terms
of auditors’ salaries but also in terms of internal costs for
preparing for and assisting the audit.

123

SOCA

Fig. 1 Outpatient drug dispensation in a hospital: modeling compliance requirements and assessing compliance

Finally, the problem is complex because compliance
requirements are often pervasive in that they span across
many segments of a company and many processes. They are
also sometimes only vague and informally specified. Yet,
compliance management requires understanding and inter-
preting requirements and then implementing and managing
a typically large number of controls on a variety of proce-
dures across the business units of a company. Each compli-
ance requirement and procedure may demand for its own
control mechanism and its own set of assessment metrics to
adequately capture the state of compliance.

Today, compliance is to a large extent managed by the
various business units in rather ad hoc ways and with lit-
tle or no IT support. As a result, today it is very hard for
any CFO or CIO to answer the following questions: Which
requirements does my company have to comply with? Which
processes should obey which requirements? Which processes
are following a given regulation? Where do violations occur?
Which processes do we have under control? Even more, it
is hard to do so from a perspective that not only satisfies
the company but also the company’s auditors, which is cru-
cial as the auditors are the ones that certify the company’s
capabilities to control compliance.

Yet, business processes are indeed supported by IT. Tech-
nologies like web services and business process management
systems have demonstrated, although more slowly than ini-
tially thought, their viability for organizing work and assist-
ing and orchestrating also human actors involved in business
processes. Interestingly, however, the automated operation of
business processes has not yet lead to a significant facilitation
of compliance management practices.

1.1 Reference scenario: outpatient drug dispensation in a
hospital

Let us consider, for example, the management and assess-
ment of the outpatient drug dispensation process summa-
rized in Fig. 1. The process—and this paper—originates in

the EU project MASTER (http://www.master-fp7.eu) where
we cooperate on compliance management with Hospital San
Raffaele (Milano, Italy), which runs the described distributed
business process. The process is part of a bigger procedure
known as the outpatient drug reimbursement, which imple-
ments the steps required for refunding hospitals for the drugs
dispensed to patients that are not hospitalized. The over-
all process is regulated by the Italian Healthcare Authority,
which dictates regulations on the dispensation and report-
ing requirements for the reimbursement of drug expenses,
such as the ones concerning privacy in personal information
processing.

The core process, shown in Fig. 1, starts with the patient’s
visit to the doctor in the hospital’s ward. Depending on the
diagnosis, the doctor sends a prescription for drugs to the
nurse, who dispenses the necessary drugs to the patient if the
requested quantity is available. If the available drug quan-
tity is insufficient, she requests the drug to the hospital-
internal pharmacy, which is then in charge of replenishing
the nurse’s drug store. If, in turn, the pharmacy is running
out of stock, it orders the necessary drugs from the pharma-
ceutical company.

The drug dispensation process is supported by several web
service-based information systems that interact inside a SOA
that is distributed over the hospital, the pharmacy, and the
pharmaceutical company. For instance, there are web ser-
vices for issuing drug requests in the various dependencies
of the institute, and the pharmaceutical company the hospital
cooperates with accepts drug requests through web service
interfaces. To retrieve the data necessary to assess the hospi-
tal’s state of compliance, during the execution of the process,
suitable data (e.g., events) that can be logged and later ana-
lyzed are produced by all cooperating parties.

By law, the hospital must guarantee that all patient data
are anonymized throughout the process (and in the gener-
ated events), and the hospital’s internal policy states that
drug replenishment must occur within maximum two busi-
ness days and that the person who prescribes a drug cannot

123

http://www.master-fp7.eu

SOCA

also dispense the drug (separation of duties). While this
latter requirement is monitored internally by the hospital’s
own compliance expert, the former requirement is subject
to yearly audit by an official security auditor, who certifies
(or not) the hospital’s compliance with the laws the hospital
is subject to. Passing this audit is crucial for the hospital’s
business continuity.

The compliance requirements that apply to the hospital
are identified and specified by the compliance expert, who
knows about the applicable laws and regulations and about
the internal policy. Typically, the compliance expert assists
the process modeler in designing compliant processes, in
order to prevent non-compliance by design. Yet, he also
checks the execution of the designed processes, as at runtime,
non-compliant situations may occur despite a well-designed
process model (e.g., due to system failures or manual inter-
vention on a running process instance). Periodically, he then
writes an internal compliance report, which is the basis (i)
for the management to take decisions and enforce compliance
and (ii) for the process modeler to understand violations and
improve process models and controls.

Today, all these activities are typically performed manu-
ally, and compliance assessment is of statistical nature. That
is, controls are added to processes in an ad hoc and per-
process fashion; process instances are checked by inspecting
only a subset of physical documents or log files and esti-
mating compliance levels; the compliance report is written
by hand; and analyzing the root causes of violations is hard
and time-consuming, given the large amount of data to be
correlated. In addition to that, although the overall process
is automatically orchestrated and activities have suitable IT
support, in practice many tasks are still based on paper forms
filled by doctors or nurses during their service and manually
input only in a later stage. 1

1.2 Contributions and structure of the paper

This paper describes an infrastructure and methodology that
supports compliance management. Specifically, we provide
the following contributions:

– We provide a model and a graphical modeling tool that
eases building processes that are compliant with process-
specific compliance requirements. The approach allows
one to equip a common business process definition (e.g.,
BPEL process specification) with a definition of technical

1 It is important to note here that we assume all the artifacts needed for
compliance management are represented inside the information system.
Also, we do not deal with the problem of fidelity regarding the computer
representations of real-world artifacts; this is a general modeling that
requires adequate domain and modeling knowledge.

compliance rules and to instrument it in order to generate
the necessary evidence for compliance assessment.

– In order to facilitate compliance assessment, we extend
a state-of-the-art service orchestration engine with sig-
naling capabilities that are able to generate compliance-
related evidence on process executions.

– We provide a suite of reporting and analysis tools
that facilitates the writing of the compliance report and
helps the compliance expert and the process modeler
to identify where and why compliance violations hap-
pened. The suite is based on a compliance-oriented ware-
house, key compliance indicators, and root cause analysis
algorithms.

– We implement all reporting and analysis algorithms on
top of a data model that supports compliance assess-
ment, which allows us to better reflect the nature of the
data that are available for analysis and to enable better
business decisions.

In summary, the main goal of this work is to enable humans
to be aware of how compliant business processes are and to
understand why problems happen, in order to improve com-
pliance. We propose a methodology and tool for the defini-
tion and assessment of compliance rules. While compliance
rules are typically domain-specific, our solution is generic
and aims to support different regulations at a technical level,
limited to those business processes of a company that are
supported by web services and that are executed with the
help of a business process engine.

The methodologies, prototypes, and demos described in
this work have been designed and evaluated with the help
from audit experts of Deloitte, Paris, who deal with compli-
ance in a variety of domains at a daily basis.

In the next section, we introduce our approach to compli-
ance management and show how the above contributions fit
into an overall methodology. Then, in Sects. 3, 4, 5, and 6, we
describe the individual phases of the methodology, that is, (i)
design of processes and evidence, (ii) execution of processes
and generation of evidence, (iii) assessment of compliance,
and (iv) analysis of problems. In Sect. 7, we survey the most
related works, and in Sect. 8, we recap the contributions of
the paper.

2 Compliance management in the SOA

2.1 Compliance management requirements

Compliance management should enable the company’s man-
agement to know about the state of compliance, assess the
risks associated with non-compliant situations, and take busi-
ness decisions to correct them. Ideally, these decisions are

123

SOCA

based on up-to-date compliance reports, featuring a set of
compliance-specific indicators that are easy to interpret and,
hence, effective in communicating key information. The
compliance expert, instead, is interested in knowing the indi-
vidual compliance violations and understanding their causes,
while the process modeler is rather interested in how to
improve process models as well as control points for future
executions.

Typically, this means that we need a dashboard for
reporting on compliance that allows navigation across the
company’s processes and across compliance concerns and
associated key indicators at different levels of aggregation
and details. It also means that we need to provide a way
to model concerns and indicators and to collect evidence
for their computation. In terms of modeling, we need a for-
malism and tool to express compliant behaviors, for exam-
ple, in the form of process templates that specify compliance
requirements and constrain the instantiation of the template.
Once we have a definition of a compliant process trace, we
can then verify if the actual execution is compliant. We also
need a way to define and compute indicators which can typi-
cally be based on aggregating information over many process
instances (e.g., the total amount of invoices that were handled
in a non-compliant manner).

In this paper, we consider as evidence of compliance and
as source for the computation of reports the information and
events related to the execution of processes. Some of these
data and events (e.g., the start of an activity) are commonly
produced by business process engines during runtime, but
compliance assessment may ask for some specific execution
evidence (e.g., a login event with actor information, or infor-
mation about an invoice). Collecting proper evidence, typi-
cally within a data warehouse, requires the instrumentation
of a process or service orchestration engine as well as a way
to specify which events should be signaled by the process.

While processes, related evidence, compliance require-
ments, and indicators differ on a case-by-case basis, the chal-
lenge here is to adopt the same formalisms and computation
model; otherwise, the approach is not reusable and we would
have to develop models and code for each new compliance
requirement or new process.

In the case compliance violations have happened, it is
of utmost importance to be able to understand why and
where these violations occurred. Violations may stem from
problems during process execution (instance-level viola-
tions) or from badly designed processes (model-level vio-
lations). To understand instance-level violations, we propose
the use of classification by means of decision trees, which
allows the correlation of a process instance’s compliance
state with its business data. In order to understand model-
level violations, we propose the use of protocol discovery,
which allows the comparison of a system’s real behavior
with its designed behavior. Finally, both instance-level and

Fig. 2 Event-based compliance management architecture

model-level violations manifest themselves also in compli-
ance indicators. Correlating their values and dynamics over
time may thus provide further indications on where violations
occurred in a process model and which violations impact on
which other violations.

2.2 System architecture

Figure 2 illustrates how we approach the above requirements
from a system architecture perspective. The architecture has
been designed leveraging on events as concrete evidence of
the runtime behavior of the system, where the necessary
events can be either derived for free from service commu-
nications in the service-based environment or they can be
obtained by instrumenting the system purposefully. Start-
ing from business and compliance requirements, the com-
pliance expert defines compliance templates (see Sect. 3.1)
and Key Compliance Indicators (KCIs), that is, indicators
measuring the compliance of process instances (Sect. 3.2),
with the help of a dedicated compliance template editor. A
compliance template describes the compliant behavior of a
business process, while the KCIs are key indicators that mea-
sure how compliant a company is with respect to its compli-
ance requirements. Based on the compliance template and
the specified KCIs, a so-called signaling policy is created,
which states which execution events are needed to assess
compliance.

123

SOCA

Fig. 3 Assisted compliance
management methodology

The process modeler instantiates the templates, designs
the process models, and generates executable process spec-
ifications (in our case, we generate BPEL), which can be
inspected and fine-tuned with the help of a common business
process editor. The engine takes process models as input and
instantiates and runs them, establishing this way a commu-
nication between web services, human users (via dedicated
user interfaces that allow them to interact with the process),
and possible external business process engines (in the case of
distributed business processes). The signaling policy config-
ures the signaling plug-in of the purposely extended business
process engine. Communications and events are sent over a
shared enterprise service bus (ESB), which allows the easy
tracking of events in an event log. Out of all the messages that
flow through the ESB, the event log only subscribes to the
events defined in the signaling policy. Periodically (e.g., dur-
ing the night), an ETL (Extract-Transform-Load) procedure
loads tracked events into the data warehouse and computes
compliance and KCIs. The data in the warehouse can then
be inspected by the compliance expert in a reporting dash-
board that visualizes indicators and supports the necessary
drill-down (navigation to finer-grained details) and roll-up
(aggregation) features. An analysis workbench provides for
the analysis of compliance violations.

2.3 Compliance management methodology

Compliance management is not a simple issue, a prop-
erty that manifests itself also in the complexity of the pro-
posed system architecture (see Fig. 2). Compliance manage-
ment typically requires understanding multiple sources for

regulatory compliance requirements (e.g., laws, standards, or
similar) and to translate the requirements that affect a given
process into technical rules. We aim at supporting this lat-
ter aspect, which translates into the architecture and instru-
ments in Fig. 2. For a better understanding of how the joint
use of these instruments can aid compliance management,
we contextualize them in our assisted compliance manage-
ment methodology, which is based on the Deming cycle [38],
known from business process improvement. The methodol-
ogy consists of four phases, which we illustrate in Fig. 3.

In the Plan phase, first we model a compliance template,
which can then be instantiated into a process model. Given a
process model, it is possible to specify which KCIs to com-
pute for the process. Given the compliance template and the
KCI definitions, the necessary signaling policy can be gen-
erated automatically. In the Do phase, processes and the sig-
naling policy are executed, that is, processes are instantiated
and run by the process engine, and specified events are gener-
ated and logged for later inspection. In the Check phase, the
system periodically loads logged events into the data ware-
house and labels event traces, that is, process instances, as
compliant or not. The so-prepared data are used to com-
pute indicators and to prepare the reports, which can then
be inspected in order to understand the compliance state of
the company. Depending on the encountered compliance vio-
lations, the management may enforce compliance (this step
is not assisted by our system). Finally, in the Act phase, the
compliance expert and process modeler try to understand the
root causes of violations, so as to improve processes and poli-
cies by refining the respective models and specifications and,
hence, restarting from the Plan phase.

123

SOCA

In this paper, we do not propose the use of automatic tech-
niques for the runtime enforcement of compliant behaviors
in business processes. While such techniques undoubtedly
allow a company to better control compliance requirements at
a technical and operative level (e.g., at the level of individual
events), compliance management is, however, still an orga-
nizational and tactical activity that most of the times requires
human intervention and interpretation. The main goal of this
work is therefore enabling humans to be aware of how com-
pliant business processes are and to understand why problems
happen, in order to incrementally improve compliance.

3 Plan: designing compliant processes and defining
evidence

For the purpose of designing compliant business processes,
we complement traditional process modeling with three
ingredients: (i) compliance templates, which define the com-
pliance requirements of a process; (ii) a signaling policy,
which specifies which events need to be generated, and (iii) a
set of KCIs, which summarize events for reporting purposes.

3.1 Specifying compliant behaviors

To describe the compliant behavior a process should follow,
we propose to use compliance templates. By using com-
pliance templates, we can, for example, define the accept-
able order in which activities should be performed, which
activities are allowed, and which constraints exist among
them [30]. This approach has multiple benefits. First, com-
pliance requirements that apply to a class of process mod-
els can be defined by individuals that are knowledgeable in
their respective compliance domain, that is, the compliance
experts (typically members of the management or lawyers).
Compliance experts are responsible for the compliance tem-
plates; they are the only ones that are allowed to authorize
changes on them. Compliance experts are supported by busi-
ness process experts when a compliance template must be
changed, for example. Second, because templates, as the
word denotes, are used as a starting point for defining the
process itself by expanding and detailing them, following
regulations are made easier during design time. In other
words, templates are not only a compliance constraint, but
also an aid to (compliant) process modeling. Finally, com-
pliance templates can be stored (e.g., in a central repository)
and reused in a variety of similar process models.

A compliance template comprises three parts, namely an
abstract business process, a compliance descriptor, and a vari-
ability descriptor.

The abstract business process defines the compliant
behavior of a process in terms of its control flow and of
allowed activities. It is called “abstract” because it lacks the

necessary implementation details to be instantiated and run in
a process engine. Only activities labeled constrained region
can be customized by the process modeler in order to get
an executable business process. Customizing a constrained
region means inserting activities into it. Process modelers
cannot change activities or control flows originally included
in a compliance template, as this might lead to non-compliant
processes.

As an example, refer to Fig. 4, which shows an abstract
process model (in the center of the figure) of the drug dispen-
sation process sketched in Fig. 1. We use a pseudo language
in Fig. 4 to specify the abstract process for reasons of simplic-
ity. Any other process specification language may have been
used to define this abstract process, because of the flexibility
of the compliance template approach. The abstract process
expresses a number of compliance constraints: Activity Pre-
scribe Drug must always be executed before activity Collect
Prescriptions; or, after the activity Collect Prescriptions has
been executed, the activities Get Drugs or Request Drugs
can be executed. The separation of duties requirement for
the Prescribe Drug and Dispense Drugs activities can also
be expressed as compliance rules and associated with the
respective web services, which must provide for the genera-
tion of the necessary evidence (the events) to assess the rules.

The compliance descriptor, at the left of the abstract
process model, allows the definition of constraints for the
constrained regions. Compliance descriptors can be defined
independently of the abstract process, and a single compli-
ance descriptor can be reused in more than one abstract
process. The dashed arrow pointing from one compliance
assurance rule (Link to Constrained Region) in Fig. 4 to a
constrained region shows which compliance assurance rule is
applied to the first constrained region. Rules are expressed in
first-order logic. We chose first-order logic because the class
of compliance rules used with compliance templates deals
with presence and absence of activities within a constrained
region. These kinds of compliance rules can be expressed
at best using the negation operator in front of a predicate to
describe the absence of activities. Predicates without preced-
ing operand are used to describe the presence of activities.
The name of the used predicate maps to the name of the
activity. One example for such a compliance rule is activity
A and activity B must always be inserted together. With first-
order logic, the example compliance rule above can easily be
expressed as A ∧ B.

Compliance rules are evaluated at design time (in our
graphical process development tool) every time the process
modeler inserts an activity into a constrained region. The
graphical tool notifies the process designer about which mod-
ifications are allowed and which modifications violate the
implicit compliance of the abstract process. For example,
an invocation of the Pharmacy web service in the first con-
strained region in Fig. 4 would violate the compliance of the

123

SOCA

Fig. 4 Compliance template for drug dispensations

Fig. 5 UML meta model of a compliance descriptor

abstract process, because the activities Prescribe Drug and
Collect Prescriptions would not yet have been executed.

The meta model of a compliance descriptor is shown in
Fig. 5. A compliance descriptor contains one or more compli-
ance points comprising compliance rules. These compliance
rules can be linked to the constrained regions in the abstract
process of a compliance template.

The variability descriptor, at the right of the abstract
process model in Fig. 4, contains variabilities that can be
used to fill the constrained regions of the abstract process.
The dashed arrow shows which variability descriptor is asso-
ciated with which constrained region. A variability descriptor
assists the process modeler by providing him/her with the set
of allowed activities that can be used inside each constrained
region; activities can again be compliance templates contain-
ing constrained regions. For instance, we have used Alterna-
tive A in Fig. 4 in the design of the compliant BPEL process.
The activities in Alternative B are used in other constrained

regions. Here, it is, for example, important that the compli-
ance expert only allows services (activities) in the variability
descriptor that natively encrypt the data they exchange with
other services, in order to provide for the anonymization of
patients’ data.

Compliance templates can be designed for robustness or
for reusability. Robustness is achieved by adding detailed,
domain-specific constraints that guide the process modeler
through an only narrow scope of action during the instanti-
ation of a compliance template. Reusability is achieved by
keeping the template more general. It is up to the compli-
ance expert to decide what is more important to him/her. In
fact, while our approach facilitates the expression of compli-
ance rules, it is still important for the human expert to have
the right regulatory and domain knowledge in order to cor-
rectly interpret the company’s compliance requirements and
express them in terms of compliance rules.

3.1.1 Modeling compliance templates and processes

In order to assist the compliance expert in defining com-
pliance templates, we have extended the Oryx2 BPMN edi-
tor. Oryx is a web-based BPMN editor that fully runs inside
a web browser and does not require the installation of any
additional software. Figure 6 shows a screen shot of Oryx at
work. It mainly consists of three parts: the shape repository
(labeled 1), the modeling canvas (labeled 3), and a pane on

2 http://code.google.com/p/oryx-editor/.

123

http://code.google.com/p/oryx-editor/

SOCA

Fig. 6 Oryx BPMN editor for compliance templates

the right-hand side (labeled 2 and called Fragment Repos-
itory) containing the activities that compose the variability
descriptor and a properties section.

To be able to create compliance templates, we added a new
activity type named Region. In Fig. 6, the region activity type
is shown in the shape repository and on the modeling canvas
containing the task named Retrieve Doctors Data. To imple-
ment the compliance descriptor described above, we added a
property named Compliance Descriptor to the region activ-
ity type. The Fragment Repository on the right implements
the concepts of a variability descriptor as described before.
Another addition we made is a compliance checker plug-in.
This plug-in is used to check whether an activity inserted into
a constrained region violates a constraint or not. The result-
ing BPMN 2.0 process model is transformed into a BPEL
model that includes the mandatory activities imposed by the
compliance template as highlighted in Fig. 7.

3.1.2 Creating the signaling policy

To measure the compliance of a process, evidence on process
execution must be generated, to be able to certify which activ-
ities have been executed by a given process instance and
which have been skipped or which have generated errors.
This evidence is represented by execution events, which pro-
vide insight into the status of the process instance at the time
of their generation. As we want to check compliance with
the abstract process of a compliance template, it implicitly
defines the minimum set of events (or the event traces) that
characterize a compliant process instance. In order to check
compliance, it therefore suffices to generate suitable Start
and End events for each mandatory activity in the abstract
process. Other execution events may be needed for comput-
ing indicators, for example, if an indicator is to be computed
over non-mandatory activities.

The exact set of events is specified in the so-called signal-
ing policy, that is, the policy that tells the business process
engine which events must be generated during process execu-
tion. The necessary events that need to be produced in order
to check the compliance of the designed business process can
be chosen by compliance experts. A signaling policy can then
be created with this information. In addition, the compliance
expert can add properties to activities that hold any form of
custom compliance policy beyond what can be expressed via
the template. These are also checked in the assessment phase,
discussed next.

3.2 Specifying key compliance indicators

Business performance is commonly measured by means of
key indicators, typically key performance indicators [20],
which are metrics that summarize in a single number how
well predefined business goals are being achieved. Simi-
larly, we advocate the use of KCIs to measure how com-
pliant a company is with its compliance requirements and
to better target the company’s efforts to check and improve
compliance, lowering the overall complexity of compliance
management.

KCIs can be computed out of the evidence collected from
process executions. Given the huge quantity of available
events and runtime data that are typically available for each
single process instance, this can, however, be a very com-
plex task both from the perspective of metaphors and lan-
guages for defining such indicators and from the perspective
of performance.

We approach both issues by providing the compliance
expert with a so-called process instance table for defining
and computing indicators. This is an abstract table that is
specific to a given process model and contains one row per
executed process instance. The attributes of the table are those
process data items that the compliance expert needs for the

123

SOCA

Fig. 7 Executable drug dispensation process (for presentation purpose, we omit data assignments)

definition of indicators, plus one or more Boolean attributes
for each template to which the model must be compliant
(if more than one template apply), reflecting the compliance
requirements the process should satisfy. The values of the
data items are carried by the events generated at runtime,
while all necessary events are specified in the signaling pol-
icy and are either derived automatically from compliance
templates or manually defined (if they are not yet part of the
template). We will see in the assessment section how process
instance tables are implemented and populated.

Given a process instance table, an indicator can now be
defined as regular mathematical expression over the attributes

and rows of the table (on paper by the compliance expert),
and it can be implemented via standard SQL queries (by
the process modeler). Although indicators typically come in
the form of percentage values, averages, sums, or similar, the
process instance table abstraction allows us to support the full
expressive power of SQL in the computation of indicators.
SQL has been designed also as a language for computing
aggregates and is well known, understood, and supported, so
there was no reason to come up with another language.

Table 1 shows, for instance, an excerpt from the process
instance table of the drug dispensation process. The columns
TimeRequest and TimeReplenish represent the time at which a

123

SOCA

Table 1 Excerpt of the process instance table for the drug dispensation process

P I D T imeRequest T imeReplenish ReqWard Pend Presc WrongDisp Compliant

72665 13-05-10 22:32 14-05-10 16:45 W5 1 2 True

72666 13-05-10 22:39 15-05-10 12:55 W3 3 1 False

72667 13-05-10 22:55 14-05-10 08:59 W3 3 1 True

72668 13-05-10 23:01 14-05-10 23:33 W7 25 4 False

72669 13-05-10 23:49 14-05-10 02:57 W6 2 0 True

… … … … … … …

drug request was issued and the time at which the request was
fulfilled, respectively, while PendPresc and WrongDisp tell
us the number of pending patient prescriptions and the num-
ber of wrong dispensations of drugs by the pharmacy (e.g.,
with a wrong drug type of quantity). Notice that the num-
ber of wrong dispensations is computed when loading the
data warehouse, and it can be done, for example, by check-
ing the records on the complaints from patients about wrong
dispensations. Finally, the column ReqWard represents the
identification of the ward that issued the request (we omit
the other attributes). In the table, we assume that the process
should only follow one template, so there is only one com-
pliance column.

Having in mind the structure of Table 1, the compli-
ance expert can now, for instance, specify an indicator
K C ICompI nst to monitor compliance with the process com-
pliance template:

K C ICompI nst = |Compliant I nstances|
|All I nstances|

The process modeler expresses the formula then as follows
(we only show a simplified query, e.g., without time intervals;
for more details, please refer to [21]):

count_compliant_inst =
select count(Compliant)
from drug_dispensation_instance_table
where Compliant = true;

count_all_inst =
select count(Compliant)
from drug_dispensation_instance_table;

KCI_CompInst =
count_compliant_inst / count_all_inst;

The formula presented above is stored in the data ware-
house together with the definition of the indicator, from
where the ETL procedure can retrieve periodically for the
computation of indicators.

The specification and computation of the indicator pre-
sented in this example is rather trivial. The real challenges

reside (i) in identifying which are the most effective indica-
tors (and events) and (ii) in the transformation and correlation
of raw events in order to create the process instance tables.
In fact, the ease with which we specified and computed the
above indicator is a consequence of this data preparation
and one of the most important benefits of making this data
arrangement.

Although the above examples associate KCIs with indi-
vidual business processes, it is important to note that we can
also have KCIs that measure properties of multiple related
processes (e.g., a process and its sub-processes). Such kind of
advanced KCIs can easily be specified by defining the indica-
tor function over the join of the respective process instances
tables, practically enabling the definition of arbitrarily com-
plex indicators.

4 Do: running processes and generating evidence

Once business processes have been implemented according
to their compliance templates and the signaling policy has
been completed, processes can be executed and evidence can
be collected. In case the process is implemented in BPEL,
we also provide support to execute and most importantly
to collect evidence (we support BPEL as it is a common
situation; in case of ad hoc languages and infrastructures,
we expect probes to be developed to generate the necessary
events). We have chosen to extend the Apache ODE (http://
ode.apache.org/) engine, although any other engine could be
extended similarly.

Apache ODE is equipped with a mechanism to issue events
at certain state changes of a BPEL process during execution.
These events are saved in an internal database, the audit-trail.
The audit-trail can be queried via a web service interface to
check the execution traces (the sequence of generated internal
events) of processes that have been executed and of processes
that are still in the executing phase.

A drawback of this mechanism is that the audit-trail saves
all events generated during process execution. In most cases,
a third party is only interested in a subset of events, for exam-
ple, events indicating that the process took a certain branch.

123

http://ode.apache.org/
http://ode.apache.org/

SOCA

Fig. 8 Architectural overview
of the core components of the
signaling extension of Apache
ODE [15]

Thus, these particular events must be separated from the rest
of the events in the audit-trail, which is not always an easy
task. Also, if we think of distributed business processes with
multiple cooperating parties (such as our reference scenario),
for security reasons it is typically not possible to query a part-
ner’s audit-trail. This is a major limitation for the assessment
of the compliance of processes whose execution is distrib-
uted over multiple parties. To address these problems, we
extended the Apache ODE BPEL engine to emit events to
external subscribers, where the set of events and the allowed
subscribers can easily be configured (e.g., by means of the
signaling policy) [37].

Figure 8 gives a schematic overview of the extensions
made to ODE. On the left side, the instrumented BPEL engine
is shown. We extended the BPEL engine with a so-called
generic controller. It comprises the glue code connecting the
process navigation parts of the BPEL engine to the event
handling part in the generic controller. At certain points in
this execution logic, we throw events that are sent to one or
more pluggable custom controllers, which correspond to the
domain-specific part of the signaling architecture (this part
corresponds to the Signaling plug-in introduced in Fig. 2).
External stakeholders can write custom controllers to meet
the requirements of their particular domain. All events occur-
ring during the execution of a BPEL process are sent to
every registered custom controller. In each custom controller,
incoming events can be filtered and transformed. These fil-
tered events can then be provided to external subscribers.
The external subscribers can configure the filtering logic of
the custom controllers. In our case, we use an external con-
troller to parse the signaling policy and to instruct the custom
controller to generate only those events that are required to
assess compliance.

The signaling policy contains XPath expressions that
point to the activity elements in a BPEL file, which is written
in XML. We extended these XPath expressions with event
indicators, since each BPEL activity may issue a number
of different events. The XPath expressions in a signaling

policy thus indicate which events of which activity need to
be issued.

The underlying concept of the event subscription is
resource-centric. We map process models, process instances,
and activities deployed on a BPEL engine to resources and
provide a suitable management API that allows one to access
the resources. The API is exposed via web service interfaces.

Notice that the approach we present here is for offline
assessment of compliance. This means that we log events
that will only later be used for compliance assessment (e.g.,
during night hours). The performance issues for the genera-
tion of evidence regard more to the logging of event rather
than the actual compliance assessment. Since logging per-
formance is not the focus of this paper, and state-of-the-art
logging systems are capable of handling this issue very well,
we do not discuss this concern further.

5 Check: assessing compliance

From an IT perspective, assessing compliance means devel-
oping an assessment engine that “executes” the specification
discussed in Sect. 3 over the event log, which constitutes our
“evidence”. Specifically, the engine should verify that process
execution conforms to the different process templates and
compute compliance indicators. The challenge lies in how
to do this in a way that minimizes the development work
needed for each new process, new template, or new indica-
tor; otherwise, the system will not be easily maintainable.
Given that changes are frequent (especially in regulations),
this is an important aspect.

To compute conformance with templates, we leverage on
raw events. Although events in different processes may have
different formats—as the process-specific data differ from
process to process—what matters for verifying conformance
is the process-independent part of events, that is, their type
(Start or End), the activity that generates them, the process
and instance in the context of which they are generated, and
the occurrence time.

123

SOCA

Fig. 9 Excerpt of the DW model; fact tables are shaded in gray, dimension tables are white

Reasoning in terms of language theory, process models
are analogous to grammars and event traces are analogous
to language strings. Therefore, computing whether a trace
of events as described above conforms to a process model
becomes analogous to checking if a string can be generated
by a grammar. This is a well-known problem, and there-
fore, we do not discuss it further. The output of this proce-
dure consists thus in giving a set of yes/no “labels” to each
instance, one for each process template that was associated
to the process model of that instance. Developing the confor-
mance algorithm does not require any process-specific logic,
which means that no new code is needed each time a new
process or template is defined.

The case is different for computing indicators. The
metaphor we adopt for the indicator language implies that
indicators can be arbitrarily complex queries over a dataset
of process execution data with compliance information. This
aspect combined with the needs of providing efficient nav-
igation and drill-down/roll-up (i.e., navigation through the
dimension and fact tables of the data warehouse) over a com-
plex dataset as well as the need for a more sophisticated root
cause analysis suggests that a sensible approach to leverage
is that of building a data warehouse of process data, oriented
at computing and assessing compliance and key compliance
indicators.

Figure 9 shows an excerpt of our dimensional data model.
In the model, described in detail in [21], the facts are essen-
tially the events and the process instances, while dimensions
are process models, activities, and actors. Because differ-
ent processes have different data items, instances of differ-

ent processes are stored in different fact tables, where the
attributes correspond to those process variables that are con-
sidered useful for compliance analysis and for computing
indicators. These constitute the physical representation of
the process instance tables discussed in Sect. 3.

An alternative approach would have been that of storing
all process instance data vertically, where each tuple contains
instance ID, variable name, and value. The benefit of this
approach is that the warehouse schema does not change when
new processes are defined. However, writing queries over
vertical tables is more difficult and performance is lower,
especially due to the high number of self-joins necessary.

The main data source of the warehouse is the event log.
From there, the ETL procedure determines how to fill the
process instance tables, based on mapping specifications
done by the compliance template editor or the process mod-
eler. In essence, these mappings specify from which event
and parameter the attributes in the table take their values.
This is done via simple XPath statements. For instance, every
time a new drug request is inserted into the system, an event
of the type NewDrugRequest is emitted that carries the
number of pending prescriptions for that drug among its
attributes. In order to obtain this information so that we can
fill the Pend Presc attribute for each row in Table 1, we
take all events of type NewDrugRequest and access their
Pend Presc parameters.

This means that for each new process model or for each
change in an existing process model, the process modeler
needs to (i) define the process instance table (this is also
done in conjunction with the compliance analyst who defines

123

SOCA

Fig. 10 Visualizing key
compliance indicators

which attributes are relevant for compliance analysis) and
(ii) define the XPath expression that is used to populate the
attributes for each given instance. Overall, this is something
that can be done rather easily. The key problem is figuring out
good indicators. Once that is done, the time taken to configure
the process instance tables for their computation is small.

The ETL procedure that loads the warehouse incremen-
tally and computes indicators runs periodically, for exam-
ple, each night or once a week. Only new and completed
event traces (process instances) are loaded; running process
instances are not considered. This assures that all events
needed to assign the compliance labels are available (par-
tial traces could be analyzed, e.g., to identify early viola-
tions; however, compliance can still only be ascertained after
process termination). Once computed, also the values of indi-
cators are stored in the warehouse (see the KeyIndicatorVal-
ueFact table in Fig. 9) and made available for reporting and
further analysis, such as correlation and risk analysis.

KCIs can then be rendered in the reporting dashboard
as illustrated in Fig. 10, which also takes into account data
uncertainty when rendering indicator values to users. A
description of the dashboard with details on how uncertainty
is managed can be found in [23].

6 Act: improving processes and compliance

This is the last phase of the Deming cycle that aims at
understanding problems identified in the Check phase. While
the cycle is closed by the compliance expert and process
modeler by applying their findings in a new Plan phase, IT

can significantly assist this phase and reduce the complexity
of the analysis task. In the context of compliance manage-
ment, IT can assist in (i) identifying correlations among KCIs,
(ii) identifying correlations among compliance states and
business data, and (iii) reconstructing the actual behavior of
implemented processes.

6.1 Analyzing correlations among indicators

As explained in Sect. 3.2, indicators measure how well busi-
ness processes conform to compliance requirements. In doing
so, each indicator looks at a different aspect of a process, typ-
ically a different compliance requirement. Identifying corre-
lations among indicators therefore allows us to identify rela-
tionships among compliance requirements. If we visualize
all identified relationships in a graph, this allows one to trace
back from one indicator to another to understand its root
causes. It is important to notice that correlation only indi-
cates likely causal relationship, not certain causalities. The
idea of using correlation is to help the human expert to spot
places where to look at for root causes.

A particularly interesting analysis is that of cross-
correlating multiple indicators over time: There may be sit-
uations in which changes in the values of an indicator K C I1

are associated with changes in the values of another indica-
tor K C I2, but only after a time interval that also needs to be
determined. The typical reason for this result is that K C I1 is
computed over events raised at an early stage of the process
while K C I2 is computed over events raised at a later stage.
The dynamics of K C I2 has therefore its likely roots in the
part of the process measured by K C I1.

123

SOCA

Fig. 11 Instruments of the analysis workbench: correlation analyzer, decision tree miner, protocol discoverer

Figure 11a shows the output of our correlation analyzer
if applied to the three indicators K C IDelay (introduced in
Sect. 3.2), K C IPend Presc (number of pending prescriptions),
and K C IWrongDisp (number of erroneous dispensations, i.e.,
with wrong drug type or quantity). The correlations are
based on the cross-correlation technique proposed in [6].
The graph shows a dependency (coe f f = 0.856) among
K C IPend Presc and K C IWrongDisp with a time lag of 4 days
(the arrow head of the correlation goes back in time), while
there is no correlation with K C IDelay (coe f f < 0.70). That
is, too many pending prescriptions in the system systemati-
cally lead to errors (e.g., wrong quantities or drugs dispensed)
at dispensation time. More than a simple implementation
issue, this correlation hints at an organizational problem in
the drug dispensation (e.g., understaffed personnel).

6.2 Classifying compliance evaluations

We have shown earlier that we use process instance tables
to store each process instance’s event trace along with the
data the events provide access to and that we associate
compliance labels (i.e., classes) to each instance for each
compliance template the process has to comply with. This
conceptualization of the compliance problem allows us to
apply standard classification algorithms to identify corre-
lations between the compliance classes (compliant yes/no)
and the process data, hopefully unveiling unknown depen-
dencies. Indeed, the process instance table with the compli-
ance “labeling” is the typical data format that can be fed to

classification tools. We use decision trees, as they are simple
and fast in classifying tuples and—more importantly—they
are suitable for knowledge discovery without complex set-
tings or assumptions and are easy to interpret and analyze.

Figure 11b shows, for instance, the decision tree built
out of the data stored in Table 1. For this purpose, we have
adopted the algorithm presented in [36]. As can be seen in
the figure, the main decision point that affects compliance is
WrongDisp: if WrongDisp > 3, non-compliance is very
likely. Along this branch, the second decision point depends
on the Delay parameter: If it exceeds 48 h, non-compliance
is almost sure (99 % of probability), yet also for lower val-
ues of Delay non-compliance is the most likely (72 % of
probability) outcome.

Decision trees can also be used as a prediction (or risk
detection) mechanism. For example, from Fig. 11b, we can
derive the following rule:

if WrongDisp > 3and Delay > 48hr then

p(non − compliant) = 0.9921

This rule can be used to predict the compliance of process
instances while they are still in execution, which allows a
company to focus its attention to those process instances that
are at risk.

6.3 Discovering business protocol models

The use of the compliance templates introduced in Sect. 3.1
helps the process modeler to specify process models that are

123

SOCA

compliant by design with the stated requirements and the
logic rules contained in the compliance descriptor. Yet, typi-
cally, auditors do not assess compliance by looking at models
only; rather, they look at how processes have been executed
concretely. In fact, it is important to recognize that compli-
ant models do not assure compliant execution. In practice,
problems simply happen, for instance, due to human fac-
tors (e.g., untrained personnel or the process administrator
explicitly changing a running instance or a deployed model
without notifying the compliance expert), misconfiguration
(e.g., wrong service endpoints), or system failures (e.g., a
hard drive error). It is impossible to predict these kinds of
problems, and therefore, it is even more important to iden-
tify them after they occurred.

We approach this need by means of protocol discovery, a
problem for which there already exist valuable contributions.
[17] presents a good overview on the protocol discovery prob-
lem and existing approaches to deal with it. Specifically, we
have adapted the algorithm introduced in [16] as this algo-
rithm supports the identification of models from service con-
versations that may be noisy (erroneously containing data
from different conversations) and incomplete (missing part
of the data produced in one conversation). The reason for this
choice, instead of mainstream process and workflow mining
techniques, is that we are interested in mining events as gen-
erated by the infrastructure, which might consist not only of
events from the core business process but also of events gen-
erated by control processes put on top of it. Instead of focus-
ing on message exchanges, that is, SOAP messages, we feed
the algorithm with events and we identify “conversations”
by grouping events according to the process instance they
stem from. Figure 11c, for example, shows the output of the
protocol discoverer if applied to data from the drug dispen-
sation process. The tool uses finite state machines (FSMs)
to graphically represent the reconstructed protocol model:
Nodes represent intermediate states of a process execution;
edges represent events raised during the execution. Nodes are
labeled with incremental numbers that serve simply as state
IDs, edges with the name of the event they represent, and the
probability that the corresponding event took place [21].

6.4 User study and evaluation

Together with Hospital San Raffaele, we carried out an in-
depth evaluation of the usability and understandability of
methodology described in this paper. The evaluation involved
our target users, specifically the business process owner (the
pharmacy), the process analyst/modeler, an internal audi-
tor, a quality and accreditation expert, IT staff, and the CIO
of the hospital, and took the form of a two-day evaluation
workshop, which allowed us to collect feedback via ques-
tionnaires, interviews, and focus groups.

As object of the evaluation, we used the prototypes and
demos developed with the audit experts from Deloitte and
described in this paper. The evaluation was performed using
real data from the scenario described in this paper. The dataset
consisted in 30,000 drug dispensations done between January
and April 2009. This dataset allowed us to make a realistic
demo of our tool to showcase the indicator correlation and
decision tree analysis as well as the business protocol dis-
covery. The required size of the dataset for building good
correlation and decision tree models depends strongly on the
properties of the dataset (e.g., on whether indicators are com-
puted for each process instance only weekly or monthly, or
on the number of decision points inside a given process).
The protocol discovery algorithm can instead infer a model
already from a single process instance, capturing, however,
only the behavior of this single process execution. The com-
plexity of cross-correlation is linear in the number of KCIs by
the number of considered data items by the number of time
shifts [6]; the performance of decision tree computation and
protocol discovery is discussed in [36] and [16], respectively.

According to the study, both the compliance templates and
the Reporting Dashboard tool (for the Check phase) used to
display indicators and navigate through the collected com-
pliance data were perceived as very useful by all partici-
pants, while the process analyst, quality and accreditation
expert, internal auditor, and business process owner particu-
larly emphasized the usefulness of the correlation analyzer,
decision tree miner, and business protocol miner. The over-
all judgment of the set of tools for the Check and Act phase
reached an average score of 8 in an interval that ranges from
1 (very negative) to 10 (very positive).

The complete evaluation report D1.3.2 is available via the
project web site (http://www.project-master.eu). Details on
the implemented tools and a set of demonstration videos are
available via http://mashart.org/SOCA-Compliance.

7 Related work

We discuss the related work in five areas as related to our
work, namely IT governance, SOA governance, business
process compliance, reporting on business performance, and
mining process execution logs.

7.1 IT governance

IT governance aims at ensuring that companies’ IT systems
sustain and extend the companies’ strategies and objectives.
Many frameworks have been proposed to approach IT gov-
ernance, including COBIT, ITIL, ISO 2000, and ISO 17799.
The focus of each of these varies from one another, from
the alignment of business objectives to IT objectives (e.g.,
COBIT), to IT service management (e.g., ITIL), and to IT

123

http://www.project-master.eu
http://mashart.org/SOCA-Compliance

SOCA

security management (e.g., ISO 17799). While these frame-
works typically provide general guidelines and best practices
on how to govern IT, they provide no guidelines that are
specific to compliance management. IT governance may act
either as the source of compliance requirements or as a guide
on how to instrument IT for compliance management. In the
first case, for example, it may happen that a company must
comply with one of these frameworks in order to provide ser-
vices to a third party; in the second case, the framework itself
can help enable compliance management. As such, IT gov-
ernance and compliance management therefore complement
each other.

7.2 SOA governance

SOA governance can be considered as a branch of IT gov-
ernance where the focus is put on SOA-based systems. As
in IT governance, many frameworks have been proposed to
approach SOA governance. For example, Brauer and Kline
[2] approach SOA governance in the area of business ser-
vice life cycle through two key infrastructures: the business
service registry and business service management. Software
AG [33] proposes a maturity model with six levels: technol-
ogy enablement, SOA enablement, SOA business services,
SOA lifecycle management, SOA consistency, and SOA opti-
mization. It further describes the lifecycle of a service and
SOA roles and provides a list of best practices and common
mistakes to avoid. SAP AG [28] proposes a list of common
guidelines and patterns for the modeling and implementa-
tion of enterprise services at different levels, including map
of process components and business objects, service inter-
faces and services operations per business objects, struc-
ture of message types, common set of reusable data types,
transactional behavior, and service implementation. Oracle’s
approach to SOA governance [18] proposes a framework and
a list of best practices that expands throughout the service
lifecycle. It furthermore proposes a list of six steps to a suc-
cessful SOA governance model, which aims at maturing the
overall SOA and thereby its business goals. IBM [3] proposes
an approach that relies on a lifecycle for SOA governance,
which is distinguishable different from a service lifecycle
that is governed. The SOA governance lifecycle consists of
4 phases: (i) in the plan phase, the governance focus is deter-
mined, (ii) in the define phase, the SOA governance model is
defined, (iii) the enable phase, is where the SOA governance
is implemented, and (iv) the measure phase, is where the
governance model is measured and refined. All these frame-
works deal with the governance of SOA-based systems to
different degrees. Just like IT governance focuses on manag-
ing the company’s IT, SOA governance focuses on managing
the overall lifecycle of SOA-based systems, and the guide-
lines provided there are only at the high level and therefore

they are not useful for compliance management as addressed
in this paper.

7.3 Business process compliance

There is a considerable amount of work in the area of business
process compliance. In [7], the authors describe, for instance,
an algorithm to generate a BPMN model from a set of con-
straints written in deontic logic. In [9], deontic logic is also
used to annotate business process models with compliance
rules. Such annotations are then used to check compliance
of the business process. Hoffmann et al. [14] instead use
first-order logic to annotate business process models with
compliance constraints. The authors also show how to check
compliance of a business process with these constraints. In
[5], the authors propose the use of domain-specific languages
to annotate processes with compliance constraints, and they
equip their modeling tool with compliance-specific views on
the process. Shadiq et al. [27] describe how control objec-
tives can be modeled in formal contract language to annotate
process models in the form of control tags that can be used
by analysis tools to perform compliance checks on the busi-
ness process model. Governatori et al. [8] advance this line
of static compliance check of normative control objectives
and provide status reports that highlight problematic cases
together with the control objectives that are violated.

Our approach is based on compliance templates that are
the starting point for the development of a compliant busi-
ness process. With this approach, we cover the first phase
of the compliance management life cycle. A compliance
template implicitly defines the compliant behavior of the
resulting business process. The variable parts of the com-
pliance template are annotated with constraints written in
first-order logic. As opposed to lines of work like [27] and
[8], we prefer to work with first-order logic because it is a
standard and well-understood formalism that suffices for our
purposes and because compliance experts are more likely to
be familiar with it. The so-represented constraints prevent
the compliance template from modifications that violate the
compliance rules associated to the template. Yet, conceptu-
ally every formalism that allows us to express compliance
rules over process events could be adopted in our system.
From the modeling perspective, we advocate the use of these
compliance templates because they are closer to compliance
experts and process modelers. We further use compliance
templates to provide process modelers with real-time con-
formance feedback during the instantiation of compliance
templates (static compliance checks).

7.4 Reporting on business process performance

Several works focus on the reporting on business process
performance. For instance, works like [4,11,22,29,32] and

123

SOCA

[23] focus on warehousing process execution data, so as to
make these data available in a suitable schema for reporting
and OLAP purposes. We face similar reporting issues in our
dashboard, yet our aim is to analyze compliance of business
processes not performance. This also leads us to the con-
cept of KCIs as a special type of key performance indicator
(KPI). In [20], the authors model KPIs and the relationships
that exist among them. Our internal, XML-based representa-
tion of KCIs is very similar to the model proposed for KPIs,
while, instead of modeling relationships, we discover them
via cross-correlation for root causes analysis. Finally, there
are many business process management commercial suites
that include reporting on business process performance as
part of the toolset, for example, HP Business Process Moni-
tor, IBM Business Process Manager, Oracle Business Process
Management Suite, SAP Business Process Management, and
TIBCO Spotfire.

7.5 Mining process execution logs

Data mining techniques have been also used for analyzing
business process execution data. As for the root cause analy-
sis, Grigori et al. [11,12] focus on understanding, predicting,
and preventing exceptions in business executions by using
decision trees built upon workflow log files. In the same line
of thought, Rozinat and van der Aalst [25] mine event logs for
decision point analysis, Apte et al. [1] focus on classification
and prediction of customer behaviors, and Seol et al. [31]
use the inputs and outputs of each process to build decision
trees for the analysis of the efficiency of processes. There
are, however, no works that specifically address the problem
of understanding compliance violations. In the context of
process and workflow mining, several works have been pro-
posed that aim at discovering process models and checking
the conformance of process executions using process execu-
tion data. For instance, works like [10,16], and [19] aim at
discovering workflow/process models from execution logs
with special focus on the behavioral/structural aspects of the
process models. Rozinat and van der Aalst [26,24] focus
instead on the automatic verification of how well process
executions conform with a predefined process model. We
adopt algorithms of the first class for discovering protocol
models; however, algorithms of the second class could be
adopted for compliance assessment.

8 Conclusion

With this paper, we approach a relevant and critical issue in
today’s business reality, that is, compliance management, and
we do so by specifically taking into account the peculiarities
of the service-oriented architecture and of distributed busi-
ness contexts, two paradigms that heavily influence current

and future business practices. Differently from many works
in literature, we do not focus on monitoring and enforcement
at the individual message level. We rather take the auditor’s
perspective and focus on the design of compliant processes
and the assessment and improvement of their compliance.
We assist these activities by means of (i) a model and tool to
design compliant processes, (ii) an extended service orches-
tration engine to generate process execution evidence, and
(iii) a reporting and analysis suite to report on compliance
and support root cause analysis, in order to provide for better
informed decision making. As such, the models and instru-
ments we propose in this paper complement existing monitor-
ing and enforcement approaches and provide for a compre-
hensive approach to service-based compliance management.

Our aim was to devise a solution having in mind the real
needs of auditors (internal and external ones) and—more
importantly—with the help of people who are involved every
day in the auditing of companies (the dashboard [32] and
solutions proposed in this paper have extensively been dis-
cussed with partners from Deloitte). While this paper specif-
ically targets a company’s internal compliance expert and
process modeler, also the external auditor can benefit from
the proposed system, for example, by using the compliance
reporting dashboard as a starting point for his analysis. This
will not change the auditor’s own auditing practice, yet the
sole use of a systematic and assisted approach to compliance
management will surely impact positively on the auditor’s
perception of the company’s commitment to compliance.

Acknowledgments This work was supported by funds from the
European Commission (Contract Nbr. 216917 for the FP7-ICT-2007-1
project MASTER).

References

1. Apte C, Bibelnieks E, Natarajan R, Pednault E, Tipu F, Campbell
D, Nelson B (2001) Segmentation-based modeling for advanced
targeted marketing. In: KDD’01, pp. 408–413

2. Brauer B, Kline S (2005) SOA governance: a key ingredient of
the adaptive enterprise. Tech rep, Hewlett-Packard. http://goo.gl/
WxTSe

3. Brown W, Moore G, Tegan W (2006) SOA governance: IBM’s
approach. Tech rep, IBM. http://goo.gl/q9Ini

4. Casati F, Castellanos M, Dayal U, Salazar N (2007) A generic solu-
tion for warehousing business process data. In: VLDB’07. VLDB
Endowment, pp 1128–1137

5. Daniel F, Casati F, D’Andrea V, Strauch S, Schumm D, Leymann
F, Mulo E, Zdun U, Dustdar S, Sebahi S, de Marchi F, Hacid MS
(2009) Business compliance governance in service-oriented archi-
tectures. In: AINA’09. IEEE Press

6. Dunn P (2004) Measurement and data analysis for engineering and
science. McGraw-Hill Science, New York

7. Goedertier S, Vanthienen J (2006) Designing compliant business
processes from obligations and permission. In: BPM workshops,
vol. 4103. Springer, pp 5–14

123

http://goo.gl/WxTSe
http://goo.gl/WxTSe
http://goo.gl/q9Ini

SOCA

8. Governatori G, Hoffmann J, Sadiq SW, Weber I (2008) Detecting
regulatory compliance for business process models through seman-
tic annotations. In: BPM workshops, pp 5–17

9. Governatori G, Sadiq S (2009) The journey to business process
compliance. In: Handbook of research on business process man-
agement, pp 426–454

10. Greco G, Guzzo A, Pontieri L, Sacca D (2006) Discovering
expressive process models by clustering log traces. IEEE TKDE
18(8):1010–1027

11. Grigori D, Casati F, Castellanos M, Dayal U, Sayal M, Shan M
(2004) Business process intelligence. Comput Ind 53(3):321–343

12. Grigori D, Casati F, Dayal U, Shan MC (2001) Improving business
process quality through exception understanding, prediction, and
prevention. In: VLDB’01. San Francisco, CA, USA, pp 159–168

13. Hagerty J, Hackbush J, Gaughan D, Jacobson S (2008) The gover-
nance, risk management, and compliance spending report, 2008–
2009: Inside the $32B GRC Market. Tech rep, AMR Research

14. Hoffmann J, Weber I, Governatori G (2012) On compliance check-
ing for clausal constraints in annotated process models. Inf Syst
Frontiers 14(2):155–177

15. Khalaf R, Karastoyanova D, Leymann F (2007) Pluggable frame-
work for enabling the execution of extended BPEL behavior. In:
WESOA’07. Springer

16. Motahari-Nezhad HR, Saint-Paul R, Benatallah B, Asati F (2008)
Deriving protocol models from imperfect service conversation
logs. IEEE Trans Knowl Data Eng 20(12):1683–1698

17. Musaraj K, Yoshida T, Daniel F, Hacid MS, Casati F, Benatallah B
(2010) Message correlation and web service protocol mining from
inaccurate logs. In: Proceedings of ICWS’10

18. Oracle (2007) SOA governance: framework and best practices.
Tech rep, Oracle. URL http://goo.gl/dtZjz

19. Pinter SS, Golani M (2004) Discovering workflow models from
activities’ lifespans. Comput Ind 53(3):283–296

20. Popova V, Sharpanskykh A (2010) Modeling organizational per-
formance indicators. Inf Syst 35(4):505–527

21. Rodriguez C, Daniel F, Casati F, Anstett T, Schleicher D, Burri S
(2009) Warehouse model and diagnostic algorithms. Deliverable
d6.2.2, MASTER project. URL http://www.master-fp7.eu/

22. Rodríguez C, Daniel F, Casati F, Cappiello C (2009) Computing
uncertain key indicators from uncertain data. In: ICIQ’09, pp 106–
120

23. Rodriguez C, Daniel F, Casati F, Cappiello C (2010) Toward uncer-
tain business intelligence: the case of key indicators. IEEE Internet
comput 14(4):32–40

24. Rozinat A, van der Aalst WMP (2008) Conformance checking of
processes based on monitoring real behavior. Inf Syst 33(1):64–95

25. Rozinat A, van der Aalst WMP (2006) Decision mining in
business processes (BETA publicatie: working papers, No.
164) Eindhoven: Technische Universiteit Eindhoven, 16 pp.
http://www.tue.nl/en/university/departments/industrial-design/
research/experts-expertise/detail/ep/p/d/ep-uid/202689/

26. Rozinat A, Van der Aalst W (2006) Conformance testing: measur-
ing the fit and appropriateness of event logs and process models. In:
Business process management workshops. Springer, pp 163–176

27. Sadiq SW, Governatori G, Namiri K (2007) Modeling control
objectives for business process compliance. In: BPM’07, pp 149–
164

28. Sap AG (2007) Governance for modeling and implementing enter-
prise services at SAP. URL http://goo.gl/kFAvS

29. Sayal M, Casati F, Dayal U, Shan MC (2002) Business process
Cockpit. In: VLDB ’02. VLDB Endowment, pp 880–883

30. Schleicher D, Anstett T, Leymann F, Mietzner R (2009) Maintain-
ing compliance in customizable process models. In: CoopIS’09.
LNCS, vol 5870, pp 60–75

31. Seol H, Choi J, Park G, Park Y (2007) A framework for benchmark-
ing service process using data envelopment analysis and decision
tree. Expert Syst Appl 32(2):432–440

32. Silveira P, Rodríguez C, Casati F, Daniel F, D’Andrea V, Worledge
C, Taheri Z (2009) On the design of compliance governance
dashboards for effective compliance and audit management. In:
NFPSLAM-SOC’09. Springer

33. Software AG (2007) SOA governance: “Rule your SOA”. Tech rep,
Software AG. URL http://goo.gl/EtgEi

34. Tarantino A (2008) Governance, risk, and compliance handbook.
Wiley, New York

35. Trent H (2008) Products for managing governance, risk, and com-
pliance: market fluff or relevant stuff?. In-depth research report,
Burton Group

36. Tsang S, Kao B, Yip KY, Ho WS, Lee SD (2009) Decision trees
for uncertain data. In: ICDE’09. IEEE, pp 441–444

37. van Lessen T, Leymann F, Mietzner R, Nitzsche J, Schleicher D
(2008) A management framework for WS-BPEL. In: ECOWS’08.
IEEE, pp 187–196

38. Walton M (1988) The deming management method. Perigee Books,
New York

123

http://goo.gl/dtZjz
http://www.master-fp7.eu/
http://www.tue.nl/en/university/departments/industrial-design/research/experts-expertise/detail/ep/p/d/ep-uid/202689/
http://www.tue.nl/en/university/departments/industrial-design/research/experts-expertise/detail/ep/p/d/ep-uid/202689/
http://goo.gl/kFAvS
http://goo.gl/EtgEi

	SOA-enabled compliance management: instrumenting, assessing, and analyzing service-based business processes
	Abstract
	1 Introduction
	1.1 Reference scenario: outpatient drug dispensation in a hospital
	1.2 Contributions and structure of the paper

	2 Compliance management in the SOA
	2.1 Compliance management requirements
	2.2 System architecture
	2.3 Compliance management methodology

	3 Plan: designing compliant processes and defining evidence
	3.1 Specifying compliant behaviors
	3.1.1 Modeling compliance templates and processes
	3.1.2 Creating the signaling policy

	3.2 Specifying key compliance indicators

	4 Do: running processes and generating evidence
	5 Check: assessing compliance
	6 Act: improving processes and compliance
	6.1 Analyzing correlations among indicators
	6.2 Classifying compliance evaluations
	6.3 Discovering business protocol models
	6.4 User study and evaluation

	7 Related work
	7.1 IT governance
	7.2 SOA governance
	7.3 Business process compliance
	7.4 Reporting on business process performance
	7.5 Mining process execution logs

	8 Conclusion
	Acknowledgments
	References

