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Abstract Services are offered in an execution context

that is determined by how a provider provisions the

service and how the user consumes it. The need for

more flexibility requires the provisioning and consump-

tion aspects to be addressed at runtime. We propose an

ontology-based context model providing a framework

for service provisioning and consumption aspects and

techniques for managing context constraints for Web

service processes where dynamic context concerns can

be monitored and validated at service process run-time.

We discuss the contextualization of dynamically rel-

evant aspects of Web service processes as our main

goal, i.e. capture aspects in an extended context model.

The technical contributions of this paper are a context

model ontology for dynamic service contexts and an

operator calculus for integrated and coherent context
manipulation, composition and reasoning. The context

model ontology formalizes dynamic aspects of Web ser-

vices and facilitates reasoning. We present the context

ontology in terms of four core dimensions – functional,

QoS, domain and platform – which are internally inter-

connected.

Keywords Dynamic aspect · Context model ontology ·
Context constraints · Context manipulation · Service

process

1 Introduction

The execution of a Web service is determined by how

it is provisioned by the provider in terms of functional
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and non-functional properties, but also how a service is

consumed by the user in the context of technical and

business-level settings and requirements. These concerns

define the execution context for a service or a service

process that range from interfaces to quality to business

settings like governance and domain aspects to plat-

form, communication and devices. Our concerns here

are context aspects of relevance for the execution. Service-

centric applications need management in the form of

monitoring and validation at run-time because of new

versions of selected services or new services supplied

by different vendors, different execution time contexts

hamper the correctness and quality levels of Web ser-

vice applications with respect to their contextual expec-

tations. Traditionally, applications are validated before

their deployment [37], but monitoring and validation at

run-time is needed to address flexibility requirements

[55,9,8].

The notion of context is extensively investigated

in mobile and pervasive applications to define locative

and temporal aspects in dynamic applications [28,33,

50]. CONON [56] and SOUPA [25] are widely used

context models in pervasive computing environments.

They address fundamental context aspects such as de-

vice, location, person and activity for capturing infor-

mation about the execution situation. While these con-

text models do not characterize dynamic aspects of

Web services as software entities embedded into busi-

ness processes, their formal context representation and

knowledge sharing and reasoning aspects provides some

input to our research. The notion of context can be used

to define functional and non-functional features of Web

services [37,38], there focusing on context matching for

service selection, but only statically for the design stage.

Rosemann et al. [47] have focused on context models

in business processes and proposed a conceptual con-
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text taxonomy, but acknowledge the need for further

research on process execution. We follow Truong and

Dustdar [52] here in defining our encompassing con-

text notion, who consider context information as any

additional information that can be used to improve

the behaviour of a service in a situation. They observe

that ”while some types of context information, such

as location, presence, individual profile, machine/device

and network, have been widely used in many context-

aware systems for a long time, other types of context

information, such as service/application, activity/task,

and team, are also considered in web service context-

aware systems”. Our context notion will capture clas-

sical functional and non-functional aspects (as service-

based properties determined by the provider) and also

domain and platform aspects (as abstract and concrete

properties determined by the consumer).

We can identify the following gaps in the literature:

– The available context categorizations and models do

not sufficiently describe and integrate dynamic ser-

vice context. A complete context model ontology to

conceptualize dynamic service context is needed.

– The contextualization of Web service processes, i.e.

the definition of a context model for service pro-

cesses, is required to support validation monitoring

of dynamic requirements at process run-time.

– Dynamic requirements can be defined as context

constraints, and need to be supported by context

reasoning features of the ontology.

– The manipulation and reasoning of dynamic service

context specifications is necessary for dynamic re-

quirements.

– The available constraints instrumentation and vali-

dation monitoring approaches do not sufficiently ad-

dress run-time instrumentation and validation mon-

itoring of dynamic requirements.

Addressing the first three directly, i.e. modelling dy-

namic context aspects in service processes, is our focus,

aiming to provide a complete model that contextualises

service processes. A context model and an operator cal-

culus are our contributions. The purpose of such a con-

text model is to support a context-aware approach to

manage dynamic requirements in a service process at

runtime, based on an identification of dynamic service

context aspects and their formalisation in the model

and calculus, i.e. to contribute to the remaining chal-

lenges. Requirements that can be changed at process

run-time (aspects that vary for individual service pro-

cesses), such as cost of a service, security needs, pro-

cess runtime aspects or payment aspects are dynamic

requirements. Dynamic requirements arising from the

context model can be operationalised as context con-

straints. This contribution can be utilised to generate

context constraints and allow their instrumentation and

validation at runtime [37,38].

The novelty of our contribution is a context frame-

work to model dynamic, operational aspects for a ser-

vice process at runtime based on a semantic model of

context that deals with diverse, but integrated func-

tional and non-functional dynamic aspects of Web ser-

vice processes. This context model provides a classifi-

cation and formalisation of dynamic aspects. It works

as a conceptualisation for Web service processes that

specifically allows interdependencies between model as-

pects to be determined, specified, manipulated and rea-

soned about. This semantic model is embedded into a

rich conceptual modelling technique for dynamic ser-

vice contexts including language and operator calcu-

lus elements. The ontology framework with its operator

support for context manipulation and composition goes

beyond normal ontology models.

The remainder of this paper is organized as follows.

In Section 2, we motivate our research using scenar-

ios and concrete examples. In Section 3, a conceptual

context model is developed focusing on dynamic as-

pects relevant for composition and execution of Web

service processes. In Section 4, the conceptual model

is formalised as a context model ontology. Current for-

malisation techniques are discussed and ontology-based

context modelling and formalisation are detailed. Sec-

tion 5 addresses techniques for context manipulation

and composition. In Section 6, the context model is

applied, illustrating context constraints and discussing

context operationalisation. In Section 7, we discuss re-

lated work. Finally, we conclude our contribution.

2 Motivation

2.1 The need for service process contextualisation

Dynamic service context aspects contribute to effec-

tive composition and coordination [3]. Service match-

ing and service selection approaches support process

design-time validation for service-based applications [37].

The effective composition and coordination at process

run-time needs to involve service management tech-

niques. Here are some motivating examples for changing

requirements in a dynamic service context.

– Service response time is a constraint – the service

response time cannot be pre-defined; it varies. That

is, service response time is a dynamic aspect, which

is needed for effective composition and collaboration

at process run-time, controlled by the provider.

– Cost of a service process is a constraint – if a service

fails at run-time, then a new service should replace it
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without violating a cost constraint. Cost of a service

can also be changed based on currency exchange

rates, which arise from the business domain of the

consumer.

– A service can be executed on selected devices – ser-

vice execution can depend on device features; that

is, device context is needed for effective composition

and collaboration of Web services.

– A service needs to be adapted, depending on dy-

namically changing consumer locations (and, in a

wider sense, locales as aggregations of lingual, loca-

tion and regulatory settings ranging from units to

currencies or taxes).

These relate to functionality and quality of service pro-

vided, and platform and domain aspects (environmen-

tal aspects at execution time) such as execution engine,

network/platform services, domain ontologies and stan-

dards.

Web services enable business processes to be more

dynamic and flexible, providing more integration sup-

port. Some aspects such as response time, availability,

reliability and also some business constraints, can only

be guaranteed at process runtime, as discussed above.

Service level agreements (SLAs) defined between par-

ties need to be monitored. A change of a dynamic as-

pect may affect on other aspects, e.g. a client may need

a Web service process with low response time or high

security. In dynamic service applications, heterogeneous

services need to be combined at process run-time based

on various dynamic requirements such as user location,

language needs, etc.

This discussion shows that Web service processes

need dynamic service context instrumentation and val-

idation. Therefore, a Web service process needs to be

contextualized, i.e. be made context-aware to monitor

dynamic requirements at process run-time. The term

contextualisation refers here to integrating operational

aspects in the execution space, i.e.,

– those determined by the provider (functional and

non-functional quality aspects of the provisioning

of the service) as well as

– those determined by the consumers (in more ab-

stract terms the domain and in more concrete terms

the platform on which the service is consumed)

2.2 Use case

We choose a use case to clarify our context notion. We

use an environment that provides service-level access

to stock market information and analyses1. A German

user might want to access data from the New York

stock exchange, which is provided in an English format.

We present a scenario in which the service consumer

can implement a context-dependent interface, i.e. one

that allows technical interaction of service interface and

description aspects in German (as the language) and

from a German regulatory context (currencies, units

and taxes) as specific aspects.

At the application-level, two sample calls of a stock

market data analysis service for two locales2 (US-locale

with English as the language and USD as currency and

DE-locale with German as the language and EUR as

the currency) could be: Analyse(10/30/2011, logistics)

→ 3.82 USD and Analysis(30.10.2011, Logistik)→ 4.23

EUR. Context-depending artefacts for service process-

ing resulting from the consumption context of the user

in this example are:

– Date: a format change is needed – which would also

apply to time and collation issues,

– Sector: data values describing an industry sector are

localised based on a translation between standard-

ised terminologies – which would also apply to prod-

uct categories,

– Language: operation names (and possibly other in-

terface and model elements) are translated between

languages,

– Currency: values are converted – as would be other

measurements and units.

This list can be extended: different regulatory envi-

ronments based on maybe multilingual and standard-

ised glossaries and dictionaries; calculations and conver-

sions based on rules (fixed) or repositories (dynamic);

tax rates and customs duties can be added if prod-

ucts are sold; any messages including help and error

messages to which text translation would be applied.

Typical examples for technical terms that need transla-

tion or mappings as forms of adaptation in the banking

or stock markets context are (average price - Durch-

schnittspreis), (main trading phase - Haupthandelsphase),

or (volume weighted average - volumengewichteter Durch-

schnitt) that are based on accepted, often standardised

terminologies. Some examples might be defined in terms

of classification and categorisation standards: (logistics

- Logistik) for a sector or (dairy - Milchprodukte) for

product categories. An observation is that a range of

1 This is based on a case study using financial stock
market information services from http://xignite.com/ and
http://deutsche-boerse.com.
2 The term locale combines here context aspects that define

the domain context (abstract settings) of the consumer. We
have singled out this domain context as it bridges between
the more commonly used quality and platform aspects.
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Analyse
‐ In: Datum/Periode
‐ In: Firma/Sektor
‐ Out: Preis

NYSE

service
interface ‐ US

API ‐ US

Analysis
‐ In: Date/Period
‐ In: Company/Sector
‐ Out: Price

localised
interface ‐ DE

localise
(at concept / attribute / variable level)

SOAP invocation
(reverts localisation)

user ‐ DE
‐ developer/portal
‐ program

Broker / Mediator

Interface

Interaction

Fig. 1 Contextualisation of Stock Market Analysis Feature - Focus on Service API.

context aspects are interdependent: the language might

determine variants of a standard being used. The regu-

latory settings in terms of units might affect the func-

tionality and interface of the services being used.

In this scenario, the consumer context settings and

requirements differ from the provider context assump-

tions. A context model should provide a list of relevant,

possibly differing concerns. A mediator can provide au-

tomated adaptations. An operationalisation of the con-

text model can then result in context constraints to be

dynamically generated and monitored through probes.

In the example, the user-DE can discover services

based on a German specification and can invoke them

based on a German interface. A stock market analy-

sis provider can add a DE-context to its default US-

context. This would result in a correct match in a full

negotiation process in which a user searches for services

that are provided in a context-specific way since the

provider is able to support US-to-DE locale mappings if

required. In an architecture that implements these map-

pings and translations, service instrumentation would

result in a process to be generated and enacted, rather

than a single SOAP request as indicated in Fig. 1. This

process could comprise service invocation and logging

(location) for accountability where the location is a pa-

rameter, which indicates where and how records are

kept (if ruled by privacy laws). The above scenario

could be further extended to allow an American user

(locale US) to access a German-language stock market

information provider, e.g. Deutsche Börse, Frankfurt.

Match-making between provider specifications and

consumer requirements, as it would happen in SLA ne-

gotiations, is not our concern. Neither is the automated

adaptation or monitoring which could result from the

scenario described. We focus here on a comprehensive

conceptual framework and incorporate aspects that al-

low coherent manipulation and reasoning of a context

model for dynamic service processes to take place. The

case study has illustrated the need for a coherent and

inclusive process-oriented context model and calculus.

3 Context Model Development

3.1 Context for dynamic services

A notion of context requires more than the current

widely accepted building blocks of the Web service de-

scription. However, there is no widely accepted defini-

tion for context in information science. Context is de-

fined and used in various applications in their own per-

spectives [36,21,18], in particular to define locative and

temporal aspects in mobile [50] and ubiquitous system

[28,33] applications. Service composition can be static

or dynamic. In static composition, services to be com-

posed are selected at process design-time. In dynamic

service composition, services to be composed are se-

lected at process run-time [20]. In previous work on

service composition, context has been explored for ser-

vice discovery and selection at process design-time [37].

However, there is still a gap where context for dynamic

services and context operationalization are needed at

service process run-time in order to validate dynamic
requirements. Therefore, the context notion needs to

be rich enough to illustrate dynamic aspects relevant to

composition and execution of Web services. In order to

address these needs, we define context for dynamic

services or dynamic service context as follows.

Dynamic service context is client, provider or service

related information, which enables or enhances

effective composition and collaboration between them.

Consequently, the explicit formalisation of dynamic as-

pects relevant to composition and execution of Web ser-

vices into a processable model (context model) is the

central objective.

Truong and Dustdar [52] see context-aware web

services are a subtype of context-aware systems. They

consider context information as any additional infor-

mation that can improve the behaviour of a service in

a situation. Without such additional information, the

service might operate normally, but with context infor-

mation, the service can operate better. They observe
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Analyse
‐ In: Datum/Periode
‐ In: Firma/Sektor
‐ Out: Preis

localised
interface ‐ US

API ‐ DE

Analysis
‐ In: Date/Period
‐ In: Company/Sector
‐ Out: Price

service
interface ‐ DE

user ‐ US
‐ developer/portal
‐ program

Interface

Interaction

localise SOAP (data, sector, currency)

DB ‐ FRA

Fig. 2 Contextualisation of Stock Market Analysis Feature - extends NYSE-specific Analysis Service to include DB-FRA.

that while some types of context information, such as

location, presence, profiles, devices and network, have

been widely used in many context-aware systems, other

types of context information, such as service function-

alities and activities, but also stakeholders, are in fact

also considered in service context notions. We follow

this broad context notion, but focus in the light of our

dynamic concerns on an operational context. Raik et

al. [45] consider these dynamic features offered by the

framework in a shared context model, describing the

operational environment of the system. The context is

defined through a set of context properties.

Service provisioning and consumption frame the con-

text notion here. Provisioning is the process of prepar-

ing and equipping IT infrastructure to allow it to pro-

vide (new) services to its users. Service provisioning

languages, such as SPML, support exchanging user, re-

source and service provisioning information between co-

operating organizations. SPML is an open standard for

the integration and interoperation of service provision-
ing requests, but deals more with the management of re-

sources. As we are concerned with higher-level aspects,

the context notion is more appropriate. A service-level

agreement (SLA) is a part of a service contract where a

service is formally defined. An SLA will typically have

a technical definition in terms measurable details. Al-

though there are similarities, we see the context spaces

as a framework in which SLA negotiation and specifica-

tion can take place, and also dynamic adaptations, as

illustrated with the use case, can take place.

3.2 Context model determination

We followed a systematic approach to elicit and define

dynamic service context aspects for our context model.

A general and complete context taxonomy is impor-

tant for context-aware dynamic Web service applica-

tions. We discuss the taxonomy development methods,

which includes empirical experiments before detailing

context model ontology development.

Our context taxonomy development methodology

has two steps. Step 1 involves two parts. They are the

analysis of real world application scenarios and the anal-

ysis of context classifications in the literature for cap-

turing dynamic service context, which we defined in

section 3.1. Step 2 involves context orientation where

we initially follow two more general perspectives, then

we further detail the orientation of context categories,

based on a range of criteria.

Step 1. This step involves two parts where we focused

on capturing all possible context categories relevant to

dynamic service context:

– In the first part, we used an empirical analysis of

application scenarios in a classical business domain.

Scenarios from commercial applications of different

system architectures were considered with the help

of domain experts. We explored dynamic aspects of

constituent services relevant to application scenarios

focusing on service composition and execution at

service process run-time.

– In the second part, we considered domain-specific

context taxonomies, comprehensive business services,

and process context models, particularly as described

in [47,27]. We captured dynamic aspects, taking the

perspective of Web services in general and focus-

ing on service composition and execution at process

run-time. Most of previous work is domain-specific,

such as [56,48,13]. However, the community struc-

ture proposed in [38] is more general than other

approaches and we adapted some aspects such as

run-time attributes, business attributes, and secu-

rity attributes from it.

Step 2. The organisation of context attributes in a

general context taxonomy is important in the literature.

– We separated the identified context categories into

inward and outward perspectives on Web services.
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In the outward perspective, dynamic aspects rele-

vant to service interfaces and quality of service prop-

erties were captured – the provisioning view con-

trolled by the provider. In the inward perspective,

dynamic aspects relevant to process execution en-

vironment stemming from the consumption by the

user were identified. We further describe these per-

spectives in section 3.3.

– We then classified context categories and subcate-

gories having different criteria until the taxonomy

becomes more general. This detailed classification

was supported by the literature related to various

non-functional and context classifications, such as

[14,38,37,56].

Step 1 and Step 2 were iteratively followed until the con-

text model becomes complete for a more general per-

spective, i.e. we did not observe further changes based

on the application scenarios chosen. Our observations

led to the development of a flexible and evolvable con-

text model focusing on dynamic aspects of Web services

and Web service business processes [41,4].

The focus of the empirical determination and eval-

uation was validity and completeness of context cate-

gories; categories defined in the context ontology must

represent the needs of dynamic requirements (valid-

ity) and all the required dynamic requirements need to

be covered (completeness). The evaluation process in-

volved application scenarios from two complementary

domains and expert opinion analysis. Application sce-

narios from a classical business domain were analyzed

during the development of the semantic context model.

We followed a formative evaluation approach to evalu-

ate the context model. The following two complemen-

tary domains were considered:

– content-oriented domain, in particular courseware

generation for e-learning applications,

– convenience services domain, in particular a techni-

cal tool support service.

The definition and analysis of these application scenar-

ios were supported by the domain experts. These sce-

narios were developed focusing on real-world business

applications. Expert opinions were collected to anal-

yse the validity and completeness aspects of context

categories and dynamic service context definition using

an online questionnaire. Based on the results from the

formative evaluation and expert opinion analysis, we

incorporated the initial context model with minor ad-

justments and considered the resulting context model

is stable.

3.3 Core context model definition

Our context model focuses on dynamic requirements

relevant for service processes at runtime. This is at this

stage a core model defining a vocabulary, leaving con-

crete values uninterpreted. We define context model as

a specification,

Context Model = 〈Σ,Φ〉
with

– a signature Σ = 〈C,R〉 consisting of concepts C

and roles R to define context aspects and their at-

tributes.

– context descriptions φ ∈ Φ based on Σ. Φ =

〈C ↔ R〉 defines properties in terms of concepts

and roles as description logic formulas (as a formal

foundation of an ontology language).

Moreover, the mechanisms for modifying and composi-

tion context descriptions are an important part of the

overall model, which will be addressed in Section 5.

The context model taxonomy is shown in Figure 3.

Central are four core aspects under which specific as-

pects are captured. These core aspects represent funda-

mental dimensions of context relevant to Web service

composition and execution.

– Outward (provisioning): two of them are linked to

how a service interacts with and impacts on its envi-

ronment: the functional context captures the func-

tional capabilities from an input/output and pre-

condition/post-condition perspective and the qual-

ity context captures non-functional aspects at the

service interface.

– Inward (consumption): the other two capture how

the user and deployment environment impact on

service execution: the domain context captures dy-

namic requirements stemming from the application

domain of the service and the platform context cap-

tures dynamic requirements stemming from its tech-

nological environment.

Where possible, these context categories were aligned

with standardised or widely used vocabularies, such as

software quality standards (ISO 9126) or business di-

rectory information (UDDI) for the quality context.

Functional context describes the operational features

of services.

– Syntax: includes the input/output parameters that

define messages of operations and the data types

(or semantics) of these parameters for service invo-

cation.

– Effect: includes the pre- and post-conditions, i.e. the

operational effect of an operation execution.
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Fig. 3 Context model – taxonomy

– Protocol: a protocol is a consistent exchange of mes-

sages among services involved in dynamic service

composition in achieving goals. The protocol con-

text includes conversational rules which detail pro-

tocols of service invocations to achieve goals and

context on data flows.

Quality of service (QoS) context describes non-

functionality aspects determining the delivered quality

of a service.

Runtime context attributes relate to the measurement

of properties of the execution of a service.

– Performance: measurement of the time behaviour of

services in terms of response time, throughput, etc.

– Reliability: ability of a service to be executed within

the expected time frame.

– Availability: probability that the service is accessi-

ble.

Financial or Business context attributes allow the as-

sessment of a service from a financial or business per-

spective.

– Cost: the amount of money required for provision

and execution.

– Reputation: measures the service provider’s trust-

worthiness.

– Regulatory compliance: a measure of how well a ser-

vice is aligned with government or organizational

regulations and policies.

Security context attributes describe service compliancy

with security requirements.

– Integrity: protecting information from being deleted

or altered in any way without the permission of the

owner of that information.

– Authentication: ensures that both consumer and provider

identity is verified.

– Non-repudiation: the ability of the receiver to prove

to a third party that the sender really did send a

message.

– Confidentiality: protecting information from being

read or copied by anyone who has not been explicitly

authorized by the owner of that information.

Trust refers to the establishment of trust relationships

between client and provider – a combination of techni-

cal assertions (measurable and verifiable quality) and

relationship based factors (reputation, history of coop-

eration).

Domain context refers to domain-specific requirements

for service interaction.

– Semantic: refers to semantic frameworks (i.e. con-

cepts and their properties) in terms of vocabularies,

taxonomies or ontologies.

– Linguistic: the language used to express queries, func-

tionality, and responses.

– Measures: refers to local standards for measurements,

currencies, etc.

Platform context captures the technical environment

a service is executed in.

– Device: the hardware platform on which the service

is provided.

– Connectivity: the network infrastructure used by

the service to communicate.

3.4 Enhanced context model aspects

We used a taxonomy (a hierarchy) to align context

categories in the core context model. However, there

are many types of non-taxonomic relationships between

context categories that form a richer model. One con-

text category can depend on different context categories

in different cases, thus creating non-taxonomic relation-

ships. Taxonomic relationships are defined in subsump-

tion relationships. Non-taxonomic relations are mostly

aspect-specific, i.e. local or non-local in terms of the hi-

erarchy of the context model. Here are some examples

to illustrate local and non-local relationships, which

complement the taxonomic relations:
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– Local : The SecurityContext is the integration of In-

tegrity, Authentication, Non-repudiation and Con-

fidentiality contexts. Different levels of each factor

can bring different levels of security. All the con-

stituent context categories are local to SecurityCon-

text.

– Non-local : The TrustContext is a combination of

technical assertions (measurable and verifiable qual-

ity) and relationship-based factors (reputation, his-

tory of cooperation). The constituent context cate-

gories of TrustContext are distributed in the context

taxonomy and not local in the TrustContext. We

can observe that some of the non-local relationships

have dependencies. For example, the TrustContext

has relationships with measurable and verifiable as-

pects.

Trust can be defined in various ways in different cases

[26]. For example, a requester and provider interact

through an exchange of encrypted and signed messages

accompanied by additional trust information to estab-

lish identity and trust context of each participant. A

Web service, which is guaranteed as a secure and rep-

utable service from a reputable organisation can be con-

sidered as a trusted service. Another QoS aspect that

can be defined through non-taxonomic relationships is

software dependability, often defined as a combination

of reliability and availability aspects [1], but also some-

times a variety of other criteria decided by software

architects [53]. This adds to our point that not all con-

text aspects can and should be fixed in one context

model. We have also illustrated the links between loca-

tion, language and other domain context aspects on the

one hand and functionality aspects on the other hand

in the banking localisation example earlier.

We cannot to define all cases formally. Instead, soft-

ware architects can use the proposed techniques in Sec-

tions 4 and 5 to develop their specific non-taxonomic

definitions. Our context model provides an abstract ter-

minological framework, which needs to be customised

in concrete situations. To illustrate this, in the earlier

stock market example, we can identify a number of con-

cerns that would require consumer and provider to ne-

gotiate their context needs and provisionings. For the

Domain category, relevant aspects are:

– semantics: Standards were referred to (which act as

simple, shared ontologies) such as GS1 or EANCOM

– lingual: English and German were used as languages

(EN, DE)

– units: Currencies were used such as Euro and Dollar

– business: Reputation could have been considered

For the Platform category, relevant aspects are:

– platform: Mobile versus fixed access could have been

considered

– connection: Wireless and secured could be a setting

connecting platform and security aspects

While fully independent aspects do not cause prob-

lems, these non-taxonomic dependencies need attention

in terms of modelling:

– within the QoS category: trust can be defined as a

mix of reputation and security; dependability as a

combination of reliability and availability.

– across categories, e.g. between Domain and Func-

tionality, we find non-trivial dependencies that link

function, semantics and linguistics in the form of

standards-compliant interfaces (e.g. GS1).

For the latter, a rule could automatically derive settings

depending on location. The location determines prices,

which occur as units in the domain, but also as data in

the functionality context. These non-taxonomic depen-

dencies would require to translate service data between

languages, e.g. from English into German - ”Quote”

to ”Angebot” - based on standards like EANCOM or

document-related attributes based on the GS1 standard

for documents3. We could transform data between stan-

dards or their variants, e.g. ”Quote” translates to ”Full-

Quotation” based on a transformation between differ-

ent EDIFACT variants and subsets such as EANCOM,

EDIKEY, or EDIFICE. Other examples are transfor-

mations of currencies, e.g. conversion from Ireland (Eu-

rozone) into UK (Pound Sterling) or transformation of

rules and procedures, e.g. access rights to enable regula-

tory compliance by enabling legally required recording

of activities through service adaptation.

4 Context Representation and modelling

We formalise the dynamic service context model as an

ontology to support context representation and reason-

ing. An ontology consists of entities, relations, func-

tions, axioms and instances. Context categories in the

context model have taxonomic and non-taxonomic re-

lations that can be formalised in a context model on-

tology. We start this section by detailing reasons to se-

lect OWL and its underlying foundations and introduce

ontology-based modelling in Section 4.1. Based on this,

we formalise the context model and specify some prop-

erties formally in description logics and OWL in Sec-

tions 4.2 and 4.3.

3 For illustration, we can use the EDIFACT
(United Nations rules for Electronic Data Inter-
change for Administration, Commerce and Transport,
http://www.unece.org/trade/untdid/welcome.html) and
GS1 standards (supply and demand chains globally and
across multiple sectors, http://www.gs1.org/).
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4.1 Ontologies and ontology-based modelling

In existing context-aware systems, notations like XML,

XM-based CC/PP [19], UML [31], Topic Maps [24],

RDF [37], and OWL [56] are used for context modelling.

We use the Ontology Web Language (OWL) to formal-

ize context relationships based on the underlying de-

scription logic (DL) representation. The context model

ontology further supports context reasoning, which is

not adequately developed in the Web services domain

[52]. The choice of OWL is motivated by its reason-

ing support. It provides language support for reasoning

(OWL-DL) and supports SWRL (Semantic Web Rule

Language) to enable rule-based reasoning. The logi-

cal language (DL) supports context composition and

context constraints enhancements. OWL facilitates the

sharing of conceptualisations (here the context between

consumers and providers), which is important for cross-

organizational service compositions.

The core elements of the description logic used as

an underlying abstract language shall be introduced.

The Attributive Language with Complements (ALC)
is the basis of many description logic languages. The

OWL-DL, the description logic variant of OWL cor-

responds to SHOIN (D) [29], a description logic lan-

guage based on ALC with transitive roles, role hier-

archies, nominals (enumerated classes of object value

restrictions), inverse properties, cardinality restrictions

and concrete data types. In order to encode context as-

pects in SHOIN (D), and eventually in OWL-DL, an

introduction of the constructors for SHOIN (D) is nec-

essary. The constructors are illustrated in Table 1 [22].

Their semantics is based on the usual interpretations

of first-order logic. C denotes concepts and R denotes

property relationships.

Table 1 SHOIN (D) notation for the context ontology

Constructor SHOIN (D) OWL-DL
conjunction C1uC2 intersectionOf(C1,C2)
disjunction C1tC2 unionOf(C1,C2)
negation ¬C1 complementOf(C1)
exists restriction ∃R.C someValuesFrom(C)on(R)
value restriction ∀R.C allValuesFrom(C)on(R)
atleast restriction ≥nR minCardinality(n)on(R)
atmost restriction≤nR maxCardinality(n)on(R)

A DL specification can be constructed as a set of

axioms. The basic constructors of SHOIN (D) can be

used with either the subsumption v or equivalence ≡
symbols to create DL statements. Axioms can be termi-

nological axioms (TBox) or assertional axioms (ABox).

Terminological axioms (statements about entities such

as concepts and roles, but not individuals) can be sub-

sumption or equivalence axioms. Assertional axioms (per-

tain only to individuals) can be concept assertions or

role assertions axioms. A subsumption axiom gives nec-

essary conditions for some a concept to be included

(subclassed) in another, e.g. A v B where A,B are

concepts. An equivalence axiom has the form A ≡ B.

A concept assertion is of the form C(i) where C is a

concept from a TBox and i is an individual. A role as-

sertion is of the form R(a, b), where R is some role from

a TBox and a and b are individuals.

4.2 Ontology-based context modelling

Our context model ontology consist of concepts (called

classes in OWL terminology), their properties in the

form of roles and individuals. The DL constructors and

axioms can be used to formalize the context model on-

tology. These logical relations support composition and

reasoning aspects. Concepts (OWL classes) of the con-

text model are interpreted as sets of descriptive indi-

viduals. Roles (OWL properties) are binary relations

on individuals. Individuals represent context (concept

or role) instances.

Subsumption expresses whether a contextual con-

cept/role is a subconcept/role of another concept/role.

Subconcepts specialise (are subsumed by) their super-

concepts. It uses context instance subsumption based

on the hierarchical relationships of context in the con-

text model. Classes can be organised into a concept

hierarchy that formalises the context model taxonomy

described earlier on. For example, the Input Parameter

context is a subconcept of the Functional context. This

means all members of the Input Parameter context are

members of (subsumed by) the concept Functional con-

text. Subsumption can be used to match consumer con-

text requirements against provider context (later called

service profiles) and to determine configurables (ser-

vice selection and process composition), i.e. comparing

user requirements against actual or declared provider

properties (through satisfaction and matching). Con-

straints compare actual and required context proper-

ties. Both structural (subconcept) and logical (impli-

cation) subsumption relationships can be determined

automatically.

Now we look into concept and role formalisation in

detail to specify further characteristics of the context

model beyond taxonomical subsumption relationships.

4.2.1 Concept description

The building blocks of an OWL ontology are classes

that represent concepts. SHOIN (D) axioms can be
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used to specify complex class descriptions – classes could

be a subclass or disjoint with other classes:

– Subclasses represents hierarchical relationships be-

tween classes (subsumption). For example, Integrity

is part of Security, i.e. Security w Integrity.

– Disjointness means that individual components are

different. For example, high security and performance

is hard to achieve, i.e. Security u Performance ≡ ⊥
(an oversimplification to illustrate the concept).

– Completeness means that a context is built from

only pre-specified contexts. For example, security is

an integration of four aspects: Security ≡ Integrityu
Authentication uNon-repudiation u Confidentiality.

– Composed class descriptions: The composition

of more than one context category can be described

in complex class descriptions, e.g. the effect context

can have either a pre-condition context or a post-

condition context or both, i.e. Effect w Pre-Condition

tPost-Condition. The platform context may have to

have both device context and connectivity context,

i.e. Platform ≡ DeviceuConnectivity. These can be

used to further restrict subsumption relationships

between Effect and Platform and their subclasses.

4.2.2 Role description

Context in the taxonomy can have properties, which

can be formalized within the context model ontology.

Roles represent relationships between individuals or an

individual and data literals. Here, individuals are con-

text instances. Generally, a role can be an object role,

datatype role or annotation role based on how they are

used within the ontology. Object roles link an individual

to an individual, e.g. S.Security hasPart S.Integrity

for service S. Datatype roles link an individual to an

XML schema datatype value or an RDF literal, e.g.

D.Device hasDisplaySettings ”6x8” for device D. An-

notation roles add meta-information to contextual con-

cepts, individuals and object/datatype roles.

A role can also be categorised in terms of its func-

tion. Generic roles that are hard-coded into the context

model are hasPart or hasLevel. Some roles are aspect-

specific – hasDisplaySettings is an example for the de-

vice aspect. The second category is introduced to fur-

ther qualify context. This could have been done as sub-

concept roles with typed instances, but here they are

part of the vocabulary.

4.2.3 Rule-based context derivation

Derived context is implicit context derived from explicit

context in the context ontology based on rules in the

form Antecedent → Consequent. Antecedent and conse-

quent consist of one or more context concepts and role

descriptions. For example, if in a client context a mo-

bile device is indicated in the respective context aspect,

the output message display should be matched with the

display settings of the device:

hasMessage (client,message) ∧ hasDevice (client,mobile) →
hasDisplaySetting (message,3x5).

These rules can be implemented as SWRL rules [30].

A derived context can affect other context aspects.

For instance, deriving an implicit Security context based

on a given explicit context of Integrity and Confiden-

tiality is illustrated below. The rule

Service(?s) ∧ objectPropertyHasIntegrity(?s, ?x) ∧
objectPropertyHasConfidentiality(?s, ?x) ∧
swrlb:stringEqualIgnoreCase(?x, ”high”) →

objectPropertyHasSecurity(?s, ?x)

means that if a service provides integrity and confiden-

tiality, then it is considered secure. So, for the explicit

context of a service

<objectPropertyHasIntegrity rdf:resource=”high”/>
<objectPropertyHasConfidentiality rdf:resource=”high”/>

we get as derived output

<objectPropertyHasSecurity rdf:resource=”high”/>

In order to achieve security, extra processing time for a

service might be needed, specified by the rule: if security

is high then response time is greater than 100 ms.

Service(?s) ∧ objectPropertyHasSecurity(?s, ?x) ∧
swrlb:stringEqual(?x, ”high”) ∧

dataTypePropertyHasResponseTime(?s, ?y) → swrlb :
GreaterThan(?y, 100ms).

4.3 OWL-based context formalisation

An excerpt from the context model ontology in OWL-

DL is illustrated below. Lines 1-8: Performance is a sub-

class of the Runtime context and Runtime context is

a subclass of the Quality context. Lines 9-13: hasRe-

sponseTime is a (functional) data type property. Lines

15-19: the Cost context is a subclass of the attributes

defining the Financial context and the latter is a sub-

class of the Quality context. Lines 20-24: hasCostValue

is a functional data type property. Lines 25-36: the Se-

curity context is a subclass of Quality; Integrity and

Confidentiality are subclasses of Security. Lines 37-52:

Security has an object property hasPart and inverse

isPartOf based on the unionOf (Integrity, Confiden-

tiality).
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1 <owl:Class rdf:ID="PerformanceContext">
2 <rdfs:subClassOf rdf:resource="#RuntimeContext"/>
3 </owl:Class>
4 <owl:Class rdf:ID="RuntimeContext">
5 <rdfs:subClassOf>
6 <owl:Class rdf:ID="QualityOfServiceContext"/>
7 </rdfs:subClassOf>
8 </owl:Class>

9 <owl:DatatypeProperty rdf:ID="datatypeProperty_hasResponseTime">
10 <rdfs:range rdf:resource="http://.../XMLSchema#string"/>
11 <rdfs:domain rdf:resource="#PerformanceContext"/>
12 <rdf:type rdf:resource="http://../owl#FunctionalProperty"/>
13 </owl:DatatypeProperty>

14 <owl:Class rdf:ID="CostContext">
15 <rdfs:subClassOf rdf:resource="#FinancialContext"/>
16 </owl:Class>
17 <owl:Class rdf:ID="FinancialContext">
18 <rdfs:subClassOf rdf:resource="#QualityOfServiceContext"/>
19 </owl:Class>

20 <owl:DatatypeProperty rdf:ID="datatypeProperty_hasCostValue">
21 <rdfs:domain rdf:resource="#CostContext"/>
22 <rdf:type rdf:resource="http://../owl#FunctionalProperty"/>
23 <rdfs:range rdf:resource="http://../XMLSchema#string"/>
24 </owl:DatatypeProperty>

25 <owl:Class rdf:about="#SecurityContext">
26 <rdfs:subClassOf rdf:resource="#QualityOfServiceContext"/>
27 </owl:Class>
28 <owl:Class rdf:ID="Integrity">
29 <rdfs:subClassOf>
30 <owl:Class rdf:about="#SecurityContext"/>
31 </rdfs:subClassOf>
32 </owl:Class>
33 <owl:Class rdf:ID="Confidentiality">
34 <rdfs:subClassOf>
35 <owl:Class rdf:about="#SecurityContext"/>
36 </rdfs:subClassOf>

37 <owl:ObjectProperty rdf:ID="objectProperty_hasPart">
38 <owl:inverseOf>
39 <owl:ObjectProperty rdf:ID="inv_of_objectProperty_isPartOf"/>
40 </owl:inverseOf>
41 <rdfs:domain rdf:resource="#SecurityContext"/>
42 <rdf:type rdf:resource="http://.../owl#FunctionalProperty"/>
43 <rdfs:range>
44 <owl:Class>
45 <owl:unionOf rdf:parseType="Collection">
46 <owl:Class rdf:about="Confidentiality"/>
47 <owl:Class rdf:about="Integrity"/>
48 </owl:unionOf>
49 </owl:Class>
50 </rdfs:range>
51 </owl:ObjectProperty>

The OWL representation of cost, response time, lin-

gual and security context features of a sample service is

illustrated below. These properties are model instances,

i.e., individual context constraints that can be moni-

tored and validated at runtime. Lines 3-5: the object

property hasSecurity of Service 1 denotes security at-

tributes, here abstracted as Security-S1. Lines 7-12: the

object property hasMaxResponseTime of Service 1 re-

quired to be less than 3 milliseconds. Lines 14-19: the

property hasCost of Service 1 requests 0.1 Euro. Lines

21-26: the output of Service 1 has a data type property,

hasLanguage, referring to English, which could reflect

the US-locale from the use case scenario in Section 2.

1<Service rdf:ID="Service-S1">
2
3 <objectProperty_hasSecurity>
4 <SecurityContext rdf:ID="Security-S1"/>
5 </objectProperty_hasSecurity>

6
7 <objectProperty_hasMaxResponseTime>
8 <Performance rdf:ID="Performance-S1">
9 <datatypeProperty_hasResponseTime

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
10 < 3 ms </datatypeProperty_hasResponseTime>
11 </Performance>
12 </objectProperty_hasMaxResponseTime>
13
14 <objectProperty_hasCost>
15 <Cost rdf:ID="Cost-S1">
16 <datatypeProperty_hasCostValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
17 0.1 Euro </datatypeProperty_hasCostValue>
18 </Cost>
19 </objectProperty_hasCost>
20
21 <objectProperty_hasOutput>
22 <Output rdf:ID="Output-S1">
23 <datatypeProperty_hasLanguage

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
24 English </datatypeProperty_hasLanguage>
25 </Output>
26 </objectProperty_hasOutput>
27
28</Service>

5 Context Manipulation

Often, a context specification needs to be adapted for

further processing or several contexts, e.g., of different

services in a process, need to be combined. We pro-

vide an operator calculus for context specifications to

facilitate these manipulations [42]. While techniques for

adaptation and match-making itself are not the focus

of this investigation, the context model framework shall

provide a foundation for these.

5.1 Context model specification and service context

profiles

Before addressing the manipulation of context, the no-

tion of a context specification and its semantics need

to be made precise. We assume the context model to

be a DL specification based on the SHOIN (D) subset

from Table 1, Context Model = 〈Σ,Φ〉. For instance,

for the SecurityContext, we define Σ and Φ as follows.

Σ = 〈{IntegrityContext,AuthenticationContext, ...} ;

{hasPart, isPartOf}〉

φ =
{
IntegrityContext

isPartOf→ SecurityContext
}

We assume in general the following signature inclu-

sion T ⊂ Σ for all signatures Σ where T is the context

model taxonomy signature, as defined in Section 3.3,

where: Σ = 〈{FunctionalContext,QoSContext, ...} ;

{hasPart, isPartOf, hasCost, hasSecurity, ...}〉 and the

taxonomy T = 〈{FunctionalContext,QoSContext, ...} ;
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{hasPart, isPartOf, ...}〉. If the taxonomy is not ad-

hered to or other changes or extensions take place, con-

text modelling might require syntactical elements to be

renamed (we will provide a respective operator later).

The Context Model = 〈Σ,Φ〉 can be interpreted

by a set of (algebraic) models M . The model notion

[32] refers to algebraic structures that satisfy all con-

text descriptions φ in Φ. The set M contains algebraic

structures m ∈M with

– instances CI for each contextual concept (class) C,

– roles RI ⊆ CIi ×CIj for all context roles R : Ci → Cj

such that m satisfies the context description. We define

the satisfaction relation over the selected connectors of

the description logic SHOIN (D) from Table 1. The as-

sumptions and limitations that apply to algebraic spec-

ifications in general (e.g. decidability) apply.

A context specification is application-specific and

has instances and instance-level axioms, i.e. Context

Specification ∈ Context Model, where Context Model

= 〈Σ,Φ〉. The consistency of a context specifica-

tion ensures that a context model does not contain any

contradictory facts. A context specification is consis-

tent, if there are models that satisfy the specification.

Based on the descriptions of a contextual concept, a

reasoner can check whether or not it is possible for a

concept to have any instances. A concept is deemed to

be inconsistent if it cannot have any instances.

We use the notion of a service context profile

(SCP) to extend the context specification notion for

a Web service and denote its incarnation at runtime.

A service context profile SCP captures context model

instances of individual services, i.e. adding instance-

level axioms to the context specification. The context

model provides a contextualization framework, in which

service-related context aspects are captured. An SCP

is represented as an association of values (instances) to

context model aspects

SCP =[{F (1)...F (nF )} ,
{Q(1)...Q(nQ)} ,
{D(1)...D(nD)} ,
{P (1)...P (nP )}]

where {F (1)...F (nF )} are functional context instances,

{Q(1)...Q(nQ)} are quality of service context instances,

{D(1)...D(nD)} are domain-based context instances,

and {P (1)...P (nP )} are platform-based context instances.

Each of the instance elements is typed by the respec-

tive context model aspect. A code excerpt of a service

context profile was illustrated earlier on in Section 4.3.

5.2 Context manipulation operators

We introduce context manipulation operators, before

addressing context composition operators in Section 5.3.

The latter can be distinguished from the normal manip-

ulation operators as they preserve the internal compo-

sition structure (i.e. are reversible). The consistency of

context specifications is a concern. We will point out

and (informally) prove key properties with respect to

consistency preservation.

We have two types of context manipulation opera-

tors – service-level and process-level. At service-level,

we discuss context aspects relevant to individual ser-

vices, e.g., manipulating different context aspects of

single service. At process-level, we discuss context as-

pects relevant to contextualized service processes, e.g.,

manipulating a single context aspect relevant to differ-

ent services in a process. We define three fundamental

context manipulation operators for service-level context

manipulation. They are Renaming, Restriction, and

Refinement. We also define two operators, Union and

Intersection for process-level context manipulation.

We discuss the consistency preservation of context spec-

ifications by the operators. We use DL-level formalisms

to define context manipulation operators.

5.2.1 Service-level context manipulation

Renaming. If the taxonomy is not adhered to or other

changes or extensions take place, context modelling might

require syntactical elements to be renamed. A Renam-

ing operator can be defined element-wise for a given

signature Σ. By providing mappings for the elements

that need to be modified, a new signature Σ′ is defined,

Σ′ def
= Σ [n1 7→ n′1, . . . , nm 7→ n′m]

for all concepts or roles ni(i = 1, . . . ,m) of Σ that need

to be modified. For example, concepts OSContext is

used instead of PlatformContext and roles hasOperat-

ingSystem is used instead of hasPlatform.

Σ′ = Σ [ {PlatformContext 7→ OSContext } ;

{hasPlatform 7→ hasOperatingSystem } ]

Restriction. While context specifications are often used

’as is’, it is sometimes desirable to focus on specific

parts. Restriction is an operator that allows context

combinations to be customised and undesired elements

(and their roles) to be removed. A restriction can be ex-

pressed using the Restriction operator 〈Σ,Φ〉|Σ′ for a

context specification, defined by

〈Σ,Φ〉|Σ′
def
= 〈Σ ∩Σ′, {φ ∈ Φ | rls(φ) ∈ rls(Σ ∩Σ′) ∧

cpts(φ) ∈ cpts(Σ ∩Σ′)}〉
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with the usual definition of role and concept projections

rls(Σ) = R and cpts(Σ) = C on a signature Σ =

〈C,R〉. For example, if an integrity context of a service

is a concern instead of the complete security context,

then this can be specified as

rls(φ) = {hasIntegrity} and

cpts(φ) = {IntegrityContext}

Consistency preservation is an important property.

Restriction preserves consistency, which holds as con-

straints are, if necessary, removed. Restriction can be

applied in combination with any context combinator

such as Intersection, Union or Refinement.

Refinement. Consistency is a requirement that should

apply to all combinations of ontologies. A typical sit-

uation is the derivation of a new context from an ex-

isting one [6]. We introduce a constructive operator,

Refinement, which is a consistent (i.e., consistency-

preserving) extension in terms of contextual concepts

and roles. The Refinement can be linked to the sub-

sumption relation and semantically constrained by an

inclusion of interpretations (models that interpret a

context). Refinement preserves existing roles, e.g., the

satisfiability of the original context specification. As the

original contextual concept and role types cannot be

further constrained, the extension is consistent.

The consistency-preserving Refinement operator pro-

vides a constructive subsumption variant that allows

– new subconcepts and new subroles to be added, and

– new constraints to be added, if these apply consis-

tently to the new elements.

Assume a context specification C = 〈Σ,Φ〉. For any

specification 〈Σ′, Φ′〉 with Σ ∩Σ′ = ∅, we define a Re-

finement of C by 〈Σ′, Φ′〉 through

C ⊕ 〈Σ′, Φ′〉 def
= 〈Σ +Σ′, Φ+ Φ′〉

We can demonstrate consistency preservation. The

pre-condition Σ ∩ Σ′ = ∅ implies Φ u Φ′ = ⊥, i.e.

consistency is preserved, which is an important prop-

erty for dynamic, automated environments. In this sit-

uation, existing roles of C = 〈Σ,Φ〉 are inherited by

C ⊕ 〈Σ′, Φ′〉. Existing roles can be refined as long as

consistency is maintained, which might require manual

proof in specific situations that go beyond the operator-

based application.

Refinement can be used to adapt provider context

to a context signature Σ′ and a context description Φ′,

e.g. to add device aspects to a context 〈Σ′, Φ′〉 if the

user’s device context supports a given feature:

〈Σ′, Φ′〉 ⊕ 〈{DeviceContext,FeatureContext} ,
{hasDevice,hasFeature}〉

5.2.2 Process-level context manipulation

Adding a context specification to another specification

or removing specific context roles from a context speci-

fication is often required, particularly if service contexts

are combined within a process. The operators Union

and Intersection deal with these situations, respec-

tively. Two context specification C1 = 〈Σ1, Φ1〉 and

C2 = 〈Σ2, Φ2〉 can be considered (generally associated

to two different services) in a process.

– The Intersection of C1 and C2, expressed by C1 ∩
C2, is defined by

C1 ∩ C2
def
= 〈Σ1 ∩Σ2, (Φ1 ∪+ Φ2)|Σ1∩Σ2〉

We describe the ∪+ operator for context specifica-

tion later in this section, which is defined on a case

by case basis for different context aspects. Intersec-

tion is semantically defined based on an intersection

of context interpretations, achieved through projec-

tion onto common signature elements.

– The Union of C1 and C2, expressed by C1 ∪ C2, is

defined by

C1 ∪ C2
def
= 〈Σ1 ∪Σ2, (Φ1 ∪+ Φ2)|Σ1∪Σ2

〉

Union is semantically defined based on a union of

context interpretations.

Note, this assumes sequential process composition. The

operators could also be integrated with common seman-

tics for conditional or iterative control flow constructs.

Again, consistency is a crucial property and we need

to demonstrate consistency preservation. Both Union

and Intersection operations can result in consistency

conflicts, but that the combination of two context speci-

fications of two services is conflict-free, i.e. semantically,

no contradictions should occur, can be shown as follows.

A consistency condition can be verified by ensuring that

the set-theoretic interpretations of two contexts C1 and

C2 are not disjoint, CI1 ∩CI2 6= ∅, i.e. their combination

is satisfiable and no contradictions occur.

The combination operator ∪+ deals with process-

level composition of context aspects in terms of the

types of context aspects involved. The combination mech-

anism, which is the functionality of the ∪+ operator,

differs between context aspects. We address all context

aspects in our context model ontology to define a com-

plete list of ∪+ operators. C(i) refers to the context

aspect value of service i, e.g., C(i) for the service i can

equal to 600(ms) for the response time aspect.

– The Lowest Common Denominator (∪+LCD)

∪+LCD → Minni=1C(i) for all C(i) in the φ.

Example: for a security aspect, the overall security

of a process is determined by the weakest security

setting of all individual services.
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– The Least Common Subsumer [15] (∪+LCS)

∪+LCS →
⋂n
i=1 C(i) for all C(i) in the φ

Example: for the language aspect, the least common

subsumer of all individually used languages are the

language(s) common to all (intersection).

– The Logical OR (∪+OR)

∪+OR → ORni=1C(i) for all C(i) in the φ

Example: for the deployment environment, the ser-

vice deployment environment needs secure internet

connection or connection bandwidth greater than

10Mbps.

– The Accumulation (∪+ACC)

∪+ACC → Σn
i=1C(i) for all C(i) in the φ

Example: The cost of a process is an accumulation

through summation of the cost of each service.

– The Logical AND (∪+AND)

∪+AND → ANDni=1C(i) for all C(i) in the φ

Example: for the deployment environment, the ser-

vice deployment environment needs Windows op-

erating system and connection bandwidth greater

than k Mbps.

– The Mediation (∪+MED)

∪+MED → MEDni=1C(i) for all C(i) in the φ

Example: in service composition, if an output con-

text (boolean: true or false) of a service Sj is com-

posed with an input context (integer: 0 or 1) of a

service Sj+1, then a mediation is needed. Mediations

are represented as mappings.

In order to illustrate this for a service process P , we

assume P has two services Si and Sj and corresponding

context specifications SCPi and SCPj . Both specifica-

tions are characterised in terms of five context aspects

(in-parameter, out-parameter, response time, security

and language, respectively).

SCPi = [int, bool, 1ms, 1111, EN ] and

SCPj = [int× int, int, 10ms, 1001, FR]

The aim is to combine SCPs to process-level contexts

using the different ∪+ variants:

– in, out – sequential composition, which is a causal

structural composition (mediation). Correctness of

this composition is a concern. We address this type

of composition further in Section 5.3.

– cost, performance – numerical composition through

addition (accumulative).

– security – the lowest common denominator, which

is a kind of intersection for security settings.

– language – intersection as the composition principle.

The results of the combination can be illustrated as

follows. Assume a service process P :

P = {Si, Sj} with 〈Σ,Φ〉p = 〈Σ,Φ〉Si + 〈Σ,Φ〉Sj

i.e.

[int,bool,1ms,1111,EN] + [int×int,int,10ms,1001,FR]

The composition can be illustrated as:

[bool ∪+MED int × int], [1ms ∪+ACC 10ms],

[1111 ∪+LCD 1001], [EN ∪+LCS FR]

The results of the individual aspect combinations are:

[1ms ∪+ACC 10ms] = 11 ms, [1111 ∪+LCD 1001] = 1001

5.3 Context composition

The explicit support for context composition is impor-

tant for service context profiles in composed service pro-

cesses. As an extension to the context manipulation op-

erators, we introduce two types of composite operators

for context specifications. In contrast to Union and In-

tersection, context composition retains subcomponents

as identifiable parts of the result and, therefore, makes

composition reversible.

The subsumption is the central relationship in ontol-

ogy languages, allowing context taxonomies to be de-

fined in terms of subtype relationships [2]. The compo-

sition is a fundamental relationship that describes the

part-whole relationship between concepts or instances

(individuals) [44]. Composition is less often used in on-

tological modelling languages. The notion of composi-

tion shall be applied for context in two different ways:

– Structural (service-level) composition. The structural

hierarchies define an important aspect of context

[17]. The structural composition can be applied for

instance for input/output or for security with its
subaspects confidentiality or availability. In the lat-

ter case, composition is more adequate than see-

ing these as subtypes if their later implementation

through different system components is considered.

– Sequential (process-level) composition. Dynamic el-

ements (services) can be composed to represent se-

quential process behaviour. While context does not

directly represent behaviour, service context models

need to be aggregated along with the behavioural

composition of services in a process.

We use the symbol ”B” to express composition. The

composition is syntactically used in the same way as

subsumption ”v” to relate context descriptions.

– Context composition hierarchies can consist of un-

ordered subcomponents, expressed using the com-

ponent composition operator ”B”. An example is

Security B Confidentiality, meaning that a Security

aspect consists of Confidentiality as a part. The com-

ponents can be interpreted by unordered multi-sets.
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The structural composition C B {D1, . . . , Dn} is

defined by C B {D1} u . . . u C B {Dn} where

C B {D} means that C is structurally composed of

D if C and D are context specifications. The parts

Di, i = (1, .., n) are not assumed to be ordered. The

structurally composed concepts are interpreted as

multi-sets.

– Service processes can be sequences that consist of

ordered process elements, again expressed using the

composition operator ”B”. An example is Process B
Service, meaning that Process is actually a compos-

ite service, which contains for instance a Service ele-

ment. We see composite process implementations as

being interpreted as ordered tuples providing a no-

tion of sequence. More complex behavioural compo-

sitions are not covered here. The sequential compo-

sition C B [D1, . . . , Dn] is defined by C B [D1]u. . .u
C B [Dn] where C B [D] means that C is sequen-

tially composed of D if C and D are services. The

sequentially composed concepts are interpreted as

tuples. The parts Di with i = (1, .., n) are assumed

to be ordered with D1 ≤ . . . ≤ Di ≤ . . . ≤ Dn

describing an execution ordering ≤ on the Di.

Note, that the composition operators are specific to

the respective element types, whereas subsumption is

generic.

While the subsumption relationship is defined through

subset inclusion, the composition relationships are de-

fined through membership in collections (multi-sets for

structural composition and tuples for behavioural com-

position).

6 Application and Discussion

While the earlier stock market use case served to intro-

duce the context notion for a single service, we now use

a more process-oriented case study to illustrate the ap-

plication of the context model and the supporting calcu-

lus for service-based process compositions using simple

context constraints here.

We also discuss validation and the runtime infras-

tructure to support dynamic service processes in Sec-

tion 6.1.

6.1 Applicability in case study

This utility bill pay scenario assumes that Dublin-based

user pays a utility bill from his UK bank account using

an enterprise client. The enterprise client (e-client) sat-

isfies user requests by combining heterogeneous services

Billing Service, Banking Service and Payment Confir-

mation Service at process run-time. We assume that

service providers charge enterprise clients (e-client) for

provided services.

In this scenario, there are two simple constraints,

which are dynamically generated based on service-level

agreements the client has with the service providers.

Firstly, the total cost of the process should be less

than 0.5 Euro and, secondly, the process response time

should be less than 2 seconds. The cost of each service

can change based on exchange rates and the response

time of each service can only be measured at run-time.

We can also see a semantic mismatch of output and

input parameters of Billing Service and Banking Ser-

vice. Security validations, such as authentication may

need to be done at process run-time. The context op-

erationalisation of the Web service process is described

in Figure 4.

We assume that each constituent service is attached

to a service context profile (SCP) that characterizes a

service with its context instance information. An SCP

is an instance-level specification of the context model

ontology, see Section 5.1. The cost of a service might

be fixed when services are composed to a service pro-

cess. However, the response time of a service can only

be collected after the service execution at process run-

time. We assume that the UK Banking Service and the

Global Banking Service have the same interface as do

the Email, Fax and Mobile Services. Services of the

same interface can be assigned to a single dynamic part-

ner link of a BPEL process at process runtime.

For the Billing Service, the user context constraint

is verified as a precondition of the service, which is part

of the functional context. The Billing Service outputs

the utility bill in Euro. Then, the Banking Service is

invoked and a user is asked to provide her/his banking

details. This service has an encryption pre- and post-

condition attached to it – both as part of the context of

the Banking Service. After that, the following options

need to be decided at runtime:

– In order to perform the banking transaction, the

higher-level Banking Service invokes the subordi-

nated UK Banking Service. If it fails, the Global

Banking Service can replace it, but we assume that

it has a higher response time and a lower cost than

the original service. Its response time (defined by the

provider as less than 200 ms) is considerably lower

compared to the process response time, however the

actual response time needs to be determined. The

process response time needs to be validated. Small

deviations of response time to the defined process re-

sponse time constraint can also be acceptable, which

needs to be addressed by the monitoring system.

– The Pay Confirmation Service is invoked after the

Banking Service. Whether to invoke the Email, Fax
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<Invoke>

Banking Service

OR

<Invoke>

Billing Service

<Invoke>

UK Banking

Service

<Invoke>

Global Banking

Service
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Service

OR

<Invoke>

Fax

Service

<Invoke>

Mobile

Service

<Invoke>

Email

Service

Functional Context:

Input: User Context, Utility Context

Domain Context:

Utility Context

QoS Context:

Cost = 00, Res.Time < 20 ms

Functional Context:

Input: User Financial Info

QoS Context:

Security: Encryption Context,

Cost = 00, Res.Time < 10 ms

QoS Context:

Cost = 0.05, Res.Time< 50ms

Domain Context:

Currency = GBP

Functional Context:

Input: Conf.Info

Platform Context:

Connection Context: Mobile

QoS Context:

Cost=0.01, Res.Time< 20ms

Domain Context:
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Cost= ? Euro

Res.Time= ? ms

Cost= ? Euro

Res.Time= ? ms

Cost= ? Euro

Res.Time= ? ms

Process level context

validation monitoring

Functional Context:

Post-con: Res.Time

QoS Context:

Cost = 0.01, Res.Time< 200ms

Domain Context:

Currency = USD

Functional Context:

Post-con: Res.Time

Functional Context:

Input: Conf.Info

Platform Context:

Connection Context : Fax

QoS Context:

Cost=0.01, Res.Time< 20ms

Domain Context:

Currency = GBP

Functional Context:

Input: Conf.Info

Platform Context:

Connection Context: Email

Client

QoS Context:

Cost=free, Res.Time< 100ms

Service level context

Validation monitoring

Functional Context:

Post-con: Res.TimeFunctional Context:

Post-con: Res.Time

Functional Context:

Post-con: Fin. Info Verify

: Encryption Verify

Functional Context:

Pre-con: Encryption Available

Functional Context:

Pre-con: UserVerify

Fig. 4 Context operationalisation in a Web service process – SLA constraints

or Mobile Service is decided based on process con-

straints. If a Banking and Fax Service are deployed

and the Banking Service fails, then a more costly

banking service could be an option. In order to main-

tain process costs within the cost constraint, the

process could replace the Fax Service with the Email

Service at runtime (assuming email services are free).

If a service fails, then the cost constraint needs to be

validated before a replacement, which is a pre-condition

for that service. That is, the Web service process needs

to be contextualized with the cost context to support

pre-condition checks at runtime. These types of con-

straint validations work as pre-condition validations of

the constituent services at runtime. The response time,

on the other hand, could be estimated based on previ-

ous executions, but the exact response time context can

only be measured at runtime and validated as a post-

condition of constituent services. That is, Web service

processes need to be operationalised with the response

time context constraints to support runtime validation.

6.2 Validation and discussion

In the following, we will analyse the benefits of the pro-

posed framework. Our context operationalisation sce-

nario focuses on cost and response time context cat-

egories and validates the usefulness of the respective

constructs. The aim is to validate the suitability of the

framework constructs within the representative exam-

ples used and discuss how this could be utilised in a

dynamic service monitoring and composition environ-

ment, specifically looking at context derivation and rule

support. However, other context categories, such as se-

curity, device, location etc. are also utilized and have

been illustrated before.

Subsumption has already been illustrated through

examples regarding the security and parameter con-

texts in Section 4.2. Subsumption reasoning is impor-

tant in provider and consumer context matching sce-

narios where the provider is required to be better, i.e.

needs to subsume the requirements of the service user.
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For instance, QoS values or functional types (in/out)

need to be better. In practical terms, refinement is a

useful constructive operator that implies subsumption.

Context derivation supports pre-condition valida-

tion of constituent services before invoking them at run-

time. Suppose that a customer prefers mobile messages

to emails and the service process deploys a mobile mes-

saging service. Then, payment confirmation informa-

tion needs to be adapted to the display settings of the

device. The mobile messaging service may need the cus-

tomer’s mobile connection and device information such

as TXT or MMS support. If payment confirmation in-

formation is sent as an MMS message, then the mobile

connection as well as the device context needs to be

derived and checked whether the connection supports

MMS messaging. A derivation rule for device MMS set-

tings can be defined as

( hasMessage(client, message) ∧ hasDevice(client,

mobile) ∧ hasMMSSupport(mobile) ) →
hasDisplaySetting(mobile, MMSSetting).

Pre-condition validation before invoking a Mobile

Service at runtime would here utilize platform and de-

vice context. Context derivation can benefit from role

properties such as symmetry or transitivity, e.g., the

hasPart role is transitive or elements of a parameter

can be identified as part of the interface and can be

subjected to type constraints.

Composite constraints are needed for context vali-

dation. We consider two constraints on process cost and

process response time, which are cumulative service-

level context aspects defined using the Union operator.

Adding the cost context and the response time con-

text of each service is needed to find the process cost

and process response time. For instance, the process

response time context is defined as:

ResponseTime (Process) = ResponseTime (Billing

Service) + ResponseTime (Banking Service) +

ResponseTime (UK Banking Service) +

ResponseTime (Pay Confirmation Service) +

ResponseTime (Mobile Service)

Restriction and refinement are two other necessary

context manipulation operators. Restriction is used to

prepare a context specification (or a service context pro-

file) for matching, e.g. to tailor provider context to focus

on QoS aspects only,

〈Σ,Φ〉|〈QoS,∅〉

for a context signature Σ and description Φ. Refine-

ment can be used to adapt provider context, e.g. to

add device aspects to the context specification 〈Σ,Φ〉:

〈Σ,Φ〉 ⊕ 〈[Device,Platform], [DisplaySettings]〉

Structural composition allows us to distinguish a

part-of hierarchy from a subsumption hierarchy. For

instance, confidentiality is part of security, Security B
{Confidentiality}, which is an implementation perspec-

tive, where different security provisioning and monitor-

ing concerns are attached at an implementation level.

Sequential composition allows us to formalise the pro-

cess illustrated in Fig. 4, which is a sequential compo-

sition of three services: PaymentProcess B [ BillingSer-

vice, BankingService, PayConfirmationService ].

Finally, we look at placing dynamic (context) as-

pects in a service process at runtime, which we have

alluded to in the Introduction. We can generate vali-

datable constraints as context constraints. Constraints

are context-based restrictions. An instrumentation is

based on weaving constraints and data collectors with

a deployed service process. Service context profiles are

the runtime representation (introduced at the end of

Section 5.1 based on a respective OWL example in 4.3).

Our work in [54], which allows context constraints to be

woven into BPEL processes and checked dynamically,

uses a policy constraints language PCPL (process cus-

tomisation policy language). This allows dynamic con-

text change to be detected (assuming respective probes

being implemented). Different fault categories can be

distinguished - cf. the boundary model advocated in

[54]. If required, service (re-)composition can then take

place.

7 Related Work

Context is used in various applications [16,34,27,23,

10], often to capture spatial and temporal aspects in
mobile [50] and ubiquitous systems [28,33,46].

The context notion has been applied to define loca-

tive and temporal aspects in dynamic applications [28,

33,50]. Bronsted et al. [11] investigate composition ap-

proaches specifically for pervasive systems and single

out the need for context-awareness. We already men-

tioned CONON [56] and SOUPA [25] as widely used

context models for pervasive computing. Fundamental

context classifications, such as device, location, person

and activity for capturing information about the exe-

cution situation, are used. While these context models

do not characterise dynamic aspects of services as soft-

ware entities within processes, we have adopted taken

on board these context aspects. A context notion and

classification is also used to define functional and non-

functional features of Web services [37,38] focusing pri-

marily on design-time context matching for service se-

lection. Rosemann et al. [47] investigate context in busi-

ness processes in general and propose a conceptual con-

text taxonomy, but acknowledge the need for further
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research on process execution aspects, called the imme-

diate context there.

The previous work on context in pervasive and ubiq-

uitous applications uses context ontologies, which are

tightly coupled with individual applications [21]. In their

work, a context ontology is a part of application-dependent

middleware. Our concern is a more general context-

aware middleware support for dynamic service compo-

sition applications. The requirements attached to com-

position and execution of services at process run-time

are the main concern. Our proposed context model is

not tightly coupled with individual Web service ap-

plications and the context model facilitates a middle-

ware support for dynamic service composition. Service

providers can use a context model for developing context-

aware services, which can also be organized in service

communities proposed in [38,40].

While a context notion has been used widely for

static environments, a context classification to address

dynamic aspects of Web services such as service com-

position is still lacking [47], however, context for adap-

tion is seen as having potential [35]. In previous work

on service composition such as [47,37,49,51], context

has been explored for service discovery and selection at

design time, while we focus on context operationalisa-

tion at process runtime in order to validate dynamic

requirements. A solution to context and context-aware

Web services for Web service process domain is pro-

posed in [37], which is about context-based service se-

lection for service composition. Their context catego-

rization is detailed and only lacks the domain aspects

and interdependency support provided here, but it is

primarily aimed at static context and does not address

dynamic requirements-based aspects such as runtime

properties. We reused their service properties as the

starting point of our context model development and

add dynamic context aspects. While our context model

coincides in key aspects with theirs, their policy-based

implementation framework does not instrument service

processes with dynamic requirements, i.e. does not al-

low context policies to be validated dynamically. It also

does not provide a rich modelling framework in terms of

the operators and reasoning we presented. In [38], ser-

vice clusters are described in a detailed classification.

They detail static semantics, dynamic semantics, and

also quality of operations. However, their focus is on se-

mantic clusters for services that reinforces the concept

of a service registry, but not dynamic requirements val-

idation. In [49] and [51], specifically evaluation aspects

are covered. While, as pointed out earlier, these are

not addressed here, a further integration of the aspect-

specific composition through our ∪+ with these con-

cerns such as QoS in [49] is needed.

Applications are usually validated before deploy-

ment through testing and other means. With dynami-

cally changing applications, shifting validation to run-

time is important. Runtime monitoring of service pro-

cesses is proposed by [7]. They use their own platform

called Dynamo and their own annotation language. Mon-

itoring rules are blended with a composite service pro-

cess. Service composition is separated from rule blend-

ing, which is of our interest. However, they instrument

the abstract service process before deployment. They

assume stability of services in the abstract service pro-

cess. On failure, redeployment is necessary. If a rule

fails, the architect needs to change priorities or redeploy

the process. Instrumentation is the most widely used

monitoring mechanism [55]. The authors in [55] intro-

duce an online monitoring approach for Web service re-

quirements, where monitoring code is embedded inside

the target code. Process instrumentation with monitor-

ing rules before deployment is proposed through source

code weaving in [6,9], in which a change in a monitor-

ing code needs a redeployment of the whole process. An

aspect-oriented extension for monitoring a BPEL pro-

cess according to given QoS criteria to replace exist-

ing partner services is proposed in [39]. However, these

approaches do not sufficiently address dynamic instru-

mentation of context constraints to a deployed service

process for validation monitoring of requirements at

process run-time. Context-based replanning [12] takes

monitoring of context on board to determine replanning

activities, thus moving the concern to implement self-*

properties, which is beyond the scope here.

8 Conclusions

We have identified challenges that are not sufficiently

addressed so far for the context modelling and man-

agement of dynamic Web service processes. An explicit

formalisation of dynamic aspects relevant to the com-

position and execution of Web service processes, i.e.

a conceptualisation of service contexts in the form of

an ontology and an operationalisation through opera-

tors, has consequently been our aim. Defining dynamic

requirements as context constraints demonstrates the

tractability of the proposed context modelling approach.

Context operationalisation with a Web service process

in order to validate dynamic requirements at process

runtime links into process context instrumentation and

validation monitoring would utilise our context model.

Our contribution includes:

– Firstly, a detailed context model ontology provides

a shared conceptualisation of dynamic provisioning
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and consumption aspects relevant to composition

and execution of Web services.

– Secondly, an operator calculus for manipulation and

composition of ontology-based context specifications.

While most context aspects are oriented towards ser-

vices, our framework demonstrates the need to look at

these from the perspective of processes as composed

services. An application of the context model and our

implementation of case study scenarios showed that our

approach provides a practical solution.

We focused on dynamic contextualization, i.e., plac-

ing contextual aspects in a Web service process at pro-

cess runtime. We discussed context modelling and con-

text manipulation, composition and reasoning aspects

on ontology-based context specifications in detail. Two

case studies were used to illustrate dynamic contex-

tualization for services and processes. A concern was

to illustrate the suitability of an ontology framework

to support rich knowledge structures such as interde-

pendent context aspects and support them through an

equally rich operator calculus.

There are several ways in which this context model

can be utilised.

– Firstly, there is the context constraints generation,

instrumentation and validation for dynamic service

process. The context model presented can provide

input and configure a monitoring solution [54].

– Secondly, for adaptation – statically or dynamically.

We used the localisation example where the context

model allows to capture the different context set-

tings for consumer and provider [43].

In both cases, the operator framework for manipulation
and composition of possible cross-category interdepen-

dent context aspects plays the central role.

The dynamic contextualization can be further rein-

forced by dynamic constraints selection, which is part

of our future work. Some steps are documented in [5]

where we have used CLiX (Constraint Language in XML)

to provide dynamic context constraints processing. How-

ever, the full scope of the operator calculus is not yet

supported dynamically. Furthermore, dynamic contex-

tualization of context constraints resulting in dynamic

recomposition is beyond our scope here.
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