
28 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Self-adaptive multiparty sessions

Published version:

DOI:10.1007/s11761-014-0171-9

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/154878 since

This is an author version of the contribution published on:

Mario Coppo,Mariangiola Dezani,Betti Venneri
Self-adaptive multiparty sessions

SERVICE ORIENTED COMPUTING AND APPLICATIONS (2014)
DOI: 10.1007/s11761-014-0171-9

The definitive version is available at:
http://link.springer.com/content/pdf/10.1007/s11761-014-0171-9

http://link.springer.com/content/pdf/10.1007/s11761-014-0171-9

Noname manuscript No.
(will be inserted by the editor)

Self-Adaptive Multiparty Sessions

Mario Coppo · Mariangiola Dezani-Ciancaglini · Betti Venneri

October 24, 2014

Abstract To model the notion of self-adaptiveness for mul-
tiparty sessions, we propose a formal framework, where par-
ticipants can access and modify the global state, in such a
way that the whole system can react promptly to unfore-
seen events by reconfiguring itself. The adaptation strategy
is triggered by the overall communication choreography, rep-
resented by a global type. When the global type is dynam-
ically updated, its projections define new monitors, which
set-up novel communication protocols for the participants.
The key result of this paper is that self-adaptations are per-
formed in a type-safe way, while providing a high degree
of flexibility. Subject Reduction and Progress properties are
proven: any session executes all required communications
in a type safe way and never gets stuck.

1 Introduction

The topic of self-adaptiveness emerged as a key research
subject within various application domains, as a response
to the growing complexity of software systems operating
in many different scenarios and in highly dynamic environ-
ments. To manage this complexity at a reasonable cost, novel
approaches are needed in which a system can promptly re-
act to crucial changes by reconfiguring its behaviour au-
tonomously and dynamically, in accordance with evolving
policies and objectives.

As for a precise definition of self-adaptivity, this is still
a debated question, due to the wide spectrum of the involved

M. Coppo ·M. Dezani-Ciancaglini
Dipartimento di Informatica, Università di Torino, corso Svizzera 185,
10149 Torino, Italy {coppo,dezani}@di.unito.it

B. Venneri
Dipartimento di Statistica, Informatica, Applicazioni, Università di
Firenze Viale Morgagni 65, 50134 Firenze, Italy betti.venneri@unifi.it

features. In our opinion, a simple, but rather deep, character-
isation is the one presented in [7]: we define adaptation as
the run-time modification of the control data ...and a com-
ponent is self-adaptive if it is able to modify its own control
data at run-time. We follow [7] in claiming that we need to
distinguish between standard data and control data: a change
in the system behaviour is part of the application logic if it
is based on standard data, it is an adaptation if it is based on
control data.

This paper injects the above notion of self-adaptivity into
the formal framework of multiparty sessions [28], where
each participant can access and modify the global state rep-
resenting those (control) data whose values are critical for
planning the adaptation steps, in such a way that the whole
system can react to changes in the global data by reconfig-
uring itself. A system comprises four active parties: global
types, monitors, processes, and adaptation functions.

A global type represents the overall communication chore-
ography [9]; its projections onto participants generate the
monitors, which are essentially local types and set-up the
communication protocols of the participants. The associa-
tion of a monitor with a compliant process, dubbed mon-
itored process, incarnates a participant where the process
provides the implementation of the monitoring protocol. No-
tably, we exploit intersection types, union types and subtyp-
ing to make this compliance relation flexible. Processes are
able to follow different incompatible computational paths.
For instance, a process could contain both the code needed
to buy a book and the one needed to arrange a friend meet-
ing, the choice between the two being determined by the
monitor controlling it.

The adaptation strategy is defined by global types and
adaptation functions. The choreography decides when the
adaptation takes place, since its monitors prescribe when
some participants have to check global data, and then send a
request of adaptation to the other participants together with

an adaptation function. The adaptation functions contain the
dynamic evolution policy, since they prescribe how the sys-
tem needs to reconfigure itself based on the changes of the
critical data.

When an adaptation flag is thrown, new monitors are
generated, according to a new choreography: indeed, the
community involved in the session modifies both its set of
participants and the internal communication patterns. There-
fore, dynamic adaptations are essentially triggered by con-
trol data and monitors.

Most of the approaches to self-adaptive systems in the
literature do not face the main challenge of including formal
tools to ensure correctness of dynamic adaptations. Some
approaches address this issue by providing verification tech-
niques for testing properties of the performed adaptation
(e.g., model checking in [25] and web services testbed in [36]).
Differently, the focus of the present paper is on the formal
properties of the proposed framework, which ensure that
adaptations steps are performed in a correct way, being con-
trolled by global types, monitors and process types. The key
results are the proofs of Subject Reduction and Progress the-
orems: in any session, all outputs will eventually be con-
sumed and all processes waiting for an input will eventually
receive it.

Typical scenarios that can benefit from our self-adaptation
framework are those characterised by the following features:
• a community, established for a common task or mission,
has many distributed entities which interact with each other
according to a given operational plan,
• the complex dynamic environment can present crucial events
which require the community to modify its plan dynami-
cally,
• those critical events are observed in any separate com-
ponent of the system: this component can be checked by
the session participants, so that the whole system can react
promptly by updating itself,
• the dynamic changes need to be rather flexible: in each
new phase, other participants can be introduced or some of
the old participants are no longer involved (temporarily or
permanently),
• these dynamic changes need to be safe: interactions must
proceed correctly to pursue the common task.

Example As an example of such a scenario, let us con-
sider a company which has various productive units and sale
organisations scattered around the world. Each factory has
a number of machines and produces several products for
nearby markets or for export. The state of the plants is checked
periodically. Communications among factories and sellers
exchange several data about products and prices, according
to a given combination factory-seller for each product. The
company chief supervises the whole organisation. In partic-
ular, she equipped the company with an adaptation policy,
which gives potential alternative plans for moving produc-

tions and/or sales of a product to different entities. All the
interactions among these participants run under the control
of the monitors that are originated from a global type. Fi-
nally, a global state contains crucial data, for instance the
performance of machineries, plants and sale organisations.
Unforeseen circumstances, such as the catastrophic event of
a fire incapacitating an entire plant, can require the company
organisation to update itself: new production and sale plans
have to be adopted to maintain uninterrupted supply to cus-
tomers.

We simplify the above scenario in the case of a Company
which has two factories, iF (Italian factory) and aF (Ameri-
can factory), and two sellers, iS (Italian seller) and aS (Amer-
ican seller). In order to give a preliminary intuition of our
system, we use a simplified and incomplete syntax (w.r.t.
the formal presentation of next section). In Section 5 we will
enrich and formalise this example.

To show how self-adaptation works, we consider the case
when a fire incapacitates a factory. The global state contains
either OK or KO for each of the two plants. When both
plants are OK the interaction takes place according to the
following global type:

G1 =


iS→ iF : (String, Int).
aS→ aF : (String, Int).
Ada→{iS, iF,aS,aF} : check

Each seller requires to the corresponding factory a certain
amount (of type Int) of an item (of type String), then the
chief Ada sends a checking flag to all, as an alert for a pos-
sible adaptation. When the Italian factory is OK, while the
American factory is KO, the global type is:

G2 =


Ada→ Bob : String.
iS→ iF : (String, Int).
aS→ iF : (String, Int).
Ada→{iS, iF,aS,Bob} : check

where Ada sends to Bob a contract (type String) for rebuild-
ing the plant and both sellers send their requests to the Italian
factory. In the symmetric case, the global type G3 prescribes
that both sellers send their requests to the American factory.
Finally, when both factories are KO, Ada just closes down
the business by sending the label bye to both sellers:

G4 = Ada→{iS,aS} : bye.end

The processes in Table 1 are implementations of the moni-
tors generated by projection from all the above global types.
For instance, the monitor of aS from G1 and G3 is

aF!(String, Int).Ada?check,

where ! represents output and ? represents input. The moni-
tor of the American seller from G2 is similar:

iF!(String, Int).Ada?check.

2

Seller = µX .y!(item,amount).y?check.X + y?bye
Factory = µX .y?(x,w).if . . . then y?check.X + y?(x,w).y?check.X

else write KO.(y?check+ y?(x,w).y?check)
Ada = µX .y!check(F).X + y!contract.y!check(F).X + y!bye
Bob = µX .y?(z).if . . . then write OK.y?check else y?check.X

Table 1 Processes for the Company example

Its monitor from G4 is simpler: Ada?bye.end. The process
code for the seller has only two alternative behaviours, since
processes do not mention senders and receivers. The seller
can send on channel y item and amount, receive the check
and then restart. Otherwise, he can receive bye and stop.

The control data can be modified by the factory, writ-
ing KO when it is incapacitated, and by Bob, writing OK
when he accomplished the rebuilding task. The adaptation
function F in Ada’s process gives the new global type when
applied to the pair (state iF,state aF), i.e.

F(OK,OK) = G1 F(OK,KO) = G2
F(KO,OK) = G3 F(KO,KO) = G4

A process can implement several different monitors also thanks
to the external choice constructor. For instance, the process
Seller can fill all the monitors that are generated by project-
ing the above global types onto the participants iS and aS.

Let us consider the system choreographed by G1 with
the global data (OK,OK). The American factory changes its
state to KO and then, when the chief checks the global data,
the function F generates the adaptation step which produces
the global type G2. After this adaptation Bob is a new partic-
ipant, while the American factory is out. Then the American
seller, as prescribed by his monitor, sends his requests to the
Italian factory. When process Bob writes OK for the Amer-
ican factory and the Italian factory is still OK, the global
type produced by the adaptation step is again G1. Then the
American factory comes back into the scene.

The present paper is a revised and extended version of
[12]. Key additions with respect to [12] are a full formal-
isation of the safety properties and more examples which
illustrate characterising features of our framework.

Structure of the paper Sections 2 and 3 present the syn-
tax of our calculus and its type system, respectively. The
formal semantics is given in Section 4. Examples in Sec-
tion 5 enlighten key technical points of our approach. For-
mal properties are the content of Section 6. Related works
are discussed in Section 7. Section 8 concludes.

2 Syntax

Global types Following a widely common approach, the
set-up of protocols starts from global types. Global types es-
tablish overall communication schemes. In our setting they

also control the reconfiguration phase, in which a system
adapts itself to new environmental conditions.

Let L be a set of labels, ranged over by `, which mark the
exchanged values as in [19] and Λ be a set of flags, ranged
over by λ , which transmit the adaptation information. We
assume to have some basic sorts, ranged over by S, i.e.

S ::= Bool || Int || . . .

Definition 1 Global types are defined by:

G ::= p→Π : {`i(Si).Gi}i∈I || p→Π : {λi}i∈I || end

In writing {`i(Si).Gi}i∈I and {λi}i∈I we implicitly assume
that `i 6= ` j and λi 6= λ j for all i 6= j. There are only two
kinds of communications: value exchange and adaptation
flag exchange. Each value exchange is characterised by a la-
bel which allows to represent choices. The sender is p, while
Π is the set of the receivers, which does not contain p and
cannot be the empty set. The participants of a global type
G are all the senders and the receivers in G, ranged over by
p,q, We denote by pa(G) the set of all participants in G.

Global types can terminate in two ways: either with the
usual end or with the exchange of adaptation flags. In the
latter case the adaptation flags are sent by a participant to all
the other ones. Adaptation flags can be seen as synchronisa-
tion points, interleaved in a conversation, at which different
interaction paths can be taken. In the global types syntax
there is no recursion operator, but recursive protocols can be
obtained by reconfiguring the system with the same global
type. Recursion can then be considered as a particular case
of reconfiguration. A recursion operator is included instead
in the syntax of processes. For instance, all processes in the
company example of the Introduction are recursive and they
implement monitors which are projections of non-recursive
global types.

Notably, we do not allow parallel composition of global
types, which is quite common in the literature [28,9,3,10].
As a matter of fact many papers [28,9,3] require that two
global types can be put in parallel only if their sets of partic-
ipants are disjoint, so parallel composition can be expressed
by interleaving. Without this condition parallel composition
of global types requires some care [10]. This issue is orthog-
onal to the present framework, where each participant, in all
reconfiguration steps, follows one global type only (see Ta-
bles 8 and 9).

Monitors Monitors can be viewed as local types that are
obtained as projections of global types onto individual par-
ticipants, as in the standard approach of [28] and [2]. The
only syntactic differences are the presence of the adaptation
flags and the absence of recursion and delegation. In our cal-
culus, however, monitors are more than types: they have an
active role in system dynamics, since they guide communi-
cations and adaptations.

3

(p→Π : {`i(Si).Gi}i∈I)�q =
p?{`i(Si).Gi �q}i∈I if q ∈Π

Π !{`i(Si).Gi �q}i∈I if q= p

Gi0 �q where i0 ∈ I if q 6= p and q /∈Π

and Gi �q = G j �q for all i, j ∈ I

(p→Π : {λi}i∈I)�q =


p?{λi}i∈I if q ∈Π

Π !{λi}i∈I if q= p

end if q 6= p and q /∈Π

end�p = end

Table 2 Projection of a global type onto a participant

Definition 2 The set of monitors is defined by:

M ::= p?{`i(Si).Mi}i∈I || Π !{`i(Si).Mi}i∈I ||
p?{λi}i∈I || Π !{λi}i∈I ||
end

The constructs in the first line correspond to input and out-
put actions, respectively. An input monitor p?{`i(Si).Mi}i∈I
fits with a process that can receive, for each i ∈ I, a value of
sort Si, labeled by `i, having as continuation a process which
agrees with Mi. This corresponds to an external choice. Du-
ally an output monitor Π !{`i(Si).Mi}i∈I fits with a process
which can send (by an internal choice) a value of sort Si, dis-
tinguished by the label `i for each i ∈ I, and then continues
as prescribed by Mi.

The projection of global types onto participants is given
in Table 2. A projection is undefined when two participants
not involved, as sender or receiver, in a choice have different
projections in different branchings (condition Gi �q = G j �q
for all i, j ∈ I). Monitors are the results of such projections.

A global type G is well formed if its projections are de-
fined for all participants and all occurrences of

p→Π : {λi}i∈I

are such that Π ∪{p} = pa(G): i.e. all participants are in-
volved in each flag exchange. In the following we assume
that all global types are well formed.

Processes Processes represent code that is associated to
monitors in order to implement participants.

Differently from session calculi [27,23,24,28,2,33,19,
11,34,3], processes do not specify the participants involved
in sending and receiving actions. The associated monitors
determine senders and receivers. Processes represent flexi-
ble code that can be associated to different monitors to in-
carnate different participants. Besides communicating, pro-
cesses can access the global state to read or change it.

The communication actions of processes are performed
through channels. Each process owns a unique channel. We
use y to denote this channel in the user code. As usual, the

user channel y will be replaced at run time by a session chan-
nel s[p] (where s is the session name and p is the current par-
ticipant). Let c denote a user channel or a session channel.
We could avoid to write explicitly the channel in the user
syntax, but not in the run-time syntax. We have chosen to
write all channels to simplify the definition of processes.

Definition 3 Processes are defined by:

P ::= 0 || op.P || X || µX .P ||
c?`(x).P || c!`(e).P ||
c?(λ ,T).P || c!(λ (F),T).P ||
if e then P else P || P+P

The syntax of processes is rather standard, in particu-
lar the operator + represents external choice. Notice that
internal and external choices with many branches can eas-
ily be encoded in our calculus, which gains in simplicity. In
writing processes we assume the precedence: prefix, exter-
nal choice, recursion. Note that in the sending and receiving
actions the involved participants are missing. For instance,
c!`(e).P denotes a process which sends via the channel c the
label ` and the value of the expression e and then has P as
continuation. Notably, a system has a global state (see Def-
inition 5) and the op operator represents an action on this
global state, for instance a “read” or “write” operation. We
leave unspecified the kind of actions since we are only in-
terested in the dynamic changes of this state, which plays
the role of the control data for the self-reconfiguration of the
whole system.

Types, which are statically assigned to processes, will be
formally introduced in Section 3 (Definition 7). Types are
mainly aimed at checking the matching between processes
and monitors. It is convenient to include a type annotation in
the syntax of the adaptation flag. The input flag c?(λ ,T).P
represents a process that, after receiving the adaptation flag
λ , has a continuation of type T. Thus the explicit annotation
T makes it easy to dynamically check if, after the adaptation,
the current process can continue with that type, inside the
new monitor. The output flag c!(λ (F),T).P contains also
the adaptation function F . The application of F to the global
state will determine the new global type, which provides a
new choreography for the system.

Network A process is always controlled by a monitor,
which ensures that all performed actions fit the protocol pre-
scribed by the global type. Each monitor controls a single
process. So participants correspond to pairs of processes and
monitors. We write M [P] to represent a process P controlled
by a monitor M , dubbed monitored process. In a reconfigu-
ration phase the monitor controlling the process is changed
according to the new global type resulting from the appli-
cation of the adaptation function to the global state. At this

4

point the processes whose type does not fit the new monitor
must leave the system and new ones can enter it. The data
exchange among the participants is done by means of run-
time queues (one for each active session). We denote by s : h
the named queue associated with the session s, where h is a
message queue. The empty queue is denoted by ø. Messages
in queues can be either value messages (p,Π , `(v)), indicat-
ing that the label ` and the value v are sent by participant p to
all participants in Π , or adaptation messages (p,Π ,λ (G)),
indicating that the flag λ and the global type G are sent by
participant p to all participants in Π . Queue concatenation,
denoted by “·”, has ø as neutral element. A queue is λ -free
if it contains no flag.

The sessions are initiated by the “new” constructor ap-
plied to a global type (session initiator), denoted by new(G),
which generates the monitors and associates them with ade-
quate processes (see Definition 8).

The parallel composition of session initiators, processes
with the corresponding monitors and runtime queues form a
network. Networks can be restricted on session names.

Definition 4 Networks are defined by:

N ::= new(G) || M [P] || s : h || N | N || (νs)N

System A system includes a network, a global state and
assumes a collection of processes together with their types
(according to the typing rules of Section 3). We use σ to
range over global states and we denote by P the collection
of pairs (P,T). We represent systems as the composition (via
“||”) of a networks and a global state, without mentioning the
process collection, which is considered an implicit parame-
ter.

Definition 5 Systems are defined by:

S ::= N || σ

3 Process types

Process types (called simply types where not ambiguous)
describe process communication behaviours [27]. They have
prefixes corresponding to sending and receiving of labels
and flags. In particular an input type is a type whose first
prefix corresponds to an input action and an output type is
a type whose first prefix corresponds to an output action,
while the continuation of a type is the type following its first
prefix. A communication type is either an input or an output
type. The external choice is typed by an intersection type,
since an external choice offers both behaviours of the com-
posing processes. Dually, a conditional is an internal choice
and so it is typed by a union type. Notice that union and in-
tersection being binary constructor feet well with our binary
internal and external choices.

lin(?`(S).T) = lout(!`(S).T) = {`}
lin(?λ) = lout(!λ) = {λ}

lin(!`(S).T) = lin(!λ) = lout(?`(S).T) = lout(?λ) = /0
lin(T1∧T2) = lin(T1∨T2) = lin(T1)∪ lin(T2)

lout(T1∧T2) = lout(T1∨T2) = lout(T1)∪ lout(T2)

Table 3 The mappings lin and lout

To formally define types, we start with the more liberal syn-
tax of pre-types and then we define some restrictions that
characterise types of processes.

Definition 6 The set of pre-types is inductively defined by:

T ::= ?`(S).T || !`(S).T || ?λ || !λ || T ∧T || T ∨T || end

where ∧ and ∨ are considered modulo idempotence, com-
mutativity and associativity.

In pre-types and types we assume that . has precedence over
∧ and ∨.

In order to define types for processes, we have to avoid
intersection between input types with the same first label,
which would represent ambiguous external choices: indeed,
the types following a same input prefix could be different
and this would lead to a communication mismatch, as il-
lustrated in Example 1 of Section 5. For the same reason,
process types cannot contain intersections between output
types with the same label. Since we have to match types
with monitors, where internal choices are always taken by
participants sending a label or a flag, we force unions to take
output types (possibly combined by intersections or unions)
as arguments. Therefore, we formalise the above restrictions
by means of two mappings from pre-types to sets of labels
and flags (Table 3) and then we define types by using those
mappings.

Definition 7 A type is a pre-type satisfying the following
constraints modulo idempotence, commutativity and asso-
ciativity of unions and intersections:

– all occurrences of the shape T1∧T2 are such that

lin(T1)∩ lin(T2) = lout(T1)∩ lout(T2) = /0
– all occurrences of the shape T1∨T2 are such that

lin(T1) = lin(T2) = lout(T1)∩ lout(T2) = /0.

We use T to range over types and T to denote the set of
types. Note that, for example, (T ∧T)∨T is a type, when-
ever T is a type, since types are considered modulo idempo-
tence.

An environment Γ is a finite mapping from expression
variables to sorts and from process variables to types:

5

Γ ::= /0 || Γ ,x : S || Γ ,X : T

where the notation Γ ,x : S (Γ ,X : T) means that x (X) does
not occur in Γ .

We assume that expressions are typed by sorts, as usual.
The typing judgments for expressions are of the shape

Γ ` e : S

and the typing rules for expressions are standard.
Only processes with at most one channel can be typed.

This choice is justified by the design of monitored processes
as session participants and by the absence of delegation.
Therefore the typing judgments for processes have the form

Γ ` P� c : T.

Typing rules for processes are given in Table 4. Observe
that the type of a process after a reconfiguration is mem-
orised in the (input or output) action in which the adap-
tation flag is exchanged (see Definition 3). In rules IF and
CHOICE we require that the applications of union and inter-
section on two types form a type (conditions T1 ∨T2 ∈ T
and T1 ∧T2 ∈ T). Adaptation allows us to avoid recursive
types. A recursion variable is always preceded by an adap-
tation action, i.e. c?(λ ,T).X (rule RV1) and c!(λ (F),T).X
(rule RV2). In typing a recursive process µX .P, rule REC

ensures that the type of P is the same as the type associ-
ated to X in the environment. Note that µX .P is equivalent
to P{µX .P/X} and so, unfolding the process, P will always
be associated to all the reconfiguration flags which precede
the occurrences of X .

For example, writing the process Ada (considered in the
Introduction) using the formal syntax, but leaving out labels,
y!(check(F),TAda) replaces y!check(F), where the type of
the whole process Ada is:

TAda =!check∧!String.!check∧!bye.end

The matching between process types and monitors (ad-
equacy) is made rather flexible by using the subtype rela-
tion on types defined in Table 5. Subtyping is monotone,
for input/output prefixes, with respect to continuations and
it follows the usual set theoretic inclusion of intersection and
union. Notice that we use a weaker definition than standard
subtyping on intersection and union types, since it is suffi-
cient to define subtyping on types.

The intuitive meaning of subtyping is that a process with
a smaller type has all the behaviours required by a bigger
type and possibly more. Therefore end is the top type. An
input monitor naturally corresponds to an external choice,
while an output monitor naturally corresponds to an inter-
nal choice. So intersections of input types are adequate for
input monitors and unions of output types are adequate for
output monitors. Formally, we say that a type is adequate for
a monitor if the conditions of the following definition hold.

≤ is the minimal reflexive and transitive relation on T such
that:

T≤ end T1∧T2 ≤ Ti Ti ≤ T1∨T2 (i = 1,2)
T1 ≤ T2 implies !`(S).T1 ≤!`(S).T2
T1 ≤ T2 implies ?`(S).T1 ≤?`(S).T2
T≤ T1 and T≤ T2 imply T ≤ T1∧T2
T1 ≤ T and T2 ≤ T imply T1∨T2 ≤ T

(T1∨T2)∧T3 ≤ T iff T1∧T3 ≤ T and T2∧T3 ≤ T
T≤ (T1∧T2)∨T3 iff T≤ T1∨T3 and T≤ T2∨T3

Table 5 Subtyping

Definition 8 A type T is adequate for a monitor M (nota-
tion T ∝ M) if T ≤ |M |, where the mapping | | is defined
by:

|p?{`i(Si).Mi}i∈I |=
∧

i∈I?`i(Si).|Mi|

|Π !{`i(Si).Mi}i∈I |=
∨

i∈I!`i(Si).|Mi|

|p?{λi}i∈I |=
∧

i∈I?λi |Π !{λi}i∈I |=
∨

i∈I!λi |end|= end

For instance, the type TAda defined above is adequate for
the monitor of Ada obtained by projecting the global type
G2 discussed in the Introduction:

Bob!String.{iS, iF,aS,Bob}!check

Decidability of adequacy relies on decidability of sub-
typing. We show that subtyping is decidable. The proof ex-
ploits standard distributivity properties on intersections and
unions.

Lemma 1 Subtyping is decidable.

Proof A subtyping between two types is equivalent to a set
of subtypings, in which no union occurs in the left type and
no intersection occurs in the right type. In fact:

– T1∨T2 ≤ T3 iff T1 ≤ T3 and T2 ≤ T3
– (T1∨T2)∧T3 ≤T4 iff T1∧T3 ≤T4 and T2∧T3 ≤T4.

Notice that if (T1 ∨T2)∧T3 is a type, then both T1 ∧T3
and T2 ∧T3 are types. A similar argument can be used for
erasing the intersections in the right type. Then we have to
decide only subtypings of the shape T ≤ T′, where T is an
intersection of communication types and possibly end, while
T′ is either a union of output types or a single input type,
both possibly in union with end (by Definition 7). Since end
is the top type:
- If T′ contains end, then the subtyping holds.
- If T is end, then the subtyping fails, unless T′ contains end.
Otherwise, the occurrences of end in T can be erased.
Thus we are reduced to consider the cases in which T is
an intersection of communication types and T′ is either a
union of output types or a single input type. In the first case,

6

Γ ` 0� c : end END
Γ ` P� c : T

OP
Γ ` op.P� c : T

Γ ,X : T ` c?(λ ,T).X � c :?λ RV1 Γ ,X : T ` c!(λ (F),T).X � c :!λ RV2

Γ ,X : T ` P� c : T
REC

Γ ` µX .P� c : T

Γ ,x : S ` P� c : T
RCV

Γ ` c?`(x).P� c :?`(S).T

Γ ` P� c : T Γ ` e : S
SEND

Γ ` c!`(e).P� c :!`(S).T

Γ ` P� c : T
FRCV

Γ ` c?(λ ,T).P� c :?λ

Γ ` P� c : T
FSEND

Γ ` c!(λ (F),T).P� c :!λ

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1∨T2 ∈T
IF

Γ ` if e then P1 else P2 � c : T1∨T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1∧T2 ∈T
CHOICE

Γ ` P1 +P2 � c : T1∧T2

Table 4 Typing rules for processes

op.P
op−→ P µX .P τ−→ P{µX .P/X} s[p]?`(x).P

s[p]?`(v)−−−−→ P{v/x} s[p]!`(e).P
s[p]!`(v)−−−−→ P e ↓ v

s[p]?(λ ,T).P
s[p]?(λ ,T)−−−−−→ P s[p]!(λ (F),T).P

s[p]!(λ (F),T)−−−−−−−→ P

if e then P else Q τ−→ P e ↓ true if e then P else Q τ−→ Q e ↓ false

P α−→ P′

P+Q α−→ P′
P δ−→ P′

P+Q δ−→ P′+Q

Table 6 LTS of processes

subtyping T ≤ T′ holds if and only if at least one of the
output prefixes of types in T′ is equal to the output prefix of
a type in T, and the corresponding continuations are in the
subtype relation. In the second case, subtyping T≤T′ holds
if and only if T contains a type which has the same input
prefix of T′ and the corresponding continuations are in the
subtype relation. ut

4 Semantics

The evolution of a system depends on the evolution of its
network and global state. The basic components of networks
are the openings of sessions (through the new operator on
global types) and the processes associated with monitors. So
we start by describing how processes can evolve inside mon-
itors. Monitors guide the communications of processes by
choosing the senders/receivers and by allowing only some
actions among those offered by the processes. This is for-
malised by the following LTS for monitors:

p?{`i(Si).Mi}i∈I
p?` j−−→M j j ∈ I

Π !{`i(Si).Mi}i∈I
Π !` j−−→M j j ∈ I

p?{λi}i∈I
p?λ j−−→ Π !{λi}i∈I

Π !λ j−−−→ j ∈ I

Processes can communicate labels and values, flags, adap-
tation functions and types, or can read/modify the global
state trough op operations. These behaviours are made ex-
plicit by the LTS in Table 6, where the treatment of recur-
sions and conditionals is standard. In the rules for external
choice, α ranges over

s[p]?`(v),s[p]!`(v),s[p]?(λ ,T),s[p]!(λ (F),T),

and δ ranges over {op, τ}. We omit the symmetric rules.

h · (q,Π ,ζ) · (q′,Π ′,ζ ′) ·h′ ≡ h · (q′,Π ′,ζ ′) · (q,Π ,ζ) ·h′
if Π ∩Π ′ = /0 or q 6= q′

h · (q,Π ,ζ) ·h′ ≡ h · (q,Π ′,ζ) · (q,Π ′′,ζ) ·h′
if Π = Π ′∪Π ′′ and Π ′∩Π ′′ = /0

where ζ ::= `(v) || λ (G).

Table 7 Equivalence on message queues

7

The choices are done by the communication actions, while
the operations on the global state are transparent. This is
needed since the operations on the memory are recorded nei-
ther in the process types nor in the monitors. An operation
on the state in an external choice can be performed also if
a branch, different from that containing the operation, is ex-
ecuted. The rationale is the independence of the changes in
the control data from the communications among session
participants. For example,

op.s[p]?`1(x).P1 + s[p]?`2(x).P2
op−→

s[p]?`1(x).P1 + s[p]?`2(x).P2
s[p]?`2(v)−−−−−→ P2{v/x}.

A recursion in an external choice can be unfolded indepen-
dently front the chosen branch, since unfolding is an internal
computation. Similarly, a conditional in an external choice
can be evaluated also if a different branch is then executed.
For example,

(µX .if true then s[p]?`1(x).P1 else X)+ s[p]?`2(x).P2
τ−→

(if true then s[p]?`1(x).P1 else µX . · · ·)+ s[p]?`2(x).P2
τ−→

s[p]?`1(x).P1 + s[p]?`2(x).P2
s[p]?`2(v)−−−−−→ P2{v/x}.

We assume a standard structural equivalence on networks,
in which the parallel operator is commutative and associa-
tive, and restrictions commute and enlarge their scopes with-
out name clashes. Moreover, any monitored process with
end monitor behaves as the neutral element for the paral-
lel and absorbs restrictions, that is:

end[P] | N ≡ N and (νs)end[P] ≡ end[P].

For message queues, we need an equivalence for commuting
independent messages and another one for splitting a mes-
sage to multiple receivers, see Table 7. The equivalence on
message queues induces an equivalence on labelled queues
in the obvious way:

h≡ h′ implies s : h≡ s : h′.

We can distinguish between the transitions which do or do
not involve the global state. For simplicity, Table 8 lists the
reduction rules of the networks and Table 9 lists the reduc-
tion rules of the systems, in which all rules need the global
state.

A session starts by reducing a network new G (rule INIT).
For each p in the set pa(G) of the participants in the global
type G, we need to find a process Pp in the collection P as-
sociated to the current system. The process Pp must be such
that its type Tp is adequate for the monitor which is the pro-
jection of G onto p. Then the process (where the channel y
has been replaced by s[p]) is associated to the corresponding
monitor and the empty queue s is created. Lastly, the name
s is restricted. In this way we ensure the privacy of the com-
munications in a session (as standard in session calculi [28]).
We are interested here in modelling the overall adaptation

strategy, based on decoupling interfaces (i.e. monitors) and
implementations (i.e. processes), rather than in the details
related to the choice of processes associated to monitors. So
we have left this choice arbitrary, the only condition being
type adequacy. Note, however, that a natural way of control-
ling the processes associated to the monitors is given by the
choice of the labels and flags which relate them.

The rules IN and OUT define the exchange of messages
through queues. The type assignment system ensures that
both the type of P is adequate for M and the type of P′ is
adequate for M ′. Following [11,3], the agreement between
monitors and processes is required; a novelty is that only the
monitors define the senders and the receivers of messages.

The rules ADAINCONT and ADAINNEW of Table 8 deal
with adaptations, for the session participants which receive
the adaptation flag with the new global type. The new global
type is needed to compute the new monitor M ′ by projec-
tion. In the first rule the continuation of the current process
inside the monitor has a type which is adequate for M ′, so
this process will fill M ′. In the second rule, instead, it is
needed to take from a different process with a type adequate
for M ′ the collection P . In case such a process does not
exists in P , then the system gets stuck.

Evaluation contexts are defined by

E ::= [] || E | N || (νs)E

The reduction rules for networks can be used for reduc-
ing systems thanks to rule SN in Table 9. Rule CXT is a
standard contextual rule. Rule OP allows processes to read-
/modify the global state.
The most interesting rules are ADAOUTCONT and ADAOUT-
NEW. In both rules participant p sends an adaptation flag and
an adaptation function, whose application to the global state
gives a new global type G. The global type G may involve
new participants (in Π ′ \ (Π ∪{p})) which are added to the
network by taking processes in P as in rule INIT. As regards
to participant p, the new monitor G�p will be associated or
not to the current process according to whether its type is ad-
equate or not for G�p , as in rules ADAINCONT and ADAIN-
NEW. In both rules ADAOUTCON and ADAOUTNEW the
message with the reconfiguration flag and the global type
G will be sent to all participants of the session before the
reconfiguration. This is ensured by the well-formedness of
global types.
The restriction to λ -free queues deserves some comments.
It ensures no new adaptation flag can be thrown until all the
receivers of the previous adaptation flag have adapted them-
selves. A design choice of our framework is to allow a par-
ticipant to skip an adaptation phase (since it does not appear
in the new global type) and then to appear again in the fol-
lowing adaptation. This models a common scenario in which
a component is temporarily unavailable and so a new chore-
ography is needed. In the introductory example, the Amer-

8

Π = pa(G) Mp = G�p ∀p ∈Π . (Pp,Tp) ∈P & Tp ∝ Mp
INIT

new(G) −→ (ν s) (∏
p∈Π

Mp[Pp{s[p]/y}] | s : ø)
P τ−→ P′

TAU
M [P]−→M [P′]

M
q?`−−→M ′ P

s[p]?`(v)−−−−→ P′
IN

M [P] | s : (q,p, `(v)) ·h−→M ′[P′] | s : h

M
Π !`−−→M ′ P

s[p]!`(v)−−−−→ P′
OUT

M [P] | s : h−→M ′[P′] | s : h · (p,Π , `(v))

M
q?λ−−→ P

s[p]?(λ ,T)−−−−−→ P′ G�p = M ′ T ∝ M ′

ADAINCONT
M [P] | s : (q,p,λ (G)) ·h−→M ′[P′] | s : h

M
q?λ−−→ P

s[p]?(λ ,T)−−−−−→ P′ G�p = M ′ T 6∝ M ′ (Q,T′) ∈P T′ ∝ M ′

ADAINNEW
M [P] | s : (q,p,λ (G)) ·h−→M ′[Q{s[p]/y}] | s : h

N1 ≡ N′1 N′1 −→ N′2 N2 ≡ N′2
EQUIV

N1 −→ N2
Table 8 Network reduction

P
op−→ P′

OP
M [P] || σ −→M [P′] || op(σ)

M
Π !λ−−→ P

s[p]!(λ (F),T)−−−−−−−→ P′ F(σ) = G Mp = G�p T ∝ Mp h λ -free

Π ′ = pa(G) ∀q ∈Π ′.Mq = G�q ∀q ∈Π ′ \ (Π ∪{p}). (Pq,Tq) ∈P & Tq ∝ Mq ADAOUTCONT
M [P] | s : h || σ −→Mp[P′] | ∏

q∈Π ′\(Π∪{p})
Mq[Pq{s[q]/yq}] | s : h · (p,Π ,λ (G)) || σ

M
Π !λ−−→ P

s[p]!(λ (F),T)−−−−−−−→ P′ F(σ) = G Mp = G�p T 6∝ Mp h λ -free

Π ′ = pa(G) ∀q ∈Π ′.Mq = G�q ∀q ∈Π ′ \Π . (Pq,Tq) ∈P & Tq ∝ Mq ADAOUTNEW
M [P] | s : h || σ −→ ∏

q∈Π ′\Π
Mq[Pq{s[q]/yq}] | s : h · (p,Π ,λ (G)) || σ

N −→ N′
SN

E [N] || σ −→ E [N′] || σ

N || σ −→ N′ || σ ′
CTX

E [N] || σ −→ E [N′] || σ ′

Table 9 System reduction

ican factory becomes temporarily out of the current chore-
ography. Without the given restriction, when the component
becomes available again, we could have two monitored pro-
cesses with the same session channel, so loosing channel lin-
earity. Observe, however, that by this restriction some partic-
ipants are allowed to finish their communications before per-
forming an adaptation, while other participants have already
self-adapted and then started the new communications.

Note that the λ -freeness of queues can be implemented
in several ways without breaking decentralisation, for exam-
ple by semaphores on queues.

We use −→∗ with the usual meaning and −→P , −→∗P
when we want emphasise the use of P in rules INIT, ADAIN-
NEW, ADAOUTNEW.

5 Examples

In this section we discuss examples. The first example moti-
vates the restrictions on the definition of process types (Def-
inition 7). The second and the third examples extend the ex-
ample given in the Introduction, using the syntax of Sec-
tion 2. Example 2 shows a use of different adaptation flags.
Example 3 illustrates the possibility of exchanging the par-
ticipant who is in charge of sending the adaptation flag. For
readability we omit {,} in writing global types and moni-
tors.

Example 1 This example shows the necessity of the condi-
tions on types given in Definition 7.

9

Suppose that any pre-type is a type, by removing the
conditions from Definition 7. Then P could contain (P1,T1)

and (P2,T2) such that:

P1 = y!`(3).y?`′(x).0+ y!`(true).0
P2 = y?`(x′).y!`′(−x′).0

T1 =!`(int).?`′(int).end∧!`(Bool).end
T2 =?`(int).!`′(int).end

In particular, we observe that T1 has an intersection between
output types with the same label. Take then the global type
G= 1→ 2 : `(int).2→ 1 : `′(int).end, whose projections on
participants 1 and 2 are

M1 = 2!`(int).2?`′(int).end, M2 = 1?`(int).1!`′(int).end,

respectively. According to our definition of adequacy, T1 and
T2 are adequate for M1 and M2, respectively. It is easy to
verify that the network new(G) can reduce to

(νs)(s[2]1!`′(−true).0 | s : ø),

which is stuck. On the other hand, taking

P′1 = y!`(3).y?`′(x).0+ y?`(x).0

with type T′1 =!`(int).?`′(int).end∧?`(Bool).end, we still
have that T′1 and T2 are adequate for M1 and M2, but the
network new(G) smoothly terminates the computation. Note
that T′1 satisfies the conditions of Definition 7, so there is no
possible ambiguity on which branch of the external choice
must be chosen.

Example 2 Ada wants to consider the possibility to keep the
business going, also when both factories are out of use. In
this case she can choose either to stop all activities or to
start the reconstruction of both factories. In the former case
she sends a stop adaptation flag and in the latter case a go
adaptation flag. The global type G4 of the example in the In-
troduction must then be replaced by:

G4 = Ada→{iS,aS} : {stop,go}

If Ada decides to go on with the business when both facto-
ries are out, both sellers send their requests to Ada. So we
need two new global types:

Gg =


Ada→ Bob : String.
iS→ Ada : req(String, Int).
aS→ Ada : req(String, Int).
Ada→{iS,aS} : {check}

Gs = end

where req is the label used to ask the amount of an item, and
two adaptation functions:

Fg(KO,KO) = Gg Fs(KO,KO) = Gs

A new process for implementing Ada can be:

Ada′ = µX .y!(check(F),TAda′).X+

y!help(contract).(y!(check(F),TAda′).X+

y?req(x,w).y?req(x′,w′).y!(check(F),TAda′).X)+

if . . . then !(stop(Fs),end).0 else !(go(Fg),TAda′).X

where
TAda′ = !check∧

!String.(!check∧?(String, Int).?(String, Int).!check)
∧(!stop∨!go)

is the new type of Ada. No modification is required for the
processes representing the sellers and the factories.

Note that the process Ada of the Introduction could work
as well as Ada′ until both factories are out. In this case Ada
would no longer agree with the monitor corresponding to the
projection of the above G4 and rule ADAOUTNEW would
replace Ada′ to Ada.

Example 3 Assume that Ada has to take a maternity leave.
She then decides to transfer the job of monitoring the fac-
tories to one of the two sellers, who will play the role of
deputy chief in the company. Then Ada writes iS (Italian
seller) or aS (America seller) in the global data. The deputy
chief is only in charge to keep the business working, unless
both factories are out, in which case he also closes down the
business. The deputy chief checks the state of the factories
sending as Ada the reconfiguration flag check. When Ada is
back, the standard management policy is restored.

In this example we use the same global types and adap-
tation function of the Introduction, but we add eight global
types and another adaptation function.

The first four global types consider the case in which the
American seller is the deputy chief. The global type Ga

1 is
the communication protocol when both factories are work-
ing:

Ga
1 =


iS→ iF : req(String, Int).
aS→ aF : req(String, Int).
aS→{iS, iF,aF} : check

If the Italian factory is OK, but the American one is KO the
communication protocol becomes:

Ga
2 =


iS→ iF : req(String, Int).
aS→ iF : req(String, Int).
aS→{iS, iF} : check

If the American factory is OK, but the Italian one is KO, the
global type Ga

3 is as expected.
When both factories are KO the deputy chief is forced to
close the business:

Ga
4 = aS→{iS} : bye.end

The other four global types Gi
1-Gi

4 prescribe that the adap-
tation flag is sent by the Italian rather than by the American
seller.

10

The new adaptation function F ′, which has a third argu-
ment corresponding to the deputy chief in charge, is defined
as:

F ′(OK,OK,aS) = Ga
1 F ′(OK,KO,aS) = Ga

2
F ′(KO,OK,aS) = Ga

3 F ′(KO,KO,aS) = Ga
4

F ′(OK,OK, iS) = Gi
1 F ′(OK,KO, iS) = Gi

2
F ′(KO,OK, iS) = Gi

3 F ′(KO,KO, iS) = Gi
4

A process Ada′′ implementing Ada includes a condi-
tional to take into account the maternity leave:

Ada′′ = µX .P+ y!help(contract).P+!y.bye.0

where help is the label for the contract with Bob and

P = if . . . then !(check(F),TAda′′).X
else write dep.!(check(F ′),end).0

with dep= aS or dep= iS and

TAda′′ = !check∧!help(String).!check∧!bye.end

A process implementing sellers uses the adaptation func-
tion F ′ or F according to whether or not Ada is on leave:

Seller′ = µX .y!req(item,amount).(y?(check,TSeller′).X+

if . . . then y!(check(F),TSeller′).X
else y!(check(F ′),TSeller′).X)

+y?bye.0 + y!bye.0

where:
TSeller′ = !req(String, Int).(?check

∧!check)∧?bye.end∧ !bye.end

No modification is needed, instead, for the processes repre-
senting the other participants, i.e. the two factories and Bob.

Notice that TAda′′ differs from TAda (see page 6) only for
the label help (since in the Introduction we used a simplified
syntax). Instead TSeller′ offers more choices that the type of
the process Seller in the Introduction. As a consequence, the
process Ada of the Introduction is an implementation of Ada
also in the present new scenario, which never uses the right
of the maternity leave. Instead the process Seller is no longer
adequate since it does not implement the chief’s behaviour.

6 Safety

In this section, we show subject reduction and progress the-
orems, following essentially the proof pattern of similar re-
sults for multiparty sessions, see e.g. [13]. Indeed, the main
innovation of our calculus is that global types, with the cor-
responding monitors, are reconfigured at each adaptation step.
Furthermore, participants of two different global types can
coexist inside the same session. This happens when some
participants have already performed the adaptation and then
they are following the new global type, while other partici-
pants are still completing the interactions prescribed by the

old global type. These are the crucial technical difficulties in
proving that monitored well-typed processes always behave
in a type safe way. Therefore, we need to introduce typing
rules for systems, which associate types to session channels.

The type of channel s[p] is formed by taking into ac-
count the monitor, which controls the process owning s[p],
and the messages in the queue of the session s. The type of
a monitored process is the association of the monitor to the
session channel owned by the process. For each value mes-
sage (p,Π , `(v)) in the queue of session s we associate the
type Π !`(S) to s[p], where S is the sort of the value v, pre-
serving the order of messages of queue. So lists of types of
this shape form the types of session channels.

A queue can also contain adaptation messages. Note that,
thanks to the condition of λ -freeness in rules ADAOUT-
CONT and ADAOUTNEW (Table 9), at most one adaptation
message can occur in a queue (modulo structural equiva-
lence, see Table 7). If the queue of session s contains the
message (p,Π ,λ (G)), then Π !λ occurs in the type of s[p].
A message type is then a list of types of the shape Π !`(S)
possibly containing a type of the shape Π !λ . After receiv-
ing the message (p,Π ,λ (G)), each participant q∈Π of ses-
sion s will behave according to the monitor G � q . There-
fore the type of s[q] can involve two monitors. One (ex-
plicit) monitor (dubbed active monitor) is the monitor of
the monitored process owing s[p]. The other (implicit) mon-
itor (dubbed virtual monitor) is the projection onto q of the
global type contained in the adaptation message waiting to
be received by s[q] (and to become active). A missing vir-
tual monitor is denoted by “−”. In particular, the virtual
monitor of the sender of the adaptation message is always
missing. So typing rules for queues associate types of the
shape 〈message type,virtual monitor〉 (corresponding to the
sent messages and the virtual monitor) to session channels.

To sum up, a type of a session channel is either an active
monitor, or a pair consisting of a message type and a virtual
monitor, or a triple consisting of a message type, an active
monitor and a virtual monitor.

Definition 9 Message types, queue types, virtual monitors,
and generalised types are defined by:

Message Types m ::= ε || Π !`(S) || Π !λ || m ; m
Virtual Monitors V ::= M || −
Queue Types Q ::= 〈m,V 〉
Generalised Types χ ::= M ||Q || 〈m,M ,V 〉
where “ ;” is associative, ε is the type of the empty sequence
of messages, such that ε ; m = m ; ε = m, and “−” denotes
a missing monitor.

The typing judgements for systems are of the shape

`Σ S �∆

where Σ is a set of session names (the names of the queues

11

(Π !`(S) ; m)�q =

{
!`(S).(m�q) if q ∈Π

m�q otherwise
(Π !λ ; m)�q =

{
!λ .(m�q) if q ∈Π

m�q otherwise
ε �q = ε

p?{`i(Si).Mi}i∈I �q =

{
?{`i(Si).(Mi �q)}i∈I if q= p

Mi0 �q where i0 ∈ I, if q 6= p and Mi �q = M j �q∀i, j ∈ I

Π !{`i(Si).Mi}i∈I �q =

{
!{`i(Si).(Mi �q)}i∈I if q ∈Π

Mi0 �q where i0 ∈ I, if q 6∈Π and Mi �q = M j �q∀i, j ∈ I

p?{λi}i∈I �q =

{
?{λi}i∈I if q= p

ε otherwise
Π !{λi}i∈I �q =

{
!{λi}i∈I if q ∈Π

ε otherwise

end�q = ε −�q = ε

〈m,V 〉�q =m�q .V �q 〈m,M ,V 〉�q =m�q .M �q .V �q

Table 10 Projection of generalised types onto participants

Θ ./Θ j & j ∈ I imply !` j(S j).Θ ./?{`i(Si).Θi}i∈I

∀i ∈ I Θi ./Θ ′i imply !{`i(Si).Θi}i∈I ./?{`i(Si).Θ
′
i }i∈I

j ∈ I implies !λ j ./?{λi}i∈I !{λi}i∈I ./?{λi}i∈I ε ./ ε

Θ1 ./Θ2 and Θ3 ./Θ4 imply Θ1.Θ3 ./Θ2.Θ4

Table 11 Duality between projections of generalised types
onto participants

which occur free in the network) and ∆ is a session typing.
Session typings associate session channels to generalised types:

∆ ::= /0 || ∆ ,s[p] : χ

We apply to the session typings the same conventions used
for environments. In particular a session typing ∆1,∆2 is de-
fined only if the domains of ∆1 and ∆2 are disjoint.

To ensure type safety it is essential that the communi-
cations are performed in a consistent way, i.e. that data are
exchanged in the right order and with the right type. Consis-
tency of session typings is defined using projection of gener-
alised types and duality, given in Tables 10 and 11, respec-
tively. The projection of a generalised type onto a participant
q represents the communications offered to q.

The projection of generalised types uses the projection
of message types and virtual monitors. We denote these pro-
jections by χ �q , m �q and V �q , respectively. The condi-
tions on the equalities of projections correspond to the sim-
ilar conditions in Table 2. The projection of a generalised
type of the shape 〈m,M ,V 〉 is the concatenation of the pro-
jections of m, M and V . This is meaningful since m repre-
sents the message already sent, M guides the behaviour of
the participant before its adaptation and V will guide its be-
haviour after the adaptation.
Projection of generalised types (ranged over by Θ) are de-
fined by the following syntax

Θ ::=!`(S) || !λ || Θ .Θ || ?{Θi}i∈I || !{Θi}i∈I || ε

We assume ε.Θ =Θ .ε =Θ , since ε represents no commu-
nication.

We write Θ ./Θ ′ when Θ and Θ ′ are dual according to
the definition of Table 11. Note that duality is defined only
on Θ which are projections of generalised types.

We can now define consistency as duality of projections.

Definition 10 A session typing ∆ is consistent for the ses-
sion s, notation con(∆ ,s), if s[p] : χ ∈ ∆ and s[q] : χ ′ ∈ ∆

with p 6= q imply χ �q ./ χ ′ �p . A session typing is consis-
tent if it is consistent for all sessions which occur in it.

It is easy to check that projections of the same global
type are always dual.

Proposition 1 Let G be a global type and p 6= q.
Then (G�p)�q ./ (G�q)�p .

This proposition ensures that session typings obtained by
projecting global types are consistent.

Table 12 gives the typing rules for systems. A session
initiator is typed with the empty set of session names and
with the empty session typing (rule NEW). To type a mon-
itored process, we distinguish two cases. If the monitor is
end, then the session typing is empty for any process P (rule
endP). Otherwise, the channel owned by the process is as-
sociated to the monitor, provided that the type of the process
(Table 4) is adequate for the monitor, according to Defini-
tion 8 (rule MP).

The next three rules type named queues. In these rules
the turn-style is decorated by the name of the queue. An
empty queue ø is typed with the empty session typing (QINT).
Two queue types can be composed only if at most one of
them contains a monitor, while the sequence of message
types is a message type. Then we define the operator] by:

〈m,V 〉]〈m′,−〉= 〈m,−〉]〈m′,V 〉= 〈m ; m′,V 〉

12

NEW
` /0 new(G)� /0

endP
` /0 end[P]� /0

` P� s[p] : T M 6= end T ∝ M
MP

` /0 M [P]�{s[p] : M }

QINIT
`{s} s : ø� /0

`{s} s : h�∆ ` v : S
QSENDV

`{s} s : h · (p,Π , `(v))�∆]{s[p] : 〈Π !`(S),−〉}

`{s} s : h�∆
QSENDG

`{s} s : h · (p,Π ,λ (G))�∆]({s[p] : 〈Π !λ ,−〉}∪{s[q] : 〈ε,G�q〉 | q ∈Π})

`Σ1 N1 �∆1 `Σ2 N2 �∆2 Σ1∩Σ2 = /0
NPAR

`Σ1∪Σ2 N1 | N2 �∆1 ∗∆2

`Σ N �∆ ∆ ≈ ∆
′

EQUIV
`Σ N �∆

′

`Σ N �∆ con(∆ ,s)
RES

`Σ\{s} (ν s)N �∆ \ s
`Σ N �∆

SYSTEM
`Σ N || σ �∆

Table 12 Typing rules for networks and systems

Rules QSENDV and QSENDG use the extension of] to ses-
sion typings:

∆]∆ ′ = {s[p] : χ]χ ′ | s[p] : χ ∈ ∆ & s[p] : χ ′ ∈ ∆ ′}∪
{s[p] : χ | s[p] : χ ∈ ∆ ∪∆ ′ &

s[p] 6∈ dom(∆)∩dom(∆ ′)}
Notice that in rules QSENDV and QSENDG the session typ-
ings only contain queue types. The queue type 〈Π !`(S),−〉
is pushed in the queue type of s[p] for a value message
(p,Π , `(v)), where S is the sort of v (rule QSENDV). The
queue type 〈Π !λ ,−〉 is pushed in the queue type of s[p] for
an adaptation message (p,Π ,λ (G)), while the queue type of
s[q] has the projection of G on q as virtual monitor, for all
q ∈Π (rule QSENDG).

For typing the parallel composition of networks, rule
NPAR prescribes that each named queue does not occur twice
(condition Σ1∩Σ2 = /0) and composes session typings form-
ing a generalised type out of a queue type and a monitor. We
define the composition ∗ between queue types and monitors
as:

〈m,V 〉 ∗M = M ∗ 〈m,V 〉= 〈m,M ,V 〉

We extend ∗ to generalised types and to session typings as
expected:

∆ ∗∆ ′ = {s[p] : χ ∗χ ′ | s[p] : χ ∈ ∆ & s[p] : χ ′ ∈ ∆ ′}∪
{s[p] : χ | s[p] : χ ∈ ∆ ∪∆ ′ &

s[p] 6∈ dom(∆)∩dom(∆ ′)}

For example, if `Σ N �∆ , then `Σ end[P] | N � /0 ∗∆

(by rules endP and NPAR) and /0∗∆ = ∆ ; this fits with the
structural equivalence end[P] | N ≡ N.

Notice that both] and ∗ are partial operators on session
typings, since they can be undefined when applied to arbi-
trary generalised types.

In order to take into account the structural congruence
between queues (see Table 7), we consider message types
modulo the equivalence relation≈ induced by the following
rules (where Z stands for either `(S) or λ):

m;Π !Z;Π ′!Z′;m′ ≈m;Π ′!Z′;Π !Z;m′

if Π ∩Π ′ = /0

m;Π !Z;m′ ≈m;Π1!Z;Π2!Z;m′

if Π = Π1∪Π2,Π1∩Π2 = /0

This equivalence relation on message types extends to gen-
eralised types by:

m≈m′ implies
〈m,V 〉 ≈ 〈m′,V 〉 and 〈m,M ,V 〉 ≈ 〈m′,M ,V 〉

We say that two session typings ∆ and ∆ ′ are equivalent (no-
tation ∆ ≈ ∆ ′) if
s[p] : χ ∈∆ implies s[p] : χ ′ ∈∆ ′ with χ ≈ χ ′ and vice versa.
Rule EQUIV allows to use this equivalence relation.

Rule RES requires the session typing to be consistent for
the session s in order to type the restriction on s.

A system can be typed if the network can be typed, while
the global state is arbitrary, see rule SYSTEM.

A crucial observation is that virtual monitors occur in
generalised types only if queues contain adaptation flags.
In other words using the condition of being λ -free (that is
a premise of rules ADAOUTCONT and ADAOUTNEW) we
get:

If `s s : h�∆ and h is λ -free, then no virtual monitor
occurs in ∆ .

13

It is standard to prove an inversion lemma for networks
and systems by induction on derivations (Table 12).

Lemma 2 (Inversion Lemma)

1. If `Σ new(G)�∆ , then Σ = ∆ = /0.
2. If `Σ end[P]�∆ , then Σ = ∆ = /0.
3. If `Σ M [P]�∆ and M 6= end, then Σ = /0 and

∆ = {s[p] : M } and ` P� s[p] : T and T ∝ M .
4. If `Σ s : ø�∆ , then Σ = {s} and ∆ = /0.
5. If `Σ s : h · (p,Π , `(v))�∆ , then Σ = {s} and

∆ ≈ ∆ ′]{s[p] : 〈Π !`(S),−〉} and `{s} s : h�∆ ′ and
` v : S.

6. If `Σ s : h · (p,Π ,λ (G))�∆ , then Σ = {s} and
∆ ≈ ∆ ′]({s[p] : 〈Π !λ ,−〉}∪{s[q] : 〈ε,G �q〉 | q ∈ Π})
and `{s} s : h�∆ ′.

7. If `Σ N1 | N2�∆ , then Σ = Σ1∪Σ2 and ∆ = ∆1 ∗∆2 and
`Σ1 N1 �∆1 and
`Σ2 N2 �∆2 and Σ1∩Σ2 = /0.

8. If `Σ (ν s)N �∆ , then Σ = Σ ′ \ {s} and ∆ = ∆ ′ \ s and
`Σ ′ N �∆ ′ and con(∆ ,s).

9. If `Σ N || σ �∆ , then `Σ N �∆ .

We also need a lemma stating how the typing depends
on the first message on the queue. The proof follows imme-
diately from the typing rules of queues.

Lemma 3 1. If `Σ s : (p,Π , `(v)) ·h�∆ , then Σ = {s} and
∆ ≈ {s[p] : 〈Π !`(S),−〉}]∆ ′ and `{s} s : h�∆ ′ and
` v : S.

2. If `Σ s : (p,Π ,λ (G)) ·h�∆ , then Σ = {s} and
∆ ≈ ({s[p] : 〈Π !λ ,−〉}∪{s[q] : 〈ε,G �q〉 | q ∈ Π})]∆ ′
and `{s} s : h�∆ ′.

Monitor LTS transactions reveal the monitor shapes, as
detailed in the next lemma, which can be proved by straight-
forward case analysis.

Lemma 4 1. If M
p?`−−→M ′, then M = p?{`i(Si).Mi}i∈I

and `= ` j and M ′ = M j for some j ∈ I.

2. If M
Π !`−−→M ′, then M = Π !{`i(Si).Mi}i∈I and `= ` j

and M ′ = M j for some j ∈ I.

3. If M
p?λ−−→, then M = p?{λi}i∈I and λ = λ j for some

j ∈ I.

4. If M
Π !λ−−→, then M = Π !{λi}i∈I and λ = λ j for some

j ∈ I.

The following lemma relates communications offered by
processes (as LTS transactions) with their types.

Lemma 5 1. If P
s[p]?`(v)−−−−→ P′ and ` P� s[p] : T, then

either P = s[p]?`(x).P0 and T=?`(S).T′

or P = s[p]?`(x).P0 +P′′ and T =?`(S).T′ ∧T′′, and in
both cases
` s[p]?`(x).P0 � s[p] :?`(S).T′ and P′ = P0{v/x}.

2. If P
s[p]!`(v)−−−−→P′ and `P�s[p] :T, then either T=!`(S).T′

or T=!`(S).T′∧T′′, and ` P′� s[p] : T′ and ` v : S.

3. If P
s[p]?(λ ,T′)−−−−−−→ P′ and ` P� s[p] : T, then either T =?λ

or T=?λ ∧T′′, and ` P′� s[p] : T′.

4. If P
s[p]!(λ (F),T′)−−−−−−−−→ P′ and ` P�s[p] : T, then either T=!λ

or T=!λ ∧T′′, and ` P′� s[p] : T′.

Proof The proof is by structural induction on P. We show
only Point (1), the proof for the other points being simpler.

If P
s[p]?`(v)−−−−→ P′, then either P = s[p]?`(x).P0 or P = P1 +P2

and Pi
s[p]?`(v)−−−−→ P′ for i = 1 or i = 2. In the first case P is

typed by rule RCV and T=?`(S).T′. In the second case P is
typed by rule CHOICE. Then ` Pi�s[p] : Ti and T=T1∧T2
for i = 1,2. By induction, either Pi = s[p]?`(x).P0 and Ti =

?`(S).T′ or Pi = s[p]?`(x).P0 +P′i and Ti =?`(S).T′∧T′′ for
i = 1 or i = 2. In both cases ` s[p]?`(x).P0 � s[p] :?`(S).T′

and P′ = P0{v/x}. ut

As usual, session types are not preserved under system
reduction: they evolve according to the actions performed
by the corresponding participants. This is formalised by the
reduction rules given in Table 13, where message types are
considered modulo the equivalence relation defined above.
The rules in the first line allow us to create monitors and
queue types. The rules in the second line get rid of types
carrying no information. The subsequent four rules deal with
outputs and inputs of labels with sorts and flags. In partic-
ular, the rule in the second to last line shows how a vir-
tual monitor becomes the current monitor when a participant
adapts itself.

Notice that not all the left-hand sides of the reduction
rules for networks and systems are typed by consistent ses-
sion typings. For example,

`{s} M [s[1]?`(x).s[1]?`′(y).0] | s : (2,1, `(true))�∆

where M = 2?`(Bool).2?`′(Int).end,
∆ = {s[1] : M ,s[2] : 〈1!`(Bool),−〉}. Observe that

M [s[1]?`(x).s[1]?`′(y).0] | s : (2,1, `(true))

matches the left-hand side of the reduction rule IN and ∆

is not consistent. The network obtained by putting this net-
work in parallel with 1!`′(Int).end[s[2]!`′(7).0] has a con-
sistent session typing. It is then crucial to show that if the
left-hand side of a reduction rule is typed by a session typ-
ing, which is consistent when composed with some session
typing, then the same property holds for the right-hand side
too. It is sufficient to consider the reduction rules which do
not contain network and system reductions as premises, i.e.
which are the leafs in the reduction trees. This is formalised
in the following lemma, which is the key step for proving
the Subject Reduction Theorem.

Lemma 6 (Key Lemma)

14

/0 =⇒ {s[p] : M } /0 =⇒ {s[p] : 〈ε,V 〉}
{s[p] : 〈m,end,−〉} =⇒ {s[p] : 〈m,−〉} {s[p] : 〈ε,−〉} =⇒ /0

{s[p] : 〈m,Π !{`i(Si).Mi}i∈I ,V 〉} =⇒ {s[p] : 〈m ; Π !` j(S j),M j,V 〉} j ∈ I

{s[p] : 〈q!` j(S j) ; m,V 〉,s[q] : 〈m′,p?{`i(Si).Mi}i∈I ,V ′〉} =⇒ {s[p] : 〈m,V 〉,s[q] : 〈m′,M j,V ′〉} j ∈ I

{s[p] : 〈m,Π !{λi}i∈I ,−〉} =⇒ {s[p] : 〈m ; Π !λ j,M ,−〉} j ∈ I

{s[p] : 〈q!λ j ; m,−〉,s[q] : 〈m′,p?{λi}i∈I ,V 〉} =⇒ {s[p] : 〈m,−〉, s[q] : 〈m′,V ,−〉} j ∈ I

∆1]∆ =⇒ ∆2]∆ if ∆1 =⇒ ∆2 ∆1 ∗∆ =⇒ ∆2 ∗∆ if ∆1 =⇒ ∆2

Table 13 Reduction of session typings

1. Let `Σ N �∆ , and N −→ N′ be obtained by any reduc-
tion rule different from EQUIV, and ∆ ∗∆0 be consistent
for some ∆0. Then there is ∆ ′ such that `Σ N′�∆ ′ and
∆ =⇒∗ ∆ ′ and ∆ ′ ∗∆0 is consistent.

2. Let `Σ S �∆ , and S −→S ′ be obtained by any reduc-
tion rule different from SN, CTX, and ∆ ∗∆0 be consis-
tent for some ∆0. Then there is ∆ ′ such that `Σ S ′�∆ ′

and ∆ =⇒∗ ∆ ′ and ∆ ′ ∗∆0 is consistent.

Proof (1). The proof is by cases on network reduction rules.
The cases of rule INIT and TAU are trivial, since ∆ = ∆ ′.

Rule IN. By Lemma 2(7),

`Σ M [P] | s : (q,p, `(v)) ·h�∆

implies Σ = Σ1∪Σ2

∆ = ∆1 ∗∆2 (1)

`Σ1 M [P]�∆1 (2)

`Σ2 s : (q,p, `(v)) ·h�∆2 (3)

By Lemma 4(1) M
p?`−−→M ′ implies M = q?{`i(Si).Mi}i∈I

and ` = ` j and M ′ = M j for some j ∈ I. By Lemma 2(3),
the judgment (2) gives Σ1 = /0 and

∆1 = {s[p] : M } (4)

and `P�s[p] :T and T∝ M . By Lemma 3(1), the judgment
(3) gives Σ2 = {s} and

∆2 ≈ {s[q] : 〈p!`(S),−〉}]∆3 (5)

and

`{s} s : h�∆3 (6)

and ` v : S.
By Lemma 5(1) P

s[p]?`(v)−−−−→ P′ and ` P� s[p] : T imply either
P = s[p]?`(x).P0 and T =?`(S′).T′ or P = s[p]?`(x).P0 +P1
and T=?`(S′).T′∧T′′. In both cases
` s[p]?`(x).P0 � s[p] :?`(S′).T′ and P′ = P0{v/x}.
The shapes of T,M and T∝ M imply S′= S j and T′ ∝ M ′.
The consistency of ∆ ∗∆0 implies S = S′. The we can derive
` P′� s[p] : T′ and

` /0 M ′[P′]�{s[p] : M ′} (7)

Applying NPAR to (6) and (7) we derive

`{s} M ′[P′] | s : h�{s[p] : M ′}∗∆3

Then ∆ ′ = {s[p] : M ′}∗∆3. From (1), (4), and (5) we get

∆ ≈ {s[p] : 〈m,q?{`i(Si).Mi}i∈I ,V 〉,s[q] : 〈p!`(S);m′,V ′〉}
∪∆ ′3 where `= ` j and S = S j and j ∈ I

for some m,V ,m′,V ′,∆ ′3 such that

∆3 = {s[p] : 〈m,V 〉,s[q] : 〈m′,V ′〉}∪∆ ′3.

Since
{s[q] : 〈p!`(S) ; m′,V ′〉,s[p] : 〈m,q?{`i(Si).Mi}i∈I ,V 〉}=⇒
{s[q] : 〈m′,V ′〉,s[p] : 〈m,M ′,V 〉}

then we get ∆ =⇒∗ ∆ ′. The only differences between ∆

and ∆ ′ are:

– the erasure of the message p!`(S) in the type of s[q];
– the replacement of the monitor M ′ to the monitor

q?{`i(Si).Mi}i∈I in the type of s[p].

It is then easy to check that the consistency of ∆ ∗∆0 implies
the consistency of ∆ ′ ∗∆0.

Rule ADAINNEW. By Lemma 2(7),

`Σ M [P] | s : (q,p,λ (G)) ·h�∆

implies Σ = Σ1∪Σ2

∆ = ∆1 ∗∆2 (8)

`Σ1 M [P]�∆1 (9)

`Σ2 s : (q,p,λ (G)) ·h�∆2 (10)

By Lemma 4(3) M
q?λ−−→ implies

M = q?{λi}i∈I (11)

and λ = λ j for some j ∈ I. By Lemma 2(3), the judgment
(9) gives Σ1 = /0 and

∆1 = {s[p] : M } (12)

and `P�s[p] :T and T∝ M . By Lemma 3(2), the judgment
(10) gives Σ2 = {s} and

∆2 ≈ {s[q] : 〈p!λ ,−〉,s[p] : 〈ε,M ′〉}]∆3 (13)

15

(taking into account that G�q = M ′) and

`{s} s : h�∆3 (14)

We can obtain

` /0 M ′[Q{s[p]/y}]�{s[p] : M ′} (15)

by using rule MP, since (Q,T′) ∈P , T′ ∝ M ′ and M ′ 6=
end (which is implied by the premise T 6∝ M ′ of the rule
ADAINNEW). Hence, we apply rule NPAR to the judgments
(14) and (15) and we derive:

`{s} M ′[Q{s[p]/y}] | s : h�{s[p] : M ′}∗∆3

Then ∆ ′ = {s[p] : M ′} ∗∆3. Notice that (8), (12), (11) and
(13) imply

∆ ≈ {s[p] : 〈m,q?{λi}i∈I ,M ′〉}∪ ({s[q] : 〈p!λ ;m′,−〉}]∆ ′3)

for some m,m′,∆ ′3 such that

∆3 ≈ {s[p] : 〈m,−〉,s[q] : 〈m′,−〉}∪∆ ′3.

Note that s[p] has M ′ as virtual monitor in ∆2 and then no
virtual monitor in ∆3. Instead s[q] has no virtual monitor
being the sender of the adaptation. Since

{s[q] : 〈p!λ ; m′,−〉,s[p] : 〈m,q?{λi}i∈I ,M ′〉}=⇒
{s[q] : 〈m′,−〉,s[p] : 〈m,M ′,−〉}

we get ∆ =⇒∗ ∆ ′. The only differences between ∆ and ∆ ′

are:

– the erasure of the message p!λ in the type of s[q];
– the erasure of the monitor q?{λi}i∈I in the type of s[p];
– the monitor M ′ is virtual in the type of s[p] in ∆ and it

is active in the type of s[p] in ∆ ′ .

It is then easy to check that the consistency of ∆ ∗∆0 implies
the consistency of ∆ ′ ∗∆0.

The proof for rules OUT and ADAINCONT are similar
and simpler than those for rules IN and ADAINNEW, re-
spectively.

(2). The proof is by cases on system reduction rules. The
case of rule OP is trivial, since ∆ = ∆ ′.
Rule ADAOUTCONT. Being h λ -free, ∆ does not contain
virtual monitors. By Lemma 2(9) and (7),
`Σ M [P] | s : h || σ �∆ implies Σ = Σ1∪Σ2,

∆ = ∆1 ∗∆2 (16)

`Σ1 M [P]�∆1 (17)

`Σ2 s : h�∆2 (18)

By Lemma 4(4), M
Π !λ−−→ implies

M = Π !{λi}i∈I (19)

and λ = λ j for some j ∈ I. By Lemma 2(3), the judgment
(17) gives Σ1 = /0 and

∆1 = {s[p] : M } (20)

` P� s[p] : T (21)

and T ∝ M .
By Lemma 5(4), the judgment (21) and P

s[p]!(λ (F),T′)−−−−−−−−→P′

imply ` P′� s[p] : T′. We consider only the case Mp 6= end,
the proof for the case Mp = end being similar but for the
use of rule {s[p] : 〈m,end,−〉} =⇒ {s[p] : 〈m,−〉}. Since
T′ ∝ Mp, then we derive

` /0 Mp[P′]�{s[p] : Mp} (22)

by rule MP. Similarly, for all q ∈ Π ′ \ (Π ∪ {p}) we can
derive

` /0 Mq[Pq{s[q]/yq}]�{s[q] : Mq} (23)

by rule MP, since (Pq,Tq) ∈P and Tq ∝ Mq.
By Lemma 2(4), (5) and (6), the judgment (18) gives

Σ2 = {s}. Rule QSENDG applied to the judgment (18) de-
rives

`{s} s : h · (p,Π ,λ (G))�∆2]∆3 (24)

where ∆3 = {s[p] : 〈Π !λ ,−〉}∪ {s[q] : 〈ε,G � q〉 | q ∈ Π}.
Notice that ∆2]∆3 is defined, since ∆2 does not contain vir-
tual monitors. Applying rule NPAR to judgments (22), (23)
and (24) we conclude

`{s} Mp[P′] | N | s : h · (p,Π ,λ (G))�∆ ′

where
N = ∏q∈Π ′\(Π∪{p})Mq[Pq{s[q]/yq}] and
∆ ′= {s[p] : Mp}∗{s[q] : Mq | q∈Π ′\(Π∪{p})}∗(∆2]∆3).
Notice that (16), (20) and (19) imply

∆ = {s[p] : 〈m,Π !{λi}i∈I ,−〉}∗∆ ′2

for some m such that ∆2 ≈ {s[p] : 〈m,−〉}]∆ ′2. Since
{s[p] : 〈m,Π !{λi}i∈I ,−〉} =⇒ {s[p] : 〈m ; Π !λ ,Mp,−〉}

for λ = λ j with j ∈ I
/0 =⇒ {s[q] : 〈ε,G�q〉} for q ∈Π

/0 =⇒ {s[q] : Mq} for q ∈Π ′ \Π ∪{p}
we get ∆ =⇒∗ ∆ ′. The session typing ∆ ′ contains only
monitors which are projections of the global type G. There-
fore the consistency of ∆ ∗∆0 implies the the consistency of
∆ ′ ∗∆0.

The proof for rule ADAOUTNEW proceeds as in the pre-
vious case. ut

The next lemma shows that typings for systems are in-
variant under structural equivalence of networks, as expected.

Lemma 7 If `Σ N || σ �∆ and N ≡N′, then `Σ N′ || σ �∆ .

Proof By Lemma 2(9) and rule SYSTEM it is enough to
show that `Σ N�∆ and N ≡N′ imply `Σ N′�∆ . The proof
is by induction on the definition of structural equivalence,
observing that ` /0 end[P]� /0 and using typing rule EQUIV.
ut

Theorem 1 (Subject Reduction) If `Σ S �∆ with ∆ consis-
tent and S −→∗ S ′, then `Σ S ′�∆ ′ for some consistent
∆ ′ such that ∆ =⇒∗ ∆ ′.

16

Proof It is enough to show the statement for the case S ≡
E [N] || σ and S ′ ≡ E [N′] || σ ′, where either N −→ N′

or N || σ −→ N′ || σ ′ by one of the rules considered in
Lemma 6. By the structural equivalence on networks we
can assume E = (

−→
νs)([] | N0) without loss of generality.

Lemma 7 and Lemma 2(9), (8) and (7) applied to
`Σ S �∆ give `Σ1 N �∆1 and `Σ0 N0 �∆0, where Σ =

(Σ0 ∪Σ1) \−→s and ∆ = (∆0 ∗∆1) \−→s . The consistency of
∆ implies the consistency of ∆0 ∗∆1 by Lemma 2(8). In the
case N −→ N′, by Lemma 6(1) there is ∆ ′1 such that
`Σ1 N′�∆ ′1 and ∆1 =⇒∗ ∆ ′1 and ∆0∗∆ ′1 is consistent. In the
case N || σ −→N′ || σ ′, by Lemma 6(2) there is ∆ ′1 such that
`Σ1 N′ || σ ′�∆ ′1 (that is `Σ1 N′�∆ ′1 by Lemma 2(9)) and
∆1 =⇒∗ ∆ ′1 and ∆0 ∗∆ ′1 is consistent. Therefore, we derive
`Σ S ′�∆ ′, where ∆ ′ = (∆0 ∗∆ ′1) \

−→s by applying typing
rules NPAR, RES, and SYSTEM. Observe that ∆ =⇒∗ ∆ ′

and ∆ ′ is consistent. ut
We say that a system is initial when its network is a

parallel composition of session initiators, which is always
typeable. The type system can guarantee progress, proviso
that the collection of processes and types contains at least
one process for each monitor which is created at run time
in the adaptations. This can also be statically checked when
the domains of the adaptation functions which occur in pro-
cesses are finite. We say that a collection P is complete if,
for every global type G in the domain of an adaptation func-
tion which occurs in a process belonging to P , there are
processes in P whose types are adequate for the monitors
obtained by projecting G onto its participants.

Theorem 2 (Progress) If P is complete, S is an initial
system and S −→∗P S ′, then S ′ has progress, i.e.
1. every input monitored process will eventually receive a

message, and
2. every message in a queue will eventually be received by

an input monitored process.

Proof Coppo et al. [13] show that an initial system without
adaptation flags has progress (by rewriting the result of [13]
in our setting).

With respect to the framework of [13], each adaptation
step, in our model, can be seen as the starting of a new inter-
action protocol where all participants can be implemented
thanks to the completeness of P . Therefore, the following
key features ensure the progress property in our case:
1. all the interaction protocols prescribed by a global type

are terminating, either by exchanging adaptation flags or
reaching end;

2. a participant is a process, monitored by a projection of
a global type, with at most one channel, so there is no
communications among participants monitored by dif-
ferent global types, even when they are in the same ses-
sion;

3. by Subject Reduction, systems are well typed and reduc-
tion preserves the consistency of session typings, thus all
communications take place in the order prescribed by the
global types.

Notice that Point (2) holds thanks to the condition of λ -
freeness in rules ADAOUTCONT and ADAOUTNEW.
Concluding, the computation can be seen as a succession of
independent terminating communication protocols, each of
which has the progress property. So the whole computation
has it. ut

7 Related Work

The literature includes several works aimed at studying adap-
tive systems in different application contexts and by dif-
ferent perspectives on the conceptual notion of adaptation.
The paper [7] provides a valuable discussion on this issue
and an interesting classification of various approaches. The
state-of-the-art in service choreography adaptation is anal-
ysed in [31]. We focus here on the papers which are more
related to the distinguishing features of our approach.

Adaptable processes In [5] Bravetti et al. present a cal-
culus in which adaptable processes can be modified by “up-
date patterns”. Run-time adaptation of structured commu-
nications is approached in [20] by combining the construc-
tors for adaptable processes of [5] with the session type sys-
tem of [22] for the Boxed Ambient calculus [8]. Session
behaviours are never disrupted by adaptation actions, since
processes engaged in active sessions cannot be updated. This
calculus deals with adaptations of single processes, not with
adaptations of the choreography of communicating processes,
and only considers dyadic sessions and synchronous com-
munications.

Adaptable choreographies The paper most similar to
ours is [1], where global and session types are used to guar-
antee deadlock-freedom in a calculus of multiparty sessions
with asynchronous communications. Only part of the run-
ning code is updated. Two different conditions are given for
ensuring liveness. The first condition requires that all chan-
nel queues are empty before updating. The second condition
requires a partial order between the session participants with
a unique minimal element. The participants are then updated
following this order. Our adaptation framework allows the
progress property to be guaranteed without assuming such
conditions.

The paper [14], building on [30,16,17] and [15], pro-
poses a rule-based approach in which all interactions, un-
der all possible changes produced by the adaptation rules,
proceed as prescribed by an abstract model. In particular,
the system is deadlock-free by construction. The adaptive
system is composed by interacting participants deployed on
different locations, each executing its own code. Adaptation

17

is performed by distributed adaptation servers, which are
repositories of adaptation rules. Rules can be added or re-
moved at any moment, while the system is running. Appli-
cability depends on execution environment and properties of
the code region to be replaced. If a rule is applied, it replaces
part of the code of (some of) the participants with a newer
version, able to better meet the requirements. Adaptations
of different participants are coordinated ensuring coherent
behaviour. Data and control flow statements are done in a
Java-style syntax. Central to the technical development are
the notions of adaptive interaction oriented choreography
and adaptive process oriented choreography, which resem-
ble our global types and monitors. Although there are many
analogies between this and our paper, there are important
differences. In [14] auxiliary communications are needed
to ensure that all participants take the same branch in con-
ditionals, and new participants cannot be added by an adap-
tation. Moreover in [14] adaptation involves only a part of
the choreography and can be applied in any moment, while
in our calculus the interaction protocols contain the adapta-
tion points and the reconfiguration step applies to the whole
system.

The language of service choreographies defined in [6] is
extended with two operators in [4] to take into account adap-
tation. One operator allows for the specification of adapt-
able scopes that can be dynamically modified, while the sec-
ond may dynamically update code in one of such scopes. A
similar extension is given for the service contract language
of [6], so that projection can relate the two adaptable lan-
guages. The main difference with our proposal is that the
set of possible participants to the modified choreographies
is fixed once for all, in the adaptable scopes.

Monitors In the literature there are many calculi in which
the process behaviour is statically and/or dynamically con-
trolled by means of monitors, for example [21,26]. The works
that most influenced the present paper are [11,3]. The calcu-
lus in those papers is a multiparty session calculus with as-
sertions, and therefore it is much more expressive than our
calculus. In fact the monitors in [11,3] prescribe not only
the types of the exchanged data, but also that the values of
these data satisfy some predicates. Another main difference
is that those monitors contain information on the behaviours
of all session participants, while our monitors represent the
behaviour of single participants.

Intersection and union types In the present paper we
type processes with intersections and unions taking inspira-
tion from [33]. The type syntax in that paper is more lib-
eral than ours, for example not requiring labels in an in-
tersection and in a union be different, so more processes
can be typed. Also in [33], the most interesting processes
correspond to external choices between inputs and internal
choices between outputs.

Subtyping for intersections and unions is naturally in-
spired by their set-theoretical interpretation. Considering the
mapping between monitors and types of Definition 8, in this
paper we give a subtyping which is the opposite of that con-
sidered in [33]. Both subtypings have been largely used [23,
24,37,34,35,18,9,29,32]. The main reason of this differ-
ence is that in typing processes one can either assume or
derive the types of channels. In the simple case of a pro-
cess P with only one channel y the typing judgments have
the shapes y : T ` P and ` P�{y : T}, respectively. This is
the reason why subtyping in [23] and in [32] is defined in
opposite ways. Choices between fewer inputs are smaller in
the subtyping of [23] and bigger in the subtyping of [32].
Choices between outputs behave dually.

8 Conclusion

We have presented a formal model of self-adaptation in mul-
tiparty sessions. The framework is based on self-adaptive
monitors and global types. In the service-oriented context,
global types can be exploited as choreographies of service
interactions and monitors as local protocol specifications of
services. From this perspective, the present paper provides a
formal model for assessing the impact of highly evolving en-
vironments, which demand for dynamic self-reconfigurations
of the whole system. Interactions among services may be
added or removed as well as new services may be required.
We use a type discipline to ensure that service collaborations
will behave in a safe way after dynamic adaptations.

Differently from approaches focusing on adaptation as
code modification in software systems, our approach is chore-
ography centred (similar to [14] for this aspect). When dy-
namic conditions demand a change, the global choreogra-
phy updates itself together with the new monitors which
prescribe the new behaviours to the participants. A process
fills (implements) a given monitor if its type is adequate for
that monitor, otherwise a different implementation (process)
need to be found. Notably, we proved that all monitored pro-
cesses behave correctly and interact with each other in a safe
way, once the adaptation has been performed.

As a main feature, we achieve a decentralised control
of the adaptation and a notable flexibility in the dynamics
of self-reconfiguration. According to its monitor, any par-
ticipant can be in charge of checking global data and send-
ing the adaptation request, instead of devoting a centralised
mechanism to this task. Furthermore, the dynamic reconfig-
uration can add new participants, while some of the old par-
ticipants are not longer involved. Finally, processes, that are
simply implementation code, can follow different incompat-
ible computational paths, thus each participant can be differ-
ently implemented in the various adaptation steps.

One apparent limitation of our calculus is that processes
can only operate on a single channel. This limitation can

18

be addressed by extending the process language and its typ-
ing rules, without major consequences on the rest of the de-
velopment. Instead, adding session delegation would require
further investigation.

We plan to experiment with implementations of our ap-
proach, to evaluate its feasibility.

We are working toward a quantitative version of our model,
where the global state also contains dynamically evolving
semantic information about processes, such as reputation or
performance rates. Using this information, adaptation func-
tions will be able to choose a single process among all the
processes matching a monitor, as one of the best implemen-
tations for that participant. In the present calculus, this issue
results in an arbitrary choice, since processes can be taken
solely on the basis of their compatibility with monitors from
the point of view of safe adaptations. In a realistic applica-
tion, instead, it would be interesting to involve other requests
concerning quantitative aspects.

Acknowledgements The authors gratefully thank the anony-
mous referees for their accurate and enlightening remarks,
that strongly improved both the presentation and the techni-
cal development.

This work was partially supported by EU Collaborative
project ASCENS 257414, ICT COST Action IC1201 BETTY,
MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino
University/Compagnia San Paolo Project SALT.

References

1. Anderson, G., Rathke, J.: Dynamic Software Update for Message
Passing Programs. In: APLAS’12, LNCS, vol. 7705, pp. 207–222.
Springer (2012)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-
Ciancaglini, M., Yoshida, N.: Global Progress in Dynamically In-
terleaved Multiparty Sessions. In: CONCUR’08, LNCS, vol. 5201,
pp. 418–433. Springer (2008)

3. Bocchi, L., Chen, T.C., Demangeon, R., Honda, K., Yoshida,
N.: Monitoring Networks through Multiparty Session Types. In:
FMOODS/FORTE’13, LNCS, vol. 7892, pp. 50–65. Springer
(2013)

4. Bravetti, M., Carbone, M., Hildebrandt, T., Lanese, I., Mauro, J.,
Perez, J.A., Zavattaro, G.: Towards Global and Local Types for
Adaptation. In: SEFM’13, LNCS, vol. 8368, pp. 3–14. Springer
(2014)

5. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable
Processes. Logical Methods in Computer Science 8(4) (2012)

6. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Chore-
ography Conformance and Contract Compliance. In: SC’07,
LNCS, vol. 4829, pp. 34–50. Springer (2007)

7. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A.,
Vandin, A.: A Conceptual Framework for Adaptation. In:
FASE’12, LNCS, vol. 7212, pp. 240–254. Springer (2012)

8. Bugliesi, M., Castagna, G., Crafa, S.: Access Control for Mobile
Agents: The Calculus of Boxed Ambients. ACM Transactions on
Programming Languages and Systems 26(1), 57–124 (2004)

9. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-
Centered Programming for Web Services. ACM Transactions on
Programming Languages and Systems 34(2), 8:1–8:78 (2012)

10. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On Global
Types and Multi-Party Sessions. Logical Methods in Computer
Science 8, 1–45 (2012)

11. Chen, T.C., Bocchi, L., Deniélou, P.M., Honda, K., Yoshida, N.:
Asynchronous Distributed Monitoring for Multiparty Session En-
forcement. In: TGC’11, LNCS, vol. 7173, pp. 25–45. Springer
(2012)

12. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-Adaptive
Monitors for Multiparty Sessions. In: PDP’14, pp. 688–696. IEEE
(2014)

13. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.:
Global Progress for Dynamically Interleaved Multiparty Sessions.
Mathematical Structures in Computer Science (2013). To appear

14. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I.,
Mauro, J.: Deadlock Freedom by Construction for Distributed
Adaptative Applications. CoRR (2014). URL http://arxiv.
org/abs/1407.0970

15. Dalla Preda, M., Giallorenzo, S., Lanese, I., Mauro, J., Gabbrielli,
M.: AIOCJ: A Choreographic Framework for Safe Adaptive Dis-
tributed Applications. In: SLE’14, LNCS, vol. 8706, pp. 161–170.
Springer (2014)

16. Dalla Preda, M., Lanese, I., Mauro, J., Gabbrielli, M.: Adap-
tive Choreographies (2013). URL http://www.cs.unibo.it/
~lanese/publications/adaptchor.pdf.gz

17. Dalla Preda, M., Lanese, I., Mauro, J., Gabbrielli, M., Gi-
allorenzo, S.: Safe Run-time Adaptation of Distributed Sys-
tems (2013). URL http://www.cs.unibo.it/~lanese/
publications/fulltext/safeadapt.pdf.gz

18. Demangeon, R., Honda, K.: Full Abstraction in a Subtyped pi-
Calculus with Linear Types. In: CONCUR’11, LNCS, vol. 6901,
pp. 280–296. Springer (2011)

19. Deniélou, P.M., Yoshida, N.: Dynamic Multirole Session Types.
In: POPL’11, pp. 435–446. ACM Press (2011)

20. Di Giusto, C., Pérez, J.A.: Disciplined Structured Communica-
tions with Consistent Runtime Adaptation. In: SAC’13, pp. 1913–
1918. ACM Press (2013)

21. Ferrari, G.L., Moggi, E., Pugliese, R.: Guardians for Ambient-
based Monitoring. ENTCS 66(3), 52–75 (2002)

22. Garralda, P., Compagnoni, A.B., Dezani-Ciancaglini, M.: BASS:
Boxed Ambients with Safe Sessions. In: PPDP’06, pp. 61–72.
ACM Press (2006)

23. Gay, S., Hole, M.: Subtyping for Session Types in the Pi Calculus.
Acta Informatica 42(2/3), 191–225 (2005)

24. Gay, S.J.: Bounded Polymorphism in Session Types. Mathemati-
cal Structures in Computer Science 18(5), 895–930 (2008)

25. Ghezzi, C., Pradella, M., Salvaneschi, G.: An Evaluation of
the Adaptation Capabilities in Programming Languages. In:
SEAMS’11, pp. 50–59. ACM Press (2011)

26. Gorla, D., Hennessy, M., Sassone, V.: Security Policies as Mem-
branes in Systems for Global Computing. ENTCS 138(1), 23–42
(2005)

27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and
Type Disciplines for Structured Communication-based Program-
ming. In: ESOP’98, LNCS, vol. 1381, pp. 22–138. Springer (1998)

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous
Session Types. In: POPL’08, pp. 273–284. ACM Press (2008)

29. Kouzapas, D., Yoshida, N., Honda, K.: On Asynchronous Session
Semantics. In: FMOODS/FORTE’11, LNCS, vol. 6722, pp. 228–
243. Springer (2011)

30. Lanese, I., Bucchiarone, A., Montesi, F.: A Framework for Rule-
Based Dynamic Adaptation. In: TGC’10, LNCS, vol. 6084, pp.
284–300. Springer (2010)

31. Leite, L.A.F., Oliva, G.A., Nogueira, G.M., Gerosa, M.A., Kon, F.,
Milojicic, D.S.: A Systematic Literature Review of Service Chore-
ography Adaptation. Service Oriented Computing and Applica-
tions 7(3), 199–216 (2013)

19

http://arxiv.org/abs/1407.0970
http://arxiv.org/abs/1407.0970
http://www.cs.unibo.it/~lanese/publications/adaptchor.pdf.gz
http://www.cs.unibo.it/~lanese/publications/adaptchor.pdf.gz
http://www.cs.unibo.it/~lanese/publications/fulltext/safeadapt.pdf.gz
http://www.cs.unibo.it/~lanese/publications/fulltext/safeadapt.pdf.gz

32. Mostrous, D., Yoshida, N., Honda, K.: Global Principal Typing
in Partially Commutative Asynchronous Sessions. In: ESOP’09,
LNCS, vol. 5502, pp. 316–332. Springer (2009)

33. Padovani, L.: Session Types = Intersection Types + Union Types.
In: ITRS’10, EPTCS, vol. 45, pp. 71–89 (2010)

34. Padovani, L.: Fair Subtyping for Multi-party Session Types. In:
COORDINATION’11, LNCS, vol. 6721, pp. 127–141. Springer
(2011)

35. Padovani, L.: Fair Subtyping for Open Session Types. In:
ICALP’13, LNCS, vol. 7966, pp. 373–384. Springer (2013)

36. Psaier, H., Juszczyk, L., Skopik, F., Schall, D., Dustdar, S.:
Runtime Behavior Monitoring and Self-Adaptation in Service-
Oriented Systems. In: SASO’10, pp. 164–173. IEEE Computer
Society (2010)

37. Vasconcelos, V.T.: Fundamentals of Session Types. In: SFM’09,
LNCS, vol. 5569, pp. 158–186. Springer (2009)

20

	Introduction
	Syntax
	Process types
	Semantics
	Examples
	Safety
	Related Work
	Conclusion

