
SOCA (2015) 9:311–339
DOI 10.1007/s11761-015-0177-y

SPECIAL ISSUE PAPER

Partially distributed coordination with Reo and constraint
automata

Sung-Shik T. Q. Jongmans · Francesco Santini ·
Farhad Arbab

Received: 27 February 2014 / Revised: 25 March 2015 / Accepted: 31 March 2015 / Published online: 22 April 2015
© Springer-Verlag London 2015

Abstract Coordination languages, such as Reo, have
emerged for the specification and implementation of interac-
tion protocols among concurrent entities, manifested as con-
nectors. In this paper, we describe a theoretical justification
and a practical proof-of-concept tool for automatically gener-
ating partially distributed, partially centralized implementa-
tions of Reo connectors. Such implementations have three
performance advantages: faster compilation at build time
(compared to a purely centralized approach), reduced latency
at run time (compared to a purely distributed approach), and
improved parallelism at run time (compared to a purely cen-
tralized approach). Our theory relies on the definition of a
new product operator on constraint automata (Reo’s formal
semantics), which we use to formally justify distributions
of disjoint parts of a coordination scheme over different
machines according to several possiblemotivations (e.g., per-
formance,QoS constraints, privacy, resource availability, and
network topology). To exemplify our work, in a case study,
we show and explain how a generated connector implemen-
tation can be executed.

Francesco Santini: This work was carried out during the second
author’s tenure of the ERCIM “Alain Bensoussan” Fellowship
Programme. This programme is supported by the Marie Curie
Co-funding of Regional, National, and International Programmes
(COFUND) of the European Commission.

S.-S. T. Q. Jongmans (B) · F. Arbab
Centrum Wiskunde & Informatica (CWI), Science Park 123,
Amsterdam, The Netherlands
e-mail: jongmans@cwi.nl

F. Arbab
e-mail: farhad@cwi.nl

F. Santini
Istituto di Informatica e Telematica (CNR), Via Moruzzi 1, Pisa, Italy
e-mail: francesco.santini@iit.cnr.it

Keywords Reo coordination language · Distributed
computation · Web service composition · Orchestration

1 Introduction

1.1 Context

Coordination languages have emerged for the specification
and implementation of interaction protocols among concur-
rent entities (services, threads, etc.). This class of languages
includes Reo [1,2], a graphical language for compositional
construction of connectors: communication media through
which entities can interact with each other. Figure 1 shows
(classic, except Fig. 1e) example connectors in a usual graph-
ical syntax. Briefly, connectors consist of one or more chan-
nels, through which data items flow, and a number of nodes,
on which channel ends coincide. Through connector compo-
sition (the act of gluing connectors together on their shared
nodes), developers can construct arbitrarily complex connec-
tors. While nodes have fixed dataflow behavior, Reo features
an open-ended set of channels: developers can define their
own channels with custom semantics.

Reo has several software engineering advantages as a
domain-specific language for programming interaction pro-
tocols [31]. For instance, the use of Reo forces developers
to separate their computation code from their protocol code
instead of intermixing computations with protocols (as usu-
ally done when both are implemented in the same language).
This separation facilitates verbatim reuse, independent mod-
ification, and compositional construction of protocol imple-
mentations (i.e., Reo connectors) in a straightforward way.
Moreover, Reo has a formal foundation, which enables for-
mal analysis of connectors (e.g., model checking [41]). This
makes statically verifying that a givenprotocol does not dead-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-015-0177-y&domain=pdf

312 SOCA (2015) 9:311–339

A

B

Z

x

A

B

Z

x

A

B

C

Z

x

y

A

B

C

X

A

B

C

D

φ

x

y

(a) Alternator (b) Alternator2 (c) Alternator3 (d) ExclRouter (e) ExampleConn

Fig. 1 Example connectors: members of the Alternator family and ExampleConn

lock, for instance, relatively easy. Such protocol analyses
are much harder to perform on lower-level general-purpose
languages, especially when computations and protocols are
intermixed.

Reo has been successfully used as a language for express-
ing orchestration protocols for composition of Web ser-
vices [37,38]. The previous software engineering advantages
of Reo aside, one of the main differences between Reo and
Bpel [53], generally considered the most important orches-
tration language in industry [8,55], is that Reo is declar-
ative [38]: in Reo, one specifies what—instead of how—
interaction among services takes place. Given the success of
declarative programming (e.g., logic programming and func-
tional programming) in many areas of computer science, the
availability of a declarative language for orchestrating ser-
vices has value: developers accustomed to declarative pro-
gramming may prefer Reo’s style over Bpel’s imperative
style.

1.2 Problem

To use Reo connectors in real applications, one must derive
implementations from their graphical specification, as pre-
compiled executable code or using a run-time interpretation
engine. Roughly two implementation approaches currently
exist [32]. In the distributed approach, one implements the
behavior of each of the k constituents of a connector (its
nodes and channels) and runs these k implementations con-
currently as a distributed system; in the centralized approach,
one computes the behavior of a connector as a whole, imple-
ments this behavior, and runs this implementation sequen-
tially as a centralized system. The distributed approach has
the advantage of fast compilation at build time and high par-
allelism at run time. However, this comes at the cost of higher
latency at run time (because of communication necessary for
executing distributed algorithms). In contrast, the central-
ized approach has the advantage of low latency at run time
but at the cost of slow compilation and reduced parallelism.
Moreover, the amount of code generated in the centralized
approach may be exponential in k, in which case the output

is prohibitively big and the time to produce it prohibitively
long. Proença et al. [59,60] observe that a partially distrib-
uted hybrid approach, where parts of a connector are com-
piled according to the centralized approach and deployed in
a distributed fashion, is generally ideal: a hybrid approach
strikes a middle ground between latency and parallelism at
run timewhile achieving reasonably fast compilation at build
time.

In this paper, we address the problem that no system-
atic, formally justified scheme exists to automatically con-
struct connector implementations according to the hybrid
approach. We do so in the context of constraint automata
(ca) [4], a formalism, based on finite automata on infinite
words, that is used to define the semantics of Reo. Essen-
tially, the states of a ca model the internal configurations
of a connector, while its transitions model that connector’s
atomic execution steps. We perform all our theoretical work
in this paper at the level of ca rather than at the level of Reo.
As such, our results are generally applicable to any coordina-
tion, choreography, or orchestration langauge whose seman-
tics maps into ca. Our current tools, however, support Reo,
whose compiler is responsible for translating Reo into ca, in
a manner transparent to developers.

Observe that the issues involving centralized versus dis-
tributed control of distributed applications are not specific to
Reo; they are inherent in distributed applications and arise
explicitly or implicitly, in any implementation using any lan-
guage. Striking a balance between the two extremes in a
hybrid approach, therefore, solves a generic problem, which
in our work, we tackle with the syntax of Reo and its ca
semantics.

1.3 Contribution

We use Reo’s notion of (a)synchronous regions and an
extended recent result on connector composition to automati-
cally construct formally soundhybrid connector implementa-
tions, usingca as our semantic formalism.We implement this
construction on top of an existing Reo-to-Java centralized-
code generator [31]. This enables a case study on distrib-

123

SOCA (2015) 9:311–339 313

uted service orchestration by reusing an existing Reo-based
orchestration framework [37]. This case study shows that
the hybrid approach can improve the centralized approach
not only in terms of run-time parallelism but also latency.

Observe that the notions of synchronous and asynchro-
nous regions are not mere artifacts of using Reo as our lan-
guage to express coordination of distributed applications.
These regions naturally arise in distributed applications, and
the choice of Reo simply makes them explicit.

The value of our theoretical results extends beyond being
an essential contribution to code generation technology for
Reo, in two ways. First, because we formulate our results
generally in terms of constraint automata (i.e., Reo’s seman-
tics, essentially independent of Reo), any system expressible
in terms of those automata can benefit from these results.
This enables algorithmically generating hybrid implementa-
tions of systems specified in other languages. Second, our
proof method, in which we compare distributed algorithms
bymodeling them as different product operators on automata
and studying those operators’ properties, is not only effective
and elegant but also—as far as we know—novel. It enables
formal reasoning about distributed algorithms (in particu-
lar, reasoning about their equivalence) at a different level of
abstraction than, for instance, the work by Lynch [43].

We organize this paper as follows. In Sect. 2, we give a
concise overview of Reo and constraint automata. In Sect. 3,
we explain the formal theory behind our hybrid connector
implementations and how to automatically generate them. In
Sect. 4, we discuss the salient aspects of our implementation.
In Sect. 5, we exemplify our code generator with a distrib-
uted service orchestration scenario. In Sect. 6, we compare
the performance of centralized and hybrid connector imple-
mentations. In Sect. 7, we discuss related work. In Sect. 8,
we discuss other possible applications of the work presented
in this paper. Finally, Sect. 9 concludes this paper.

This paper extends the work in [36] with additional formal
definitions and proof outlines, an improved comparison with
related work, new examples, and an improved exposition of
our case study. Full technical details and proofs appear in a
technical report [35].

2 Reo and constraint automata

In this section, we discuss preliminaries on Reo and its con-
straint automaton semantics.

2.1 Reo

Reo is a language for compositional construction of con-
currency protocols, manifested as connectors [1,2]. Connec-
tors consist of channels and nodes, organized in a graph-like
structure. Every channel consists of two ends and a con-

Table 1 Syntax and semantics of common channels

Name Graphical syntax Semantics

sync Atomically takes a data item d
from its source end and
writes d to its sink end

lossysync-nd Atomically takes a data item d
from its source end and
nondeterministically either
writes d to its sink end or
loses d

syncdrain Atomically takes data items
from both its source ends and
loses them

fifo
∗
x Takes a data item d from its

source end, then stores it in a
private memory cell x , then
writes d to its sink end

filter φ Atomically takes a data item d
from its source end and
writes d to its sink end (if
d ∈ φ) or loses d (otherwise)

(a) Source (b) Sink (c) Mixed

Fig. 2 Node types

straint that relates the timing and the contents of the data
flows at those ends. A channel end has one of two types:
source ends accept data (i.e., a source end of a channel con-
nects to that channel’s data source/producer) and sink ends
dispense data (i.e., a sink end of a channel connects to that
channel’s data sink/consumer). Reo makes no other assump-
tions about channels. This means, for instance, that channels
in Reo may have two source ends. Table 1 shows the syntax
and an informal description of five common channels.

Entities communicating through a connector perform i/o
operations—writes and takes—on its nodes. Reo has three
types of nodes: source nodes onwhich only source ends coin-
cide (see Fig. 2a), sink nodes on which only sink ends coin-
cide (see Fig. 2b), and mixed nodes on which both types of
channel end coincide (see Fig. 2c). Informally, nodes behave
as follows.

– A source node n has replicator semantics. Once a com-
municating entity attempts to write a piece of data d on
n, this node first suspends that operation. Subsequently,
n notifies the channels whose source ends coincide on n
that it offers d. Once each of those channels has notified
n that it accepts d, n resolves the write: the write opera-
tion terminates successfully and atomically, n dispenses

123

314 SOCA (2015) 9:311–339

(a copy of) d to each of its coincident source ends. Source
nodes forbid takes.

– A sink node n has merger semantics. Once a communi-
cating entity attempts to take a piece of data from n, this
node first suspends that operation. Subsequently, n noti-
fies the channels whose sink ends coincide on n that it
accepts a piece of data.Once at least one of these channels
has notified n that it offers a piece of data d, n resolves the
take: atomically, n fetches d from the appropriate chan-
nel end and dispenses it to the entity attempting to take.
If multiple sink ends offer a data item, n chooses one of
them nondeterministically. Sink nodes forbid writes.

– Amixed node executes both themerge/replicate behavior
as discussed above. Mixed nodes forbid i/o.

Importantly, nodes cannot generate or lose data, nor can they
store data between execution steps: once a piece of data enters
a node through a coincident channel’s sink ends, (copies of)
that data must immediately exit the node through its coinci-
dent channels’ source ends, in the same step. As such, nodes
synchronize their coincident channel ends. This behavior of
nodesmeans that synchronization and exclusion inReo prop-
agate through sub-circuits and are preserved by composition.

So far, we explicitly distinguished between three language
constructs inReo: channels, nodes, and connectors. In the rest
of this paper, for simplicity (but without loss of generality),
we represent every channel c as its corresponding connector,
which consists of two nodes connected by c. To define the
semantics of c, it suffices to define the semantics of its cor-
responding connector. Furthermore, we assume that at most
one source end and at most one sink end coincide on every
node [4]. We model such “binary nodes” with ports. Ports
occur either on the boundary between a connector and its
environment or inside a connector. If a connector consists
only of boundary ports, we call it a primitive; otherwise, we
call it a composite. To simulate the semantics of nodes with
more than two coincident channel ends, we use two ternary
primitives: Merger and Replicator. These primitives can
compose into a Node composite, which connects n ≥ 0
input ports to m ≥ 0 output ports and behaves as a node
on which n source ends and m sink ends coincide (where
n + m > 0). Figure 3 shows an example.

For every connector with “multiary nodes,” there exists
a behaviorally equivalent connector with only binary nodes.
Although such an equivalent connector has more primitives

(a) Merger (b) Replicator (c) Node

Fig. 3 Merger, Replicator, and Node for n,m = 3, 2

than its original, formally modeling behavior and composi-
tion becomes easierwith only binary nodes.After all, connec-
tors with only binary nodes eliminate the need of modeling
the merge/replicate behavior of nodes as first-class concepts.
Instead, formal models of the added Merger and Replica-
tor primitives represent merge/replicate behavior in the same
way as formal models of channels represent channel behav-
ior. The assumption of only binary nodes thus allows us to
keep later definitions in this paper—Definitions 1, 4, and 5
in particular—clean as compared to definitions in which
merge/replicate behavior have first-class status.

2.2 Constraint automata

Many formalisms exist for mathematically defining the
semantics of connectors [28]. In this paper, we adopt the
same formalism as the existing code generator that we use:
constraint automata (ca) [4]. A ca consists of finite sets of
states and transitions. States represent the internal configura-
tions of a connector; transitions describe the atomic steps of
the protocol specified by a connector. Formally, we represent
a transition as a tuple of four elements: a source state, a syn-
chronization constraint, a data constraint, and a target state.
A synchronization constraint is a set that specifies on which
ports a data item flows (i.e., which ports synchronize); a data
constraint is a logical formula that specifies which particular
data items flow on which of those ports.

Figure 4 shows example ca, where A and B refer to ports.
Informally, the data constraint d(A) = d(B) means that the
data item flowing on port A equals the data item flowing on
port B; the data constraint � means that it does not matter

{A , B} ,
d(A) = d(B)

{A , B} ,
d(A) = d(B)

{A} ,

{A , B} ,

{A} ,
x = d(A)

{B} ,
d(B) = x

{A , B} ,
d(A) ∈ φ ∧ d(A) = d(B)

{A} ,
d(A) /∈ φ

(a) Sync (b) LossySync-ND (c) SyncDrain

(d) FIFO (e) Filter

Fig. 4 Constraint automata for the channels in Table 1 (between ports
A and B)

123

SOCA (2015) 9:311–339 315

⎡
⎣
(Qα , Pα , Mα , −→α , ıα)

R

(Qβ , Pβ , Mβ , −→β , ıβ)

⎤
⎦ iff

⎡
⎢⎢⎢⎢⎣

R ⊆ Qα × Qβ and Pα = Pβ and ıα R ıβ and
⎡
⎢⎢⎣

qα
P,fα−−−→α qα

and qα R qβ

implies fα ⇒ fβ
qβ

P,fβ−−−→β qβ and qα R qβ

for some qβ

for all fα , P , qα , qα , qβ

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

α β iff α R β for some R

Fig. 5 Simulation preorder

which particular data items flow; the data constraint x ′ =
d(A) means that the value of x , a private (to the connector)
memory cell, after completing the transition equals the data
flowing on A during the transition (i.e., x is written to in
the end); the data constraint d(B) = x means that the data
flowing onB equals the value of privatememory cell x before
starting the transition (i.e., x is read from in the beginning).
Finally, if φ represents a finite set of data items, the data
constraint d(A) ∈ φ abbreviates

∨{d(A) = v | v ∈ φ}.
A data constraint f implies a data constraint g, denoted as
f ⇒ g, if g admits at least the same distributions of data
over ports and memory cells as f [4].

LetState,Port,Mem, andDcdenote universes of states,
ports, memory cells, and data constraints, respectively.

Definition 1 The universe of ca, denoted by Ca, is the
largest set of tuples (Q,P,M,−→, ı) where:

– Q ⊆ State; (states)
– P ⊆ Port; (ports)
– M ⊆ Mem; (memory cells)
– −→ ⊆ Q × ℘(P) × Dc × Q; (transitions)
– and ı ∈ Q. (initial state)

Ifα denotes a ca, letState(α),Port(α),Mem(α), and init(α)

denote its states, ports, (the names of its) memory cells, and
initial state, respectively.

We adopt a behavioral equivalence on ca based on bisimu-
lation [47]. Because transitions of ca have richer labels than
those in standard labeled transition systems, simulation on
ca has a more complex definition than usual [4].

Definition 2 The simulation preorder on ca, denoted by
	 ⊆ (Ca × ℘(State2) × Ca) ∪ (Ca × Ca), is the rela-
tion defined in Fig. 5.

If α 	 β, we say that β simulates α. In that case, there exists
a relation R on the sets of states of α and β such that, for all
states qα of α, if

– R relates qα to a state qβ of β

– and α has a transition from qα to a state q ′
α involving

ports P and distributing data according to data constraint
fα ,

a transition from qβ to a state q ′
β exists involving the same

ports P and distributing data according to data constraint fβ
in the same way (but fβ may admit also other data distribu-
tions forbidden by fα). For instance, in Fig. 4, LossySync-
ND and SyncDrain simulate Sync, but not vice versa:
Sync cannot mimic the lossy transition of LossySync-ND,
because Sync has no transition involving only port A. Sim-
ilarly, although Sync has a transition involving ports A and
B, it cannot mimic the transition of SyncDrain: � admits
any assignment of data, while d(A) = d(B) admits only spe-
cific ones. We define behavioral equivalence in terms of the
simulation preorder.

Definition 3 The behavioral equivalence on ca, denoted by
≈ ⊆ (Ca× ℘(State2) ×Ca) ∪ (Ca×Ca), is the relation
defined as:

α ≈R
β iff

[
α 	R β and β 	R−1

α
]

α ≈ β iff
[
α ≈R

β for some R
]

We consider ca up to behavioral equivalence.
Individual ca describe the behavior of individual connec-

tors; a product operator on ca models connector compo-
sition [4]. Its formal definition and a congruence theorem,
proved by Baier et al. [4], follow below.

Definition 4 The product operator, denoted by � , is the
operator on Ca defined by the following equation:

α � β=
(
State(α) × State(β),Port(α) ∪ Port(β), []
Mem(α) ∪ Mem(β),−→, (init(α), init(β))

)

where−→ denotes the smallest relation induced by Rule (1),
Rule (3), and Rule (4) in Fig. 6.

Rule (1) states that whenever two automata each can fire a
transition in which they agree on the involvement of shared
ports, they can fire their transitions together in the compo-
sition (i.e., synchronously). The notion of agreement is for-
malized in the ♦ relation. Rule (3) states that whenever an
automaton can fire a transition involving no shared ports, it
can fire this transition any time it wants in the composition;
Rule (4) is symmetric to Rule (3). Note that we do not use
Rule (2) in Definition 4. Instead, we use and explain it in the
next section.

Theorem 1 (≈ is a congruence for �)
[
α ≈ β and γ ≈ δ

]
implies α � γ ≈ β � δ

123

316 SOCA (2015) 9:311–339

qα
Pα,fα−−−−→α qα and qβ

Pβ,fβ−−−−→β qβ

and (Port(α) , Pα) ♦ (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ,fα∧fβ−−−−−−−−−−→ (qα , qβ)

(1)

qα
Pα,fα−−−−→α qα and qβ

Pβ,fβ−−−−→β qβ

and (Port(α) , Pα) (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ,fα∧fβ−−−−−−−−−−→ (qα , qβ)

(2)

qα
Pα,fα−−−−→α qα and qβ ∈ Qβ and Pα ∩ Port(β) = ∅

(qα , qβ)
Pα,fα−−−−→ (qα , qβ)

(3)

qβ
Pβ,fβ−−−−→β qβ and qα ∈ Qα and Pβ ∩ Port(α) = ∅

(qα , qβ)
Pβ,fβ−−−−→ (qα , qβ)

(4)

(Port(α) , Pα) ♦ (Port(β) , Pβ) iff
Port(α) ∩ Pβ = Port(β) ∩ Pα

(Port(α) , Pα) (Port(β) , Pβ) iff

Pα = Port(α) ∩ Pβ or Pβ = Port(β) ∩ Pα

or Port(α) ∩ Pβ = ∅ = Port(β) ∩ Pα

(a) Rules

(b) Auxiliary definitions

Fig. 6 Combining transitions

Henceforth, let �{α1, . . . , αk} denote α1 � · · · � αk . This
is well defined, because � is associative and commutative.

3 Design: theoretical justification

3.1 Hybrid connector implementations

We start with presenting our design of hybrid connector
implementations; in Sect. 3.2, we discuss the design of a
tool that automatically generates corresponding code.

To first better explain the different implementation
approaches for connectors with ca as formal semantics, let
X = {α1, . . . , αk} denote a set of “small” ca, each of which
models one of the k primitive constituents of the connector
Conn to implement. We associate with X an interpretation,
denoted by �X�, which models the composition of the con-
stituents in X (i.e., the full behavior of Conn):

�X� = � X (1)

Every implementation of Conn—be it distributed, central-
ized, or hybrid—must be behaviorally equivalent to �X�.

In the distributed approach, one first writes code for every
α ∈ X and then deploys those k ca-implementations in k
parallel processing units (e.g., processes, threads, actors).
To ensure that those ca-implementations are behaviorally
equivalent to �X�, at run time, they must communicate

with each other to check which of their transitions can
fire: Generally, the enabledness of a transition of one ca-
implementation depends on the enabledness of transitions of
other ca-implementations; an example follows shortly. In the
distributed approach, essentially, the k ca-implementations
compute the �-operators among them dynamically at run
time. In the centralized approach, in contrast, one first com-
putes � X (i.e., the full behavior of Conn), then writes
code for the resulting “big” ca, and finally deploys this sin-
gle ca-implementation in a single processing unit. By its
construction, this single ca-implementation is behaviorally
equivalent to �X�. Finally, with the hybrid approach, one
first constructs a partition A = {A1, . . . , A�} of X , then
computes � A for every part A ∈ A, then writes code for
the resulting “medium” ca, and finally deploys those � ca-
implementations in � concurrent processing units. We asso-
ciate with A an interpretation, denoted by �A�, by straight-
forwardly lifting the interpretation of sets of ca:

�A� = �{�A1�, . . . , �A��}� (2)

One can easily show that the interpretation of X equals the
interpretation of any of its partitions.

Proposition 1 �X� = �A� for all partitions A of X.

Proof LetA = {A1, . . . , A�}. Let Ai = {αi,1, . . . , αi,ki } for
all 1 ≤ i ≤ �.

�X�

= {definition of �·� for sets (Equation 1)}
� X

= {A = {A1, . . . , A�} is a partition of X}
� A1 ∪ · · · ∪ A�

= {definition of A1, . . . , A� and ∪}
�{α1,1, . . . , α1,k1 , . . . , α�,1, . . . , α�,k�

}
= {definition of �}

α1,1 � · · · � α1,k1 � · · · � α�,1 � · · · � α�,k�

= {associativity/commutativity of �}
(α1,1 � · · · � α1,k1) � · · · � (α�,1 � · · · � α�,k�

)

= {definition of �}
�{α1,1, . . . , α1,k1} � · · · � �{α�,1, . . . , α�,k�

}
= {definition of A1, . . . , A�}

� A1 � · · · � � A�

= {definition of �·� for sets (Equation 1)}
�A1� � · · · � �A��

= {definition of �}
�{�A1�, · · · , �A��}

= {definition of �·� for sets (Equation 1)}
�{�A1�, · · · , �A��}�

= {definition of �·� for sets of sets (Equation 2)}
�{A1, . . . , A�}�

= {definition of A}
�A�

�

123

SOCA (2015) 9:311–339 317

Essentially, in the hybrid approach, a code generator com-
putes the �-operators embedded in the “inner” interpreta-
tions statically at build time (as in the centralized approach),
while the � ca-implementations compute the �-operators
embedded in the “outer” interpretation dynamically at run
time (as in the distributed approach).

To carry out the second, third, and fourth steps of the
hybrid approach,we can use existing techniques from the dis-
tributed/centralized approach. The current challenge, thus,
lies in the first step: finding a reasonable partition of X in a
potentially huge search space. Theoretically, the total number
of partitions of a k-cardinality set equals the kth Bell num-
ber, denoted by Bk , which grows rapidly in k. For instance,
the number of possible partitions for Alternator in Fig. 1a,
which consists of only 6 constituents, is B6 = 203.

At one extreme, if we put every α ∈ X in its own part
(i.e.,A = {{α1}, . . . , {αk}}), we get the distributed approach,
whose communication overhead increases latency at run
time. However, at the other extreme, if we put every α ∈ X
in the same part (i.e., A = {{α1, . . . , αk}}), we get the cen-
tralized approach, which removes all parallelism. Generally,
the hybrid approach should avoid both these properties. As a
compromise, we therefore adopt the following guideline for
constructing partitions:

Put those ca whose implementations would require
(time-)expensive communication at run time in the
same part; separate those ca that will require only
“cheap” or no communication in different parts.

Informally, first, a partition A constructed according to this
guideline yields lower latency (cf. the distributed approach),
because those ca responsible for most of the communication
overhead—caused by expensive communication—are com-
piled into one ca-implementation at build time (i.e., they
populate the same part in A). Second, A yields improved
parallelism (cf. the centralized approach), because those ca
requiring only cheap or no communication are deployed in
parallel processing units at run time (i.e., each of them pop-
ulates its own part in A).

To more carefully exemplify the meaning of “expen-
sive” and “cheap,” let Alice, Bob, and Carol be three ca-
implementations. In particular, let Alice, Bob, and Carol
implement three Sync primitives in sequence between ports
A,B,C, andD. Suppose that Alice’s input port A has a pend-
ing write operation coming from the environment and that
she wants to fire her {A,B}-transition (see Fig. 4a). Oper-
ationally, to fire this transition, Alice must atomically take
the data item written on A from that port and write it to B
(see Table 1). However, to guarantee atomicity, she must first
ascertain that Bob is in fact ready to take a data item from
B. If not, the data item that Alice writes to B has nowhere to
go, which Reo’s semantics forbids (i.e., ports/nodes cannot
buffer data). So, before Alice takes the data item from A, she

first asks Bob if he is ready to take from B. But Bob can-
not immediately answer that question: he, in turn, must first
ask Carol if she is ready to take a data item from C. If not,
the data item that Bob atomically takes from B and writes
to C has nowhere to go. In this simple example, Carol can
answer Bob’s question without further derivative communi-
cation by locally checking if D has a pending take operation.
Generally, however, the chain of derivative communication
can be much longer (ignoring, for the moment, the possi-
bility of loops, which can be resolved). This makes the ini-
tial communication between Alice and Bob potentially very
expensive. In summary, if Bob initiates derivative commu-
nication to answer a question from Alice, we call commu-
nication between Alice and Bob “expensive” (and “cheap”
otherwise).

To identify which ca require only cheap communication,
we extend the local product theory from ca without data
constraints to unrestricted ca [29]. The idea is to introduce
a new product operator on ca, called l-product, which mod-
els connector composition with cheap communication. By
subsequently analyzing under which conditions substituting
the existing product, which models expensive communica-
tion, with our new l-product in Eq. 2 is sound (i.e., faithful to
Reo’s semantics)—this is not always the case—wecandevise
an algorithm for computing reasonable partitions according
to our cheap/expensive guideline. The formal definition of
l-product and a congruence theorem follow below.

Definition 5 The l-product (where “l” stands for “local”),
denoted by � , is the operator on Ca defined by the fol-
lowing equation:

α � β=
(
State(α) × State(β),Port(α) ∪ Port(β), []
Mem(α) ∪ Mem(β),−→, (init(α), init(β))

)

where−→ denotes the smallest relation induced by Rule (2),
Rule (3), and Rule (4) in Fig. 6.

The difference with Definition 4 is that the new transition
relation is induced by Rule (2) in Fig. 6 instead of by Rule
(1). We explain this as follows. Condition (Port(α), Pα) ♦
(Port(β), Pβ) in the premise in Rule (1) states that, if two
transitions agree on their shared ports, they can fire together.
These transitions may, however, involve any number of ports
not shared between those transitions. Exactly this freedom
causes expensive communication when computing � at run
time (e.g., Alice asks Bob about their shared port, but Bob
in his transition wants to involve a port not shared with
Alice, for which he asks Carol). To avoid this, condition
(Port(α), Pα) � (Port(β), Pβ) in Rule (2) restricts the
involvement of unshared ports: either one of the transitions
involves only shared ports, or both transitions involve only
unshared ports. Thus, only cheap communication occurs or
no communication at all.

123

318 SOCA (2015) 9:311–339

Theorem 2 (≈ is a congruence for �)

[
α ≈ β and γ ≈ δ

]
implies α � γ ≈ β � δ

Proof (Outline) First, we use the premise and Definition 3
of ≈ to conclude the existence of relations R1, R2 such that
α ≈R1 β and γ ≈R2 δ. By further expanding≈, we conclude

α 	R1 β and β 	R−1
1 α and γ 	R2 δ and δ 	R−2

2 γ for later
use. Next, we define:

(qα, qβ) R (qγ , qδ) iff
[
qα R1 qβ and qγ R2 qδ

]

From this definition, we conclude:

(qγ , qδ) R−1 (qα, qβ) iff
[
qβ R−1

1 qα and qδ R−1
2 qγ

]

Now, using α 	R1 β and γ 	R2 δ, we straightforwardly
establish α�γ 	R β�δ. Similarly, we establish β�δ 	R−1

α � γ . Finally, we conclude the required result by applying
the definition of ≈.
�

In the rest of this subsection, we address the issue of
determining when substituting the existing product with l-
product is sound. With this analysis, we aim at finding con-
crete conditions for algorithmically decidingwhen ca should
belong to the same part in a partition for that partition to
count as reasonable (with respect to our cheap/expensive
guideline).

First, by applying set theory, we observe that the �-
condition in Rule (2) implies the♦-condition in Rule (1) (i.e.,
cheap communication is a special case of expensive commu-
nication). Consequently, every transition of α � β induced
by Rule (2) necessarily exists in α � β, where it is induced
by Rule (1). This means that α � β can mimic every transi-
tion of α � β in every state. In fact, the transition relation of
α � β is a superset of the transition relation of α � β, while
α � β and α � β have the same state space and initial state.
These observations allow us to prove that α � β simulates
α � β for R the identity relation on the common state space
State(α) × State(β).

α � β 	R α � β (3)

Unsurprisingly, the converse of the previous implica-
tion—♦ implies �—generally does not hold (i.e., expensive
communication is not a special case of cheap communica-
tion). We can, however, characterize a set of ca couples such
that the converse does hold for all their pairs of transitions: for
every couple, (α, β) in this set, all communication between
α and β is actually cheap.

Definition 6 The actually-cheap relation, denoted by ♦� ⊆
Ca × Ca, is the relation defined as:

(Qα,Pα,Mα,−→α, ıα) ♦� (Qβ,Pβ,Mβ,−→β, ıβ)

iff
⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎣

[

qα
Pα, fα−−−→α q ′

α and qβ

Pβ , fβ−−−→β q ′
β and

(Port(α), Pα) ♦ (Port(β), Pβ)

]

implies (Port(α), Pα) � (Port(β), Pβ)

⎤

⎥
⎥
⎦

for all fα, fβ, Pα, Pβ, qα, qβ, q ′
α, q ′

β

⎤

⎥
⎥
⎥
⎥
⎥
⎦

In the same way that we argued for the validity of Eq. 3, we
can prove that α � β simulates α � β for the same identity
relation R , if ♦� relates α and β:

α ♦� β implies α � β 	R α � β (4)

The following lemma follows from the previous discussion.

Lemma 1 α ♦� β implies α � β ≈ α � β

Proof (Outline)We already established α � β 	R α � β in
Eq. 3 and, because α ♦�β is a premise, also α �β 	R α �β

holds by Eq. 4. Because R is an identity relation, we have
R = R−1. We can now apply Definition 3 of ≈ to conclude
the required result.
�

To test whether communication between two ca is actual-
ly-cheap, one must pairwise compare their transitions. This
is computationally expensive: it requires O(n1n2) relatively
complex checks, where n1 and n2 denote the numbers of tran-
sitions. This makes the ♦�-based characterization, in Lemma
1, of when one can safely substitute � with �, impractical,
although we conjecture this characterization to be complete
(essentially by construction). Instead, we now introduce two
auxiliary relations on ca, no-synchronization and indepen-
dence, which imply actually-cheapness and require fewer
(and simpler) checks: only O(n1) and O(1), respectively.
Informally, a ca exhibits no-synchronization if it never syn-
chronizes any of its ports (i.e., each of its transitions has a
singleton synchronization constraint). For instance, the ca of
FIFO in Fig. 4d satisfies no-synchronization. Two ca behave
independently if they have disjoint sets of ports. In the next
subsection, in an algorithm for computing reasonable par-
titions, we use these two relations to formulate conditions
for deciding which ca should become a member of which
part. Although no-synchronization and independence only
approximate actually-cheapness, this approximation is pre-
cise enough for our purpose: it identifies exactly the synchro-
nous and asynchronous regions of a connector, explained in
more detail in Sect. 3.2.

Definition 7 The no-synchronization predicate, denoted by
1−→ , is the predicate on Ca defined as:

1−→ (Q,P,M,−→, ı) iff
[[
q

P, f−−→ q ′ implies |P| = 1
]

for all f, P, q, q ′]

123

SOCA (2015) 9:311–339 319

Definition 8 The independence relation, denoted by � ⊆
Ca × Ca, is the relation defined as:

α � β iff Port(α) ∩ Port(β) = ∅
Intuitively, no-synchronization implies actually-cheapness,
because ca with only singleton transitions never cause

expensive communication. For instance, suppose
1−→ (Bob).

Now, if Alice asks Bob if he can fire a transition involving a
shared port, Bob can directly answer without derivative com-
munication: either he can fire a transition involving precisely
that port, in which case he answers positively, or he cannot.
Independence implies actually-cheapness, because ca that
do not share any ports do not communicate at all. In princi-
ple, we may use an alternative definition for independence in
terms of ports involved in transitions instead of our current
definition, based on ports in ca. Such a definition of inde-
pendence would be slightly more powerful (i.e., reveal more
automata pairs as independent) in caseswhere a caα “knows
about a port” but does not actually use it (i.e., there exists a
p ∈ Port(α), but p does not occur on any of α’s transitions).
We favor the current version of Definition 8, though, for its
simplicity and because such α-s do not occur in practice.

Lemma 2

1.
1−→ (β) implies α ♦� β

2. α � β implies α ♦� β

Proof (Outline)

1. We split the proof into two parts. In the first part, by
expanding our definitions and by applying set theory, we
conclude:

[
[

qβ

Pβ , fβ−−−→ q ′
β and

Pβ ∩ Port(α) �= ∅

]

implies Pβ ⊆ Port(α)
]

for all fβ, Pβ, qβ, q ′
β

In words: for all transitions of β, if the ports Pβ involved
in that transition include a port shared with α, in fact all
ports in Pβ are shared with α. (This holds, because Pβ is

a singleton by
1−→ (β).)

In the second part of the proof, we assume the result of
the first part and the premise of the right-hand side in
Definition 6 of ♦�. By applying set theory, we then show
for all pairs of transitions involving ports Pα and Pβ :

[
Pβ ∩ Port(α) = ∅ and

(Port(α), Pα) ♦ (Port(β), Pβ)

]

or
[

Pβ ⊆ Port(α) and
(Port(α), Pα) ♦ (Port(β), Pβ)

]

By expanding the definition of♦ in Fig. 6b and by apply-
ing set theory, both cases reduce to:

(Port(α), Pα) � (Port(β), Pβ)

Now, because this reduction holds for all pairs of transi-
tions of α and β, we conclude α ♦� β.

2. In addition to α � β, we assume the premise of the
right-hand side in Definition 6 of♦�. Then, by expanding
Definition 8 of � and the definition of ♦ in Fig. 6b, we
conclude for all pairs of transitions involving ports Pα

and Pβ :

Port(α) ∩ Port(β) = ∅ and
Port(α) ∩ Pβ = Port(β) ∩ Pα

Because Pα ⊆ Port(α) and Pβ ⊆ Port(β) (implicitly
assuming that α and β are well-defined ca), we conclude
Port(α) ∩ Pβ = ∅ = Port(β) ∩ Pα . Finally, by applying
the definition of � in Fig. 6b and by observing that the
previous reduction holds for all pairs of transitions of α

and β, we conclude α ♦� β.
�

The combination of Lemmas 1 and 2 establishes that under
no-synchronization or independence, substituting � with �

in a product term consisting of exactly two ca is sound. Our
next theorem generalizes this to an arbitrary number of ca.
Notationally, to avoid excessive parentheses in the following
theorem and its proof, we assume right associativity for �.
For instance, we write α � β � γ � δ instead of α � (β �
(γ � δ)). This notational convention is important, because
� is not algebraically associative (in contrast to �). See the
end of this subsection for a further remark on this matter.

Theorem 3 (Substitution is sound)

[
[

1−→ βi for all
1 ≤ i ≤ m

]

and
[[
i �= j implies γi � γ j

]

for all 1 ≤ i, j ≤ n

]
]

implies
β1 � · · · � βm � γ1 � · · · � γn

≈ β1 � · · · � βm � γ1 � · · · � γn

Proof (Outline) We prove the equation from right (i.e., γn)
to left (i.e., β1). First, because γn−1 � γn by the premise
and by applying Lemmas 1 and 2:1, we conclude γn−1 �
γn ≈ γn−1 � γn . Now, to similarly prove γn−2 � γn−1 �
γn ≈ γn−2 � γn−1 � γn (by using Lemmas 1 and 2:1), we
must show γn−2 � γn−1 � γn . By expanding Definition 8
of � and by applying set theory, we can conclude this from[
γn−2 � γn−1 and γn−2 � γn

]
in the premise. Using a

straightforward inductive argument, we therefore can show
γ1 � · · ·�γn ≈ γ1 � · · ·�γn . A similar inductive argument,
in which we use Lemmas 1 and 2:2, concludes the proof
(Lemma 2:2 is applicable regardless of the relation between
the ca involved).
�

123

320 SOCA (2015) 9:311–339

Through Theorem 3, we thus showed that if a partition-
ing algorithm constructs a partition A such that A con-

tains m parts B1, . . . , Bm with property
1−→ �Bi � and n parts

C1, . . . ,Cn with property �Ci � � �C j �, only cheap commu-
nication (modeled by �) instead of expensive communica-
tion (modeled by �) is necessary among their correspond-
ing ca-implementations at run time, while collectively, they
are behaviorally equivalent to �X�. In other words, such an
algorithm computes reasonable partitions according to our
cheap/expensive guideline. Formally, the following equa-
tions hold:

�X� = �A�

= �{B1, . . . , Bm,C1, . . . ,Cn}�
= �{�B1�, . . . , �Bm�, �C1�, . . . , �Cn�}�
= �{�B1�, . . . , �Bm�, �C1�, . . . , �Cn�}
= �B1� � · · · � �Bm� � �C1� � · · · � �Cn�

≈ �B1� � · · · � �Bm� � �C1� � · · · � �Cn�

Earlier, we mentioned that � does not exhibit algebraic
associativity. This means that generally, the particular order
in which ca-implementations communicate with each other
at run-timematters: communicationmust start between those
ca most deeply nested in the previous equations (i.e., with
our right associative notation, the rightmost two ca �Cn−1�
and �Cn�). This limitation can degrade run-time performance
and seems a serious practical problem. To solve this, we can
extend our theory to compensate for nonassociativity of �
along the same lines as [29, Section 5]. There, Jongmans
and Arbab describe a solution to this problem for cawithout
data constraints, which straightforwardly generalizes to our
current setting with unrestricted ca. The idea is to study and
prove under which circumstances rearranging ca is sound
such that different ca can start communication at different
times.

To roughly explain this, first consider the case of�, which
does exhibit associativity. Suppose that we want to imple-
ment α1 � (α2 � α3) as three parallel processes—one for
every αi—that need to communicate to synchronize their
transitions. If we want to be very precise, then in this imple-
mentation, α2 and α3 must communicate with each other
before they can communicate with α1. (This corresponds to
the automata-theoretic idea that one would first compute the
nested product ofα2 andα3 to evaluate thewhole expression.)
However, because � is associative, any implementation that
first lets α1 and α2 communicate is, in fact, equally fine:
structurally, these implementations differ, but behaviorally,
they coincide. In other words, as long as the implementation
behaves as α1 � (α2 � α3) modulo associativity and com-
mutativity, there is no problem. Formally, if ≈AC denotes
behavioral equivalence up to associativity and commutativ-
ity, we can take the quotient Ca/≈AC and require that every
implementation of α1 � (α2 � α3) behaves as some element
in its equivalence class. With a bit more technical machinery,

we can subsequently prove that it is fine for an implemen-
tation to “switch” between elements in an equivalence class
during execution, which models the fact that at run time,
communication does not always have to start between the
same automata (e.g., sometimes we first have communica-
tion between α1 and α2 and other times between α2 and α3)
to get equivalent behavior.

Now, let us consider the case of �. Even though � is not
generally associative, we can show that under certain condi-
tions, associativity does apply. For instance,α1�(α2�α3) ≈
(α1 � α2) � α3 whenever both α1 and α2 are independent
of α3 and α1 satisfies no-synchronization (but the conditions
are more general than this). More formally, if ≈cAC denotes
behavioral equivalence up to this kind of conditional associa-
tivity and commutativity, we can take the quotient Ca/≈cAC

in the same way as with � above. Practically, conditional
associativity turns out to cover all cases that we care about:
the previous formal model can be used to show that the
particular order in which ca-implementations communicate
with each other at run time does not matter for those ca-
implementations that we actually encounter in practice. Full
technical details appear elsewhere [30].

Finally, we remark that all lemmas and theorems in
this subsection are generalizations, to unrestricted ca, of
results in the local product theory for ca without data con-
straints [29]. In fact, those previous results induce a char-
acterization (of when one can safely substitute � with �)
strictly more general than the one in Theorem 3 (modulo
data) but with a less intuitive interpretation. From our current
perspective and for our current audience, however, extend-
ing only a subset of that characterization with data seemed
more practically relevant and natural to explain.Working out
these generalizations was laborious but relatively straightfor-
ward. More interestingly, however, we now recognize that
the previous definitions, lemmas, and theorems in fact exem-
plify a novel proof method for establishing when substitut-
ing one distributed algorithm (e.g., an expensive one) with
another distributed algorithm (e.g., a cheap one) is seman-
tics-preserving, by analyzing properties of product operators
on automata that model those algorithms.

3.2 Hybrid-code generator

The new task of a hybrid-code generator, over and beyond
the tasks of a centralized-code generator [31], is dividing
the ca of the k primitive constituents of the input connector
over parts in a partition A; it can subsequently use existing
techniques to generate code for every part inA. To carry out
this new task, a hybrid-code generator can run the algorithm
in Fig. 7 with time complexity upper bound of O(k2).

Our algorithm iterates over an indexed input set of ca.
In each iteration, either it puts the current ca αi in a new
part in Bi (if αi satisfies no-synchronization), or it computes

123

SOCA (2015) 9:311–339 321

function Partition({α1 , . . . , αk})
(B0 , C0) := (∅ , ∅)
for all 1 ≤ i ≤ k do
if 1−→ αi then
(Bi , Ci) := (Bi−1 ∪ {{αi}} , Ci−1)

else
Ci := {C ∈ Ci−1 | ∃γ ∈ C and αi γ}
(Bi , Ci) := (Bi−1 , (Ci−1 \ Ci) ∪ {{αi} ∪ Ci})

return (Bk , Ck)

Fig. 7 Algorithm for computing reasonable partitions

a new part for αi in Ci , possibly including existing parts,
such that the new part contains all ca dependent on αi . The
following theorem establishes the algorithm’s correctness: it
yields a partition of the input set of ca and the partition is in
fact reasonable according to our cheap/expensive guideline
(i.e., the interpretation of the parts in the partition satisfy the
premise of Theorem 3). Note that the algorithm terminates
because the loop is bounded by k.

Theorem 4 (Correctness of Figure 7)

Partition(X) = (Bk, Ck) implies

1. Bk ∪ Ck is a partition of X
2.

1−→ �B� for all B ∈ Bk

3.
[
C �= C ′ implies �C� � �C ′�

]
for all C,C ′ ∈ Ck

Proof (outline)

1. We have the following proof obligation:

⋃Bk ∪ ⋃ Ck = X and

[
[[

A �= A′ and A, A′ ∈ Bk ∪ Ck
]

implies A ∩ A′ = ∅
]

for all A, A′]

By induction on 0 ≤ i ≤ k, we prove the following
stronger property:

Bi−1 ∩ Ci−1 = ∅ and
(
⋃Bi−1 ∪ ⋃ Ci−1) ∩ {αi , . . . , αk} = ∅ and⋃Bi−1 ∪ ⋃ Ci−1 = {α1, . . . , αi−1} and

[
[[

A �= A′ and A, A′ ∈ Bi ∪ Ci
]

implies A ∩ A′ = ∅
]

for all A, A′]

The base case (i.e., B0 = C0 = ∅) follows straightfor-
wardly. To prove the inductive step, in which the algo-
rithm considers αi , we distinguish two cases. The easy

one is
1−→ (αi). In that case, the algorithm adds {αi } to Bi

while leaving Ci unchanged. By using set theory and the
induction hypothesis for i − 1, we can straightforwardly
establish the induction hypothesis for i . The more diffi-

cult case is
[
not

1−→ (αi)
]
, because we must show that no

sets in Ci−1 \Ci and {{αi }∪⋃ Ci } overlap. We do so in a
proof by contradiction. In particular, if two overlapping
sets exist, those sets must have a shared ca α, and either
α = αi or α �= αi . Both cases reduce to false by using set
theory and the induction hypothesis for i−1, fromwhich
we conclude that overlapping sets cannot exist. Then, we
can establish the induction hypothesis for i also for

[
not

1−→ (αi)
]
. Finally, the induction hypothesis for k implies

the required result, which concludes the proof.
2. The proof is nearly trivial: one can derive the required

result almost directly from the definition of the algorithm.
To formally prove it, we proceed by induction on 1 ≤ i ≤
k. In the inductive step, we establish that the algorithm

adds αi to Bi only if
1−→ (αi) and leaves Bi unchanged

otherwise.
3. We prove the required result by induction on 1 ≤ i ≤ k.

The base case holds vacuously (quantification over the
empty set C0). To prove the inductive step, in which
the algorithm considers αi , we distinguish two cases.

If
1−→ (αi), the algorithm leaves Ci unchanged, and the

induction hypothesis for i − 1 directly applies to i .

Otherwise, if
[
not

1−→ (αi)
]
, we tentatively assume that

C1,C2 ∈ Ci exist such that �C1� �� �C2�. By the defini-
tion of the algorithm, we concludeC1,C2 ∈ (Ci−1\Ci)∪
{{αi }∪⋃ Ci }.Now, ifC1 andC2 both come fromCi−1\Ci ,
they both come from Ci−1, and consequently, we can
immediately conclude false by the induction hypothesis
for i−1.Thus, eitherC1 orC2 must be equal to {αi }∪⋃ Ci
(the case thatC1 andC2 are equal contradicts the premise
of this theorem). Suppose it is C1. Then, from our tenta-
tive assumption �C1� �� �C2�, we can conclude that an
α ∈ C1 exists such thatα �� �C2�. Ifα = αi , we conclude
false, because αi was considered by the algorithm only in
the i th iteration and therefore cannot be a member of C1

yet (which was constructed in an iteration before the i th).
Otherwise, if α ∈ ⋃ Ci , a C ′

1 ∈ Ci ⊆ Ci−1 exists such
that α ∈ C ′

1. Moreover, because α �� �C2� and α ∈ C1,
we can show �C ′

1� �� �C2�. This, however, contradicts the
induction hypothesis for i − 1, and we conclude false.
Thus, our tentative assumption was wrong, and we con-
clude �C1� � �C2�. Finally, the induction hypothesis for
k implies the required result, which concludes the proof.

�

Interestingly, the reasonable partitions A = B ∪ C com-
puted by the algorithm in Fig. 7 correspond to the synchro-
nous and the asynchronous regions of a connector [59,60].
First, every part B ∈ B represents an asynchronous region
(e.g., a FIFO primitive): the fact that �B� has only single-

ton synchronization constraints (i.e.,
1−→ �B�) models that

its ports cannot—neither intentionally nor coincidentally—

123

322 SOCA (2015) 9:311–339

Table 2 Evolution of Bi and Ci during the execution of the algorithm
in Fig. 7 on the set of ca in Fig. 8

i B C

0 ∅ ∅
1 ∅ {{α1}}
2 ∅ {{α1, α2}}
3 ∅ {{α1, α2, α3}}
4 {{α4}} {{α1, α2, α3}}
5 {{α4}} {{α1, α2, α3}, {α5}}
6 {{α4}} {{α1, α2, α3}, {α5}, {α6}}
7 {{α4}} {{α1, α2, α3, α6, α7}, {α5}}
8 {{α4}, {α8}} {{α1, α2, α3, α6, α7}, {α5}}
9 {{α4}, {α8}} {{α1, α2, α3, α6, α7}, {α5}, {α9}}

synchronize at run time. Dually, every part C ∈ C repre-
sents a synchronous region (e.g., the sequence of three Sync
primitives modeled by Alice, Bob, and Carol in a previous
example): by the duality of (a)synchronous regions, a ca for
a synchronous region has at least one transition with a nons-
ingleton synchronization constraint. When such a transition
fires, synchronization between at least two ports takes place.

As an example of the execution of the algorithm, we con-
sider ExampleConn in Fig. 1e. Figure 8 shows nine ca, one
for every channel (α2, α4, α7, and α8) and every node (α1, α3,
α5, α6, and α9) that ExampleConn consists of. We model
boundary nodes A, B, C, and D with pairs of an input port
and an output port (essentially synchronous channels), one
of which the environment uses for i/o; we model internal
node X implicitly as a composition of Merger and Repli-
cator primitives as explained in Sect. 2. Let the ca in Fig. 8
constitute the input set. Table 2 shows the evolution of sets
B and C as the algorithm progresses (for simplicity, we omit
subscripts from B and C).

Initially, both sets are empty. In the first iteration, because
α1 violates no-synchronization, the algorithm adds {α1} to
C. In the second iteration, first, the algorithm concludes that
α2 violates no-synchronization. Subsequently, because α1

and α2 share port Aout, they are dependent (i.e., α1 �� α2),
and therefore, the algorithm includes {α1} in C2. Finally, it
removes C2 from C and adds {{α2} ∪ {α1}} to C. In the third
iteration, something similar happens: α2 and α3 share port
Xin1. Therefore, the algorithm includes {α1, α2} in C3 (note
that it does not matter that α1 and α3 have no shared ports).
In the fourth iteration, the algorithm concludes that α4 sat-
isfies no-synchronization: α4 models one of the two FIFOs
in the connector, which, as we explained before, by itself
constitutes an asynchronous region. The algorithm subse-
quently adds {α4} to B (and leaves C unchanged). In the fifth
iteration, the algorithm adds {α5} to C, because α5 violates
no-synchronization and shares no ports with α1, α2, or α3.
Similarly, the algorithm adds {α6} to C in the sixth iteration.
In the seventh iteration, the algorithm first concludes that α7

Fig. 8 Constraint automata for the channels and nodes in Example-
Conn in Fig. 1e

violates no-synchronization. Now, α7 shares a port with α6

(i.e., Bout) and with α3 (i.e., Xin2). The algorithm therefore
includes both {α1, α2, α3} and {α6} in C7, and after removing
the resulting C7 from C, it adds {{α7} ∪ {α1, α2, α3} ∪ {α6}}
to C. The remaining iterations of the algorithm proceed sim-
ilarly.

After the algorithm terminates, the code generator com-
putes the interpretation of the parts in the constructed parti-
tion. This yields one new ca, namely for part {α1, α2, α3, α6

α7} (the interpretation of the four singleton parts, two in B
and two in C, each is itself). After generating code, we thus
obtain five ca-implementations, executed in parallel at run

123

SOCA (2015) 9:311–339 323

time. Now, one of the advantages of this hybrid approach is
that the implementations of α5 and α9 can simultaneously
each make a transition. In particular, while the implementa-
tion of α5 makes its transition (which drains the buffer from
the upper FIFO in Fig. 1e), the implementation of α9 can
start its transition (which drains the buffer from the lower
FIFO); it does not need to wait until the α5-implementation
finishes. In the purely centralized approach, this cannot hap-
pen: as soon as a single, sequential, big ca-implementation
starts a transition, other enabled transitions must wait, until
the started transition ends.

The previous example shows that partitions computed by
our algorithm can be imbalanced: in the example, the com-
puted partition has one big part (consisting of five ca) and
four small parts (consisting of only one ca). One may won-
der about whether this is problematic. As stated in the intro-
duction, the purpose of the hybrid approach (i.e., partition-
ing) is twofold: it should strike a middle ground between
latency and parallelism at run time while achieving reason-
ably fast compilation at build time. The cheap/expensive
communication guideline that we adopted for partitioning
covers the first property by its very definition, regardless of
whether the resulting partitions are balanced or not. In con-
trast, the second property may suffer from imbalanced parti-
tions: if one subset in a partition contains too many “incon-
veniently shaped” automata, the product of those automata
may become too large to compute or to store. For instance, if
we were to put n independent FIFOs in the same subset in a
partition, the state space of their product contains 2n states.
Quickly as n increases, then compilation takes not only too
much time but also more memory than is available.

The crucial question is therefore as follows: Do the imbal-
anced partitions that our algorithm computes contain sub-
sets with too many “inconveniently shaped” automata? As
far as state space explosion is concerned, the answer is no.
The only primitive whose automaton has more than one state
is FIFO, and using our partitioning algorithm, every FIFO
constitutes its own subset. On the other hand, subsets with
more than one automaton are guaranteed to consist of only
single-state automata. Because the product of any number of
single-state automata yields a single-state automaton, state
space explosion will never occur. Even if we later decide to
add a newprimitivewhose automaton hasmore than one state
and which does not satisfy no-synchronization (such that it
will not constitute its own subset), Baier et al. have shown
that we can always break the automaton of this new primitive
down into a number of single-state automata and a number
of FIFOs [3], as long as we assume a finite data domain.

Thus, imbalanced partitions will not be problematic for
state space explosion. However, another form of subset with
too many “inconveniently shaped” automata exists, which
causes the transition relation to explode. This problem, pre-
sented inmore detail in Sect. 6.4, can be solved in some cases,

but generally, it seems to require resorting to the purely dis-
tributed approach at the cost of run time overhead. The fact
that in some cases imbalanced partitions are problematic,
however, does not make our splitting algorithm useless: it at
least identifies the trouble spots in the system, which may
require special treatment. This means that it is unfortunately
not always possible to apply only our splitting algorithm (at
least not in its current form) to obtain a hybrid implementa-
tion that satisfies both desired properties.We are trying to find
better solutions, but we consider this as a different research
question than the subject of this paper.

4 Implementation: practical realization

4.1 Hybrid connectors

We extended an existing Reo-to-Java code generation tool
[31], which translates ca to implementations of Java’s
Runnable interface. Every such a ca-implementation can
run in its own Java thread. The control-flow inside the main
run()method follows a conceptually simple (event-driven)
state machine pattern. Details appear elsewhere [31]; here,

we focus on the process of firing a transition q
P, f−−→ q ′. The

following enumeration summarizes this process.

1. Check synchronization constraint P .

(a) Check the ports in P for pending i/o. Let P ′ ⊆ P
denote the set of ports without pending i/o.

(b) Ask neighborswith ports in P ′ which data constraints
must hold for them to be ready for i/o on those ports.
Let F denote that set of data constraints.

2. Solve extended data constraint f ∧ ∧
F .

3. Commit and conclude.

(a) Distribute data items among pending take operations
according to the solution found for f ∧ ∧

F .
(b) Mark pending i/o completed and update state to q ′.
(c) Perform i/o on ports in P ′ according to the solution

found for f ∧ ∧
F .

(d) Notify neighbors with ports in P ′ that they must fire
their transitions involving those ports.

(e) Await the completion of those transition.

During steps (1) and (2), a ca-implementation can still abort
the firing process, and it will do so if the synchronization
constraint does not hold—in which case F contains ⊥—or
if the data constraint has no solution under the then-pending
i/o operations. Once step (3) starts, however, the transition
must run to completion. To ensure that the whole firing
process runs atomically, that pending i/o operations do not
timeout during the firing process, and that neighbors do not
change state, a ca-implementation uses a two-phase locking
scheme [9].

123

324 SOCA (2015) 9:311–339

(a) Local synchronization point (shared-memory port)

(b) Remote synchronization point (distrib.-memory port)

Fig. 9 Synchronization points

Ports are implemented as interfaces that provide access to
concurrent data structures called synchronization points [31].
Essentially, synchronization points register pending write
and take operations. There exist two kinds of port inter-
faces: input ports expose only write(...) methods for
performing write operations, while output ports expose
only take(...) methods for performing take operations.
Application developers can use input and output ports for let-
ting concurrent fragments of their computation code interact
with each other via a ca-implementation (i.e., via a connec-
tor). Internal classes in the Reo run-time libraries, as well as
generated ca-implementations, call also other methods on
input and output ports (e.g., checking for pending i/o oper-
ations, communicating with neighbors via synchronization
points).

The run-time libraries of the original implementation of
the Reo-to-Java code generator contain only one shared-
memory implementation of input and output ports. Figure 9a
shows an infographic, where “lsp” stands for “local syn-
chronization point.” This name reflects that the Java objects
constituting such a synchronization point live on the same
machine as the ca-implementations that access that synchro-
nization point through input and output ports. Logically, a
triple of an lsp, an input port, and an output port makes up a
single port.

To enable developers to fully exploit the improved paral-
lelism in the hybrid connector implementations generated
by our tool extension (cf. the centralized approach), we

implemented a new distributed-memory implementation of
input and output ports. In particular, this allows develop-
ers to deploy connector implementations generated by our
tool extension on different machines in a network. Fig-
ure 9b shows an infographic, where “rsp” stands for “remote
synchronization point,” “- s” for “server,” “- ic” for “input
client,” and “- oc” for “output client.” Deployment of a
remote synchronization point starts with deploying an rsp- s
on some machine in the network. Essentially, an rsp- s is a
Web service, implemented using Jax- ws,1 whose operations
provide its clients access to a “classical” lsp inside of it. Once
an rsp- s has been deployed, one can construct input and out-
put ports to access it, including input and output clients. Dur-
ing execution, those port interfaces use such clients for del-
egating, to the deployed rsp- s, those method calls that they
cannot process locally (e.g., checking for pending i/o oper-
ations). The ca-implementations that call methods on port
interfaces do not know whether those calls require network
communication: whether synchronization points accessed
through port interfaces run locally or remotely is completely
transparent.

4.2 Hybrid-code generator

Our extension to the Reo-to-Java code generator is—as the
original—implemented in Java as an Eclipse plug-in. This
plug-in depends on theExtensible Coordination Tools (Ect):
a collection of Eclipse plug-ins that constitute an ide for
Reo.2 Our extension outputs � Java classes—one for every
part in the reasonable partition computed using the algorithm
in Fig. 7—each of which implements the Runnable inter-
face. Instances of those classes can be deployed on differ-
ent machines and connected to each other via distributed-
memory ports (including the required remote synchroniza-
tion point servers and clients). For testing purposes, the
code generator also generates a default main program which
deploys an instance of each of the � classes and each of
the required distributed-memory ports on the same machine.
Indeed, our implementation of distributed-memory ports
works also for machines X , Y , and Z in Fig. 9b such that
X = Y = Z . However, in that case, using shared-memory
ports is more sensible.

For performance reasons, we simplified the implementa-
tion of the algorithm in Fig. 7 and the actual code gener-
ation process (using ANTLR’s StringTemplate engine [54])
by exploiting the observation that the only primitive currently
supported by the Ect that satisfies the first condition in The-
orem 3 is FIFO. This, for instance, reduced checking the
condition of the if-statement in Fig. 7 from iterating over all
transitions of a ca to checking that ca’s type.

1 http://jax-ws.java.net.
2 http://reo.project.cwi.nl.

123

http://jax-ws.java.net
http://reo.project.cwi.nl

SOCA (2015) 9:311–339 325

Fig. 10 Connector for orchestrating the fourwss in the online purchase
scenario

5 Case study

We proceed with a case study in the domain of distributed
service orchestration. The purpose of this section is to dis-
cuss, present, and exemplify opportunities that the theory we
previously presented provides in practice. (We do not try to
reexplain or quantitatively evaluate our theory.)

In the following case study, we elaborate on the same
example as given in [37],which implements a classical online
purchase scenario. This interaction involves four Web ser-
vices (ws) namedClientBroker, StoreOffice, SalesOffice, and
Bank. The ClientBroker service takes care of interfacing a
client to the other services, which deal with: the information
about the store (i.e., the StoreOffice service), the procedure
to prepare the invoice (i.e., the SalesOffice service), and the
effective paymentmanagement (i.e., theBank service).Using
the orchestration approach to Web service composition [57],
we compose these four services so as to realize the composite
behavior described below.

First, an end user provides the ClientBroker service a
description of a product that he or she wants to purchase.
The ClientBroker subsequently searches for a product that
matches the description and returns the result. This result
should be routed to both the StoreOffice and the SalesOffice
(by the orchestrator), effectively placing an order for that
product. Upon receiving the order, the StoreOffice checks if

the ordered product is still in stock. The output of the StoreOf-
fice (“yes”/“no” plus additional price information) should be
routed to the SalesOffice. Once the SalesOffice has received
both the order and the stock information, it computes and out-
puts the final price. This final price should be routed to both
theClientBroker (to confirm that it does not exceed the range
specified by the end user) and the Bank. The ClientBroker
now outputs the credit card number of the end user, which
should also be routed to the Bank. With the price and the
credit card number, the Bank finally completes the transac-
tion by processing the payment. See [37] for a more detailed
description.

Figure 10 shows a Reo connector, named Orchestrator,
for orchestrating the fourwss according to the previous oper-
ational description of the scenario. In this case, a Reo expert
designed this connector by hand. Alternatively, depending on
the expertise available in an organization, one can specify the
orchestration protocol as an automaton, as a Bpel program,
or as a Uml sequence/activity diagram and use mechanical
connector synthesis technology to obtain this (or a behav-
iorally equivalent) connector [3,17].

Jongmans et al. [37] generate a centralized implementa-
tion of Orchestrator and deploy that implementation on a
single machine in a network. We significantly improve on
that by using our hybrid-code generator to obtain a hybrid
implementation and deploy it across multiple machines.

First, our code generator establishes that Orchestrator
consists of 43 channels and 42 nodes. It then matches each
of those constituents with a ca describing that constituent’s
behavior, which yields k = 85 small ca. For instance, Fig. 11
shows seven ca describing the constituents in the largest col-
ored region in Fig. 13. Next, our code generator runs the algo-
rithm in Fig. 7 to obtain a reasonable partition. This partition
consists of thirteen parts: seven singleton parts for asynchro-

nous regions (i.e., FIFOs, which satisfy
1−→) and six parts for

synchronous regions. For instance, the ca in Fig. 11 form
a complete part of the latter kind (none of those seven ca
shares a port with any ca in any other part). The code gener-
ator then computes, for every part, the �-product of the ca

Fig. 11 Constraint automata for the channels and nodes in the largest colored region in Fig. 13; nodes are named A,B,C, andD, from top to bottom
and from left to right (in these ca semantics, every node is represented by a number of input and output ports, which are shared with channels)

123

326 SOCA (2015) 9:311–339

(a) Without abstraction (b) With abstraction

Fig. 12 �-product of the ca in Figure 11, with and without abstracting away internal ports

in that part. This yields � = 13 medium ca. For instance,
Fig. 12 shows the�-product of the ca in Fig. 11. Finally, the
code generator compiles the thirteen medium ca to as many
ca-implementations. For instance, at run time, the generated
implementation of the ca in Fig. 12 has only one execution
step (i.e., transition) that it repeats infinitely often: It atomi-
cally transports a piece of data from StoreOffice to SalesOf-
fice, and simultaneously, it transports a piece of data from
the output port of one FIFO to the input port of another one.
The latter ensures that the generated ca-implementation can
perform this execution step only if the whole connector is in
a state that allows this (i.e., if the FIFOs are, respectively,
full and empty). See [37] for details.

Next, we discuss the deployment of the generated code.
Logically, we have five machines: called Red (for the
actual client), Green (for ClientBroker), Blue (for Store-
Office), Cyan (for SalesOffice), and Magenta (for Bank).
Although any distribution of the thirteen generated ca-
implementations (and the ports between them, throughwhich
ca-implementations communicate with each other) over the
five available machines would technically work, some of
those distributions make more sense than others. Generally,
the problem of (automatically) optimally distributing ca-
implementations over machines is an interesting research
challenge, which we regard as important future work (see
also Sect. 9). For now, we adopted the following ad hoc
approach: to minimize network traffic, we manually distrib-
uted ca-implementations in such a way that every piece of
data goes over the network exactly once. In contrast, in the
centralized implementation in [37], every piece of data goes
over the network twice: first from the sending ws machine
to the Orchestrator machine and then from the Orchestra-
tor machine to the receiving ws machine. Thus, the hybrid
approach can improve the centralized approach not only in
terms of run-time parallelism but, as a consequence of less
network traffic and no single-point contention, also in terms
of latency (especially with large data). Figure 13 shows the
deployment of parts of the orchestration on machine Blue,
and Fig. 14 shows the full deployment on all machines.

For deploying ports, we first analyzed which ports are
shared between ca-implementations running on the same
machine. We deployed those ports as shared-memory ports
(similar to [37]) and all other ports as distributed-memory
ports. For every distributed-memory port p, we deployed

Fig. 13 Deployment of medium ca-implementations and the StoreOf-
fice service on machine Blue

Fig. 14 Full deployment on all machines

its remote synchronization point server (rsp- s) on the same
machine as the ca-implementation that uses p’s input inter-
face. This means that pieces of data involved in write oper-
ations on p stay on that machine as long as no other ca-
implementation (running on a different machine) wants to
take that data from p’s rsp- s (via p’s output interface).
Consequently, pieces of data travel over the network only
if absolutely necessary.

To actually run this case study on five machines, we
use Amazon Web Services (Aws),3 which is a collection
of wss that together make up a Cloud computing plat-
form, offered over the Internet by Amazon.com. In partic-
ular, we take advantage of Elastic Compute Cloud (Ec2): a
ws that provides resizable compute capacity in the Cloud. It
is designed to make Web-scale computing easier for devel-
opers, by allowing them to rent virtual machines on which
to run their own applications. We rented five of those virtual

3 http://aws.amazon.com.

123

http://aws.amazon.com

SOCA (2015) 9:311–339 327

machines and deployed the generated code for this case study
as explained above.

By using the Cloud in this way, we can position the exam-
ple in [37] in the following new scenario. Suppose we run a
(large) online business company that offers a purchase ser-
vice throughAws: themotivation is that our company desires
to scale its business in theCloud, benefiting froma third-party
infrastructure that can efficiently manage large amounts of
data. For instance, combined with Ec2, our company can use
another Cloud service from the Aws platform called Sim-
ple Storage Service (S3): an online technology for managing
large amounts of information at any time, such as transac-
tion logs of our clients’ orders. Because the hybrid approach
allows us to sensibly distribute ca-implementations over
machines (thereby minimizing network traffic, as explained
above), it is—in contrast to the purely centralized approach—
more suitable for coordination of large amounts of data.

6 Performance comparison

In the introduction of this paper, we stated that the hybrid
approach should strike a middle ground between latency and
parallelism at run time while achieving reasonably fast com-
pilation at build time. Having worked out the design and the
implementation of a theory to automatically construct hybrid
connector implementations in Sects. 3 and 4 and having illus-
trated the new opportunities that this technology provides in
Sect. 5, we present a first preliminary performance compar-
ison in this section to explore whether the hybrid approach
indeed lives up to our expectations in the introduction.

6.1 Setup

To make our comparison, we use two Reo-to-Java compil-
ers: a centralized-approach compiler and a “sibling” of the
hybrid-approach compiler of Sect. 4. The latterworks accord-
ing to the same principles as the one in Sect. 4, but it gen-
erates code optimized for shared-memory deployment. By
focusing on shared memory instead of distributed memory
in our comparison (contrasting our case study in Sect. 3),
we can more faithfully measure the intrinsic performance
of generated centralized and hybrid connector implementa-
tions, without our measurements becoming obscured or even
dominated by network latency. Also, for this comparison, we
compiled connectors in a data-unaware fashion (i.e., gener-
ated connector implementations do not solve data constraints
at run time but simply assume them to hold true), thereby
excluding the time spent on solving data constraints from
our measurements. Otherwise, because solving data con-
straints has a significant impact on performance, our mea-
surements would have become dominated by irrelevant—to
this comparison—activities. After all, we primarily want to
quantify the effect of our partitioning algorithm on run-time

Out

In1

In2

Out

In1

In2

∗

∗

In1

In2

Out

(a) EarlyAsyncMerger2

(b) EarlyAsyncBarrierMerger2

(c) Alternator2

Fig. 15 Example connectors from the k-producers-single-consumer
category

performance, which does not depend on data constraints, nor
on network latency.

We consider two categories of connectors: k-producers-
single-consumer and single-producer-k-consumers. In our
comparison, both of these categories consist of three k-
parametrized connector families forwhichwe generated cen-
tralized and hybrid implementations for k ∈ {2, 4, 6, 8, 10
12, 14, 16, 32, 48, 64}. In total, thus, we considered 66 dif-
ferent connectors and twice as many implementations. We
ran every generated connector implementation nine times on
a machine with sixteen cores (two Intel E5-26520V2 proces-
sors with eight physical cores at 2.6 ghz in two sockets,
hyperthreading disabled) and averaged our measurements.
In every run, we warmed up the Jvm for 30 s before actu-
ally starting to measure the number of “rounds” that a con-
nector implementation could finish in the subsequent 4 min.
What constitutes one round differs per connector; we pro-
vide details below. Neither the producers nor the consumers
performed any computation to focus our comparison on the
performance of the generated connector implementations.

6.2 Connectors

Figure 15 shows three of the connectors in the k-producers-
single-consumer category.

123

328 SOCA (2015) 9:311–339

Figure 15a shows EarlyAsyncMerger2 (the k = 2 ver-
sion of EarlyAsyncMergerk). With this connector, when-
ever a producer sends a data item through its local port,
the connector stores this data item in a corresponding
FIFO buffer. The producer can immediately continue, pos-
sibly before the consumer has received (i.e., communication
between a producer and the consumer transpires asynchro-
nously).Whenever the consumer receives a data item through
its local port, the connector empties one of the previously full
FIFO buffers, selected nondeterministically. The consumer
does not necessarily receive data items in the order in which
producers sent them (i.e., communicationbetween aproducer
and the consumer transpires not necessarily transactionally).
Every round consists of a send by a producer and a receive
by the consumer.

Figure 15b shows EarlyAsyncBarrierMerger2 (the k =
2 version of EarlyAsyncBarrierMergerk). This connector
works in largely the same way as EarlyAsyncMerger2,
except that EarlyAsyncBarrierMerger2 enforces a barrier
on the producers: no producer can send its i th data item until
all the other producers have sent their (i − 1)th data items.
As with EarlyAsyncMerger, the consumer may still receive
data items in an order different from the order in which the
producers sent them. Every round consists of a send by every
producer and k receives by the consumer, one for every pro-
ducer.

Figure 15c shows Alternatork (the k = 2 version of
Alternatork , previously shown in Fig. 1). With this connec-
tor, whenever a producer (attempts to) sends a data item
through its local port, it blocks both until the consumer
(attempts to) receives a data item through its local port and
until every other producer (attempts to) sends a data item
through its local port (i.e., the producers can send only syn-
chronously). Once each of the producers and the consumer
(attempt to) send/receive, the consumer receives the data item
sent by the top producer (i.e., communication between the
top producer and the consumer transpires synchronously),
while the connector stores the data items of the other pro-
ducers in their corresponding FIFO buffers (i.e., communi-
cation between the other producers and the consumer tran-
spires asynchronously). Afterward, the consumer receives
the other buffered data items in the top-to-bottom order in
which the producers are arranged. Every round consists of a
send by every producer and k receives by the consumer, one
for every producer.

Figure 16 shows three of the connectors in the single-
producer-k-consumers category.

Figure 16a shows LateAsyncReplicator2 (the k = 2 ver-
sion of LateAsyncReplicatork). With this connector, when-
ever a producer sends a data item through its local port, the
connector stores (copies of) this data item in every FIFO
buffer. The producer can immediately continue, possibly
before the consumers have received (i.e., communication

In

Out1

Out2

∗

∗

In

Out1

Out2

∗

∗

In

Out1

Out2

∗

∗

∗

(a) LateAsyncReplicator2

(b) LateAsyncRouter2

(c) EarlyAsyncOutputSequencer2

Fig. 16 Example connectors from the single-producer-k-consumers
category

between the producers and a consumer transpires asynchro-
nously). Whenever a consumer receives a data item through
its local port, the connector empties its corresponding full
FIFO buffer. Every round consists of a send by the producer
and k receives by the consumers, one by every consumer.

Figure 16b shows LateAsyncRouter2 (the k = 2 version
of LateAsyncRouterk). With this connector, whenever the
producer sends a data item through its local port, the connec-
tor stores this data item in exactly one of the FIFO buffers
(instead of in all buffers as LateAsyncReplicatork does),
selected nondeterministically. The producer can immediately
continue, possibly before the consumer of the selected buffer
has received (i.e., communication between the producer and a
consumer transpires asynchronously).Whenever a consumer
receives a data item through its local port, the connector emp-
ties its corresponding fullFIFO buffer. The consumers do not
necessarily receive data items in the order in which the con-
nector stored those data items in the FIFO buffers. Every
round consists of a send by the producer and a receive by a
consumer.

Figure 16c shows EarlyAsyncOutputSequencer2 (the
k = 2 version of EarlyAsyncOutputSequencerk). With
this connector, whenever the producer sends a data item
through its local port, the connector stores this data item in

123

SOCA (2015) 9:311–339 329

Fig. 17 Compilation time of k-producers-single-consumer connectors
(solid lines for centralized-approach compiler; dotted lines for hybrid-
approach compiler)

Fig. 18 Compilation time of single-producer-k-consumers connectors
(solid lines for centralized-approach compiler; dotted lines for hybrid-
approach compiler)

the leftmost FIFO buffer. The producer can immediately con-
tinue, possibly before the consumer has received (i.e., com-
munication between a producer and the consumers transpires
asynchronously). The connector ensures that the consumers
can receive only in sequence (from top to bottom).Whenever
a consumer receives a data item through its local port, the
connector empties its corresponding full FIFO buffer. Every
round consists of k sends by the producer and k receives by
the consumers, one by every consumer.

6.3 Results

Figures 17 and 18 show the compilation times of the con-
nectors in Figs. 15 and 16 for the aforementioned values

for k. Note the logarithmic scale on the vertical axis. For
all but one connector family, the compilation time of the
hybrid-approach compiler is much lower than that of the
centralized-approach compiler. In fact, for five of the six con-
nector families, the centralized-approach compiler failed to
run to completion beyond certain (relatively low) values of
k:

– ForEarlyAsyncMergerk>7, the number of transitions in
the computed “big” ca exceeded the limit of 2048 transi-
tions (e.g., EarlyAsyncMerger8 has 23801 transitions).
We imposed this transition limit, because (i) crossing this
relatively high limit with relatively low number of pro-
ducers signifies exponential growth and (ii) the Java com-
piler cannot conveniently handle Java code generated for
automata with so many transitions.

– For EarlyAsyncBarrierMergerk>4, the number of tran-
sitions in its big ca exceeded the limit of 2048 (e.g.,
EarlyAsyncBarrierMerger5 has 10,943 transitions).

– For LateAsyncReplicatork>8, the number of transi-
tions in its big ca exceeded the limit of 2048 (e.g.,
LateAsyncReplicator9 has 19,172 transitions).

– For LateAsyncRouterk>7, the number of transitions
in its big ca exceeded the limit of 2048 (e.g., Late-
AsyncRouter8 has 23,801 transitions).

– For EarlyAsyncOutputSequencerk>16, the compiler
crashed with an OutOfMemoryError.

The previous observations for these five connector families
arewitnessed alsoby their very steep curves inFigs. 17 and18
(i.e., all solid lines except the one forAlternator), which indi-
cate poor scalability in terms of compilation performance.
Only forAlternatork , the centralized-approach compiler suc-
ceeded in generating code for all of our values of k within a
reasonable time frame. Interestingly, for the hybrid-approach
compiler, the exact opposite holds: while it easily succeeded
in generating code for five out of six connector families, it
failed for Alternatork>12. In the next subsection, we discuss
what makes Alternatork special.

Figure 19 shows the execution times of the connec-
tor families in the k-producers-single-consumer category,
averaged over nine runs. For EarlyAsyncMergerk and
EarlyAsyncBarrierMergerk , their centralized implemen-
tations outperform their hybrid implementations in cases
involving only few producers (six in the case of EarlyAsync
Mergerk ; four in the case of EarlyAsyncBarrierMergerk).
In cases involving more producers, either the hybrid imple-
mentations outperform the centralized implementations, or
the centralized-approach compiler failed to compile in which
case we cannot make a comparison. In those latter cases,
however, it seems reasonable to assert by extrapolation
that if compilation had succeeded, these generated central-
ized implementations would have performed significantly

123

330 SOCA (2015) 9:311–339

(a) EarlyAsyncMergerk

(b) EarlyAsyncBarrierMergerk

(c) Alternatork

Fig. 19 k-producers-single-consumer (solid/dotted line for central-
ized/hybrid implementation)

worse than their corresponding hybrid implementations. For
Alternatork , in contrast, its centralized implementations out-
perform its hybrid implementations.Wediscuss this phenom-
enon in more detail in the next subsection.

Figure 20 shows the execution times of the connector
families in the single-producer-k-consumers category, aver-

(a) LateAsyncReplicatork

(b) LateAsyncRouterk

(c) EarlyAsyncOutputSequencerk

Fig. 20 k-producers-single-consumer (solid/dotted line for central-
ized/hybrid implementation)

aged over nine runs. The figures for LateAsyncReplicatork
and LateAsyncRouterk are similar to those of EarlyA-
syncMergerk andEarlyAsyncBarrierMergerk that we saw
before: with only few consumers, the centralized implemen-
tations outperform the hybrid implementations, while with
more consumers, the hybrid implementations outperform

123

SOCA (2015) 9:311–339 331

the centralized implementations. For EarlyAsyncOutput-
Sequencerk , since the centralized-approach compiler failed
to generate code for k > 16, the comparison remains incon-
clusive. We discuss this case in more detail in the next sub-
section.

6.4 Discussion

For four of the six connector families under investigation, the
hybrid approach has clear advantages over the centralized
approach. In each of those cases, the hybrid approach scales
much better than the centralized approach both in terms of
compilation performance at build time and latency at run
time. In one of the remaining cases, however, the central-
ized approach scales better than the hybrid approach; in the
other remaining case, our comparison seems inconclusive.
We analyze those two cases below.

For Alternatork , the hybrid approach has two issues that
the centralized approach has not: transition relation explo-
sion at build time and oversequentialization at run time.
Jongmans and Arbab recently discovered these issues and
explained them in detail [32]; below, we summarize their
findings.

The partition for Alternatork as computed by the hybrid-
approach compiler consists of k parts: k − 1 singleton sub-
sets, each of which consists of one FIFO primitive, and one
large subset A, which consists of all the other primitives.
For each of the FIFO primitives except the one at the top,
product ca �A� has a transition for propagating a data item
from the buffer of that FIFO primitive into the buffer of the
FIFO primitive directly above it. This results in k−2 “buffer
propagation”-transitions. By true concurrency, however, any
subset of those transitions may in principle occur simultane-
ously. Each of those subsets manifests in �A� as a separate
transition. Thus, �A� has at least 2k−2 transitions. This expo-
nential increase in transitions as k increases causes severe
transition relation explosion at build time, as also shown in
Fig. 17. The centralized-approach compiler, in contrast, does
not suffer from transition relation explosion. This has two
reasons.

1. Even though any subset of “buffer propagation”-tran-
sitions may in principle occur simultaneously, the empti-
ness/fullness of buffers involved in those transitions
makes many of those transitions permanently disabled in
practice. Whether or not a transition is permanently dis-
abled at run time can be established at build time only by
computing the full product of �A� and every FIFO prim-
itive. By doing so, the FIFOs effectively constrain which
transitions of �A� actually can occur. The centralized-
approach compiler computes this full product and as
such eliminates many impossible “buffer propagation”-
transitions; the hybrid-approach compiler does not.

2. The centralized-approach compiler can perform another
operation on ca, called hide [4], to abstract away internal
transitions in the full product, including the remaining
“buffer propagation” transitions. The hybrid-approach
compiler, in contrast, cannot abstract those “internal”
transitions away, as it cannot treat such “buffer propaga-
tion” transitions as truly internal: these transitions involve
ports that lie on the boundary between ca in different
subsets in the partition and therefore must remain.

For these reasons, the centralized approach has only a linear
increase in transitions as k increases instead of exponential.

The previous discussion explains why the centralized-
approach compiler succeeds in generating code for Alterna-
tork , while the hybrid-approach compiler fails for k > 12.
However, this does not yet explain why also at run time,
centralized implementations ofAlternatork outperform their
hybrid implementations. The reason becomes clear when
we realize that Alternatork essentially has purely sequen-
tial behavior: in every round, the producers start by synchro-
nously sending their data items (and the consumer synchro-
nously receives the first data item), after which the consumer
receives the remaining k−1 data items in sequence. The cen-
tralized implementation of Alternatork at run time sequen-
tially simulates one ca consisting of k transitions between
k states that represents exactly this sequentiality. The hybrid
implementation, in contrast, at run time has k parallel ca-
implementations (i.e., one for the large subset in the partition
and k−1 for every singleton) and, thus, suffers from overpar-
allelization: it uses parallelism—and incurs the overhead that
parallelism involves—to implement intrinsically sequential
behavior.

The Alternator family shows that the hybrid approach as
presented in the previous sections of this paper is not the end
of the story. Indeed, the hybrid approach does not work in all
cases. In future work, we need to develop better static analy-
sis techniques to equip our compilers with. Based on such
techniques, a compiler must be able to determine whether it
should use a centralized compilation approach or a hybrid
one. A first naive heuristic may be to merge a subset A1 with
a subset A2 in a computed partition if all ca in A1 have direct
neighbors only in A2 or vice versa. Applied to Alternatork ,
this heuristic effectively reduces the hybrid approach to the
centralized approach, which in this case is what we want.
However, we need to study this heuristic in much more detail
to check whether it does not have problematic consequences.
Also, this heuristic does not cover all cases. For instance,
EarlyAsyncOutputSequencerk—the other case in which
the centralized approach seems to outperform the hybrid
approach—also has intrinsically sequential behavior, but the
previous naive heuristic does not work here. In fact, the cen-
tralized approach in its present form does not help much here
either, because the centralized-approach compiler crashed on

123

332 SOCA (2015) 9:311–339

anOutOfMemoryError for k > 16as shown inFig. 18.To
handle EarlyAsyncOutputSequencerk in a scalable man-
ner, thus, much more advanced compilation techniques seem
necessary.

In this section, we tried to provide a balanced perspective
on the performance of the hybrid approach in practice. Based
on this first comparison, we can draw the following prelimi-
nary conclusion: if the hybrid approach works, it works well.
This means that the hybrid approach indeed balances latency
and parallelism to get better performance than the purely cen-
tralized approach at run time while achieving reasonably fast
compilation at build time. Additionally, however, our com-
parison reveals limitations of the hybrid approach. In future
work, we intend to refine the hybrid approach (to handle
Alternatork-like connectors) and develop complementary
technology (to handleEarlyAsyncOutputSequencerk -like
connectors).

Recently, we thoroughly repeated and extended the exper-
iments reported in this paper on a machine with 24 cores
(two Intel E5-2690V3 processors with twelve physical cores
at 2.6, GHz in two sockets, hyperthreading disabled). We
report on these new experiments elsewhere [33]. An impor-
tant difference between our new experiments and the exper-
iments reported in this paper is that we statically fixed the
clock frequency in our new experiments, thereby effectively
disabling Turbo Boost. On the one hand, disabling Turbo
Boost makes the results of our new experiments “purer” than
the ones reported in this paper (where the system did not
allow disabling Turbo Boost). On the other hand, the Turbo
Boost disabled environment of our new experiments is more
synthetic (because most modern processors support Turbo-
Boost-like technology), which makes the results reported in
this paper (with Turbo Boost enabled) more realistic than
the “purer” results of our new experiments. Of course, the
absolute performance numbers obtained in our two sets of
experiments differ. Significantly, however, the general shapes
of the graphs and the trends that we observe in the results of
the two sets of experiments are similar, modulo the local per-
turbations in the graphs presented in this paper, which may
show the effect of Turbo Boost.

7 Related work

In this section, we discuss related work on Reo, distributed
coordination, and distributed orchestration/workflow.

7.1 Reo

Closest to ours is the work on splitting connectors into
(a)synchronous regions for better performance. For his PhD
thesis [60], Proença developed the first implementation
based on these ideas, demonstrated its merit through bench-

marks, and invented a new automaton model to reason about
split connectors [58,59]. Furthermore, Clarke and Proença
explored connector splitting in the context of the connector
coloring semantics [18]. They discovered that the standard
version of that semantics has undesirable properties in the
context of splitting: some split connectors that intuitively
should be equivalent to the original connector are not equiv-
alent under the standard version. To address this problem,
Clarke and Proença propose a new variant—partial con-
nector coloring—which allows one to better model locality
and independencies between different parts of a connector.
Recently, Jongmans et al. [34] studied a formal justification
of connector splitting in a process algebraic setting.

Also related to thework presented in this paper is the work
of Kokash et al. on action constraint automata (aca) [40].
Kokash et al. argue that ordinary constraint automata describe
the behavior of Reo connectors too coarsely, which makes
it impossible to express certain fine parallel behavior. While
aca better describe the behavior of existing connector imple-
mentations (under certain assumptions), the increased gran-
ularity of aca comes at the price of substantially larger mod-
els. This makes them less suitable for code generation.

7.2 Distributed coordination

We proceed with a discussion of related work on other
approaches to distributed coordination.

For instance, Rowstron and Hood [63] present a new set
of primitives for fully distributed coordination of processes
using tuple spaces, called the Bonita primitives. Whereas the
original LINDA primitives provide only synchronous access
to tuple spaces, the Bonita primitives provide asynchronous
access, allowing processes to perform computations concur-
rently with tuple space operations (thus, increasing perfor-
mance). These new primitives are dispatch, dispatch_bulk,
arrived, and obtain, which are all designed to access dis-
tributed tuple spaces. Moreover, more efficient coordination
constructs can be produced using these primitives, as an ALT
construct, which allows a number of different tuples to be
requested and then perform actions as the result arrives.

A further main reference in tuple-based distributed coor-
dination is represented by the Kernel Language for Agent
Interaction and Mobility (KLAIM) [52]. This language con-
sists of a core LINDA with multiple tuple spaces and of a
set of operators for building processes. KLAIM naturally
supports programming with explicit localities. Localities are
first-class data, i.e., they can be manipulated like any other
data, and the provided mechanisms control the interactions
among located processes.Moreover, KLAIMuses a type sys-
tem that statically checks access rights violations of mobile
agents.

A more recent proposal by some of the same authors of
[52] is Service Component Ensemble Language (SCEL) [20],

123

SOCA (2015) 9:311–339 333

a new language specifically designed to model autonomic
components and their interaction. It brings together various
programming abstractions that permit to directly represent
knowledge, behaviors, and aggregations according to spe-
cific policies. It also supports naturally programming self-
awareness, context-awareness, and adaptation. Some syntac-
tic categories are left open to represent, for instance, knowl-
edge of different forms (e.g., constraints, clauses, records,
tuples) or to express a variety of policies (e.g., to regu-
late knowledge handling, resource usage, process execution,
process interaction, actions priority, security, trust, reputa-
tion).

One more main work, still based on LINDA, is Linda In
a Mobile Environment (LIME) [49], which is a model and
middleware that supports development of applications that
exhibit physical mobility of hosts, logical mobility of agents,
or both. The set of tuples being shared changes over time as
a result of the agents’ local control regarding sharing, and
in response to the mobility of both agents and hosts. When
hosts comewithin each others’ communication range, the set
of shared tuple spaces expands, and when they move apart,
it contracts. LIME represents a thorough approach, since it
comes with a formal semantic definition, implementation
pragmatics (for instance, there is a Java implementation),
and application-driven evaluation of the resulting model and
middleware.

ModelingMobileComputingwith process calculi is a pop-
ular topic in the literature since the 1990s. Besides KLAIM,
examples include, to name a few, the Ambient Calculus [15]
(an ambient is informally defined as a bounded place inwhich
computation can occur), a mobile extension of Concurrent
Constraint Programming [26], and the Join-Calculus [23].

In [61], the authors present a coordination model, the
Actor, Role, and Coordinator (ARC) model, to address three
main concerns inherent in a pervasive Open Distributed and
Embedded (ODE) system: dynamicity, scalability, and strin-
gent QoS requirements. The model treats a pervasive ODE
system as a composition of concurrent computation and
coerced coordination. Concurrent computation is modeled
as actors, while coerced coordination describes the system’s
QoS requirements by mapping them to coordination con-
straints. The coordinators are responsible for the coordination
among roles,while the roles in themodel provide abstractions
for coordinated behaviors that may be shared by multiple
actors and further assume local coordination responsibilities
for the actors playing the roles. The role’s behavior abstrac-
tion decouples the syntactic dependencies between the coor-
dinators and the actors, thus shielding the coordinator layer
from the dynamicity of underlying actors.

A different approach is represented by Event-Based Sys-
tems (EBS) [46]. In an event-basedmode of interaction, com-
ponents communicate bygenerating and receiving event noti-
fications, where an event is any occurrence of a happening of

interest, i.e., a state change in some component. The affected
component issues a notification describing the observed
event.An event notification service or publish/subscribemid-
dleware mediates between the components of an EBS and
conveys notifications from producers (or publishers) to con-
sumers (or subscribers) that have registered their interestwith
a previously issued subscription.

Besides previous models and languages, in the literature
we can find nature-inspired models, such as the Gamma
model [5] (and its distributed implementations), where a
shared coordination space is ruled by chemical-like laws
defined by the programmers, globally working like a rewrit-
ing system; thus, it resembles the features of programmable
tuple space models. Moreover, we have field-based coordi-
nation models [45] that are inspired by the way masses and
particles move and self-organize according to gravitational
or electromagnetic fields. Typically, a pervasive coordina-
tion infrastructure (of multi-agents) generates and maintains
computational force fields, which are sensed and modified
by agents moving through the fields, according to the field
intensity. In “Tuples on the Air” (TOTA) [44], computational
force fields take the form of distributed tuples, which are gen-
erated both by the active components and by the pervasive
coordination infrastructure, and drive the actions and motion
of the component themselves; for instance, they allow agents
to find each other in a dynamic network.

The stigmergy paradigm has been adopted in multi-agent
systems and in other fields as a technique for realizing forms
of emergent coordination in societies composed by a large
amount of ant-like, nonrational agents [21]. The principle is
that the trace left in the environment by an action stimulates
the performance of a next action, by the same or a different
agent (typical of self-organizing systems). In [62], the authors
generalize it to cognitive stigmergy, in order to enable social
activities of cognitive agents.

The Reo language proves to have a completely different
approach from all the references previously summarized; for
instance, it is not tuple-based as are all the derivatives of
LINDA, it does not resemble a process calculus, and it is
not directly environment-driven (as with the stigmergy par-
adigm). Nevertheless, the Reo language has a strong formal
basis and promotes loose coupling, distribution, mobility,
exogenous coordination, user-defined primitives, arbitrary
mix of synchrony and asynchrony, and dynamic reconfig-
urability. It has a formal graphical syntax (analogous to elec-
tronic circuit diagrams), and a few formal semantics based,
for instance, on compositional ca [4]. The formal basis of
Reo guarantees possibilities for both model checking and
verification [41].

Finally, Bonakdarpour et al. [11] present an approach for
generating distributed implementations for specifications in
BIP [7], a framework for specifying component-based sys-
tems at three specification levels: behavior of components,

123

334 SOCA (2015) 9:311–339

interaction between components, and priorities on inter-
actions. BIP forbids simultaneous execution of conflicting
interactions (i.e., interactions that require the same resource),
and a key aspect discussed by Bonakdarpour et al. is ensur-
ing that such conflicting interactions execute mutually exclu-
sively in distributed implementations of BIP specifications.
For this, Bonakdarpour et al. propose a three-layered imple-
mentation architecture: the bottom layer consists of distrib-
uted components, the middle layer consists of a number of
interaction execution engines, each responsible for execut-
ing its own subset of all interactions, and a top layer for
resolving potential conflicts. Compared to our work, a set of
BIP interactions roughly coincides with the transitions of a
(single-state) ca, and the middle layer of execution engines
roughly coincides with our set of “medium” ca-implementa-
tions. One difference is that we do not consider a bottom
layer of distributed components (because Reo is oblivious
to the entities under coordination). A more important dif-
ference is that Bonakdarpour et al. aim for a finer distrib-
ution granularity than we do, which requires them to han-
dle conflicting interactions with their third layer. We avoid
this problem by having the partition algorithm in Fig. 7 put
ca with “conflicting transitions” in the same part, effec-
tively serializing those transitions at run time. In our set-
ting, for performance reasons, we prefer firing such tran-
sitions sequentially over adding an algorithm for conflict
resolution.

7.3 Distributed orchestration/workflow

To put our previous case study in perspective, we conclude
with related work on distributed orchestration/workflow.

Nanda et al. [51] present a technique for partitioning a
composite service written as a single Bpel [39] program
into an equivalent set of decentralized processes. In their
approach, Nanda et al. construct the dependency graph of
a Bpel program with the aim of minimizing communica-
tion costs while maximizing throughput. Chafle et al. [16]
decentralize the orchestration of a FindRoute service by par-
titioning the Bpel code into four parts, which are executed
by four distinct Java engines. Afterward, Chafle et al. com-
pare the performance of the centralized and the decentralized
implementation by using both service-time andmessage-size
metrics. Chafle et al. also estimate the additional complex-
ity in error recovery and fault handling in a decentralized
orchestration. Mostarda et al. [48] use a Bpel-based lan-
guage for distributed orchestration in the context of pervasive
computing. In their approach, Mostarda et al. automatically
decompose a centralized workflow into implementations of
finite state machines that, when synchronized using a con-
sensus protocol, execute the original workflow. Fernández et
al. [22] introduce an execution model for distributed orches-
tration based on ametaphor from chemistry. In this approach,

services communicate with each other through a distrib-
uted shared multiset (“chemical solution”), which contains
both control-flow and data-flow information (“molecules”).
A workflow engine then executes an orchestration protocol
by applying formal rewrite rules (“chemical reactions”). Fer-
nández et al. propose translating Bpel programs to chemical
representations that the workflow engine they describe can
process. The difference between these existing Bpel-based
approaches to distributed orchestration and our approach is
the use of Reo instead of Bpel. At least from a software engi-
neering perspective, Reo has several advantages compared to
Bpel (declarative style, verbatim reuse/composition of con-
nectors, smaller gap between verification and execution; see
also Sect. 1). Whether our Reo-based approach also outper-
forms existing Bpel-based approaches remains a topic for
future study.

Barker et al. [6] presents an architecture (including a proxy
api) for optimizing data flow in workflow execution. In their
architecture, control-flowmessages are still sent to a central-
ized orchestration engine, while data-flowmessages (i.e., the
actual, potentially large, pieces of data) go directly from one
service to another. The latter reduces network traffic, and it
coincides with the heuristic we adopted for distributing the
ca-implementations over machines in our case study. How-
ever, our technique distributes also control flow. This gives
our approach, in addition to data-flow optimization through
clever deployment, also other advantages such as control-
flow parallelism, no single point-of-failure, and potentially
easier dynamic reconfiguration.

Similarly, motivated as the work of Barker et al. (i.e.,
optimizing data-flow), Binder et al. [10] propose a distrib-
uted orchestration methodology based on decomposing an
orchestration protocol (or workflow) into a directed acyclic
graph of service invocations, represented as triggers. Every
trigger encodes the data dependencies of the invocation it
represents (i.e., the parents and children of the correspond-
ing node in the graph). Triggers act as proxies: they collect
all input data before actually invoking the service, and they
transmit all output data directly to the dependent triggers for
subsequent service invocations. One may regard the medium
ca-implementations that we generate with our code genera-
tor as triggers. In that case, the work presented in this paper
improves thework of Binder et al. by presenting an automatic
procedure for decomposing orchestration protocols into trig-
gers for a more expressive protocol language (i.e., Reo):
we support also loops and conditions, which Binder et al.
forbid.

In [66], Tretola and Zimeo present a technique for improv-
ing concurrency in execution of workflows. Their technique
works by concurrently invoking otherwise sequential, data-
dependent serviceswith pieces of placeholder data until those
services require the actual data. If service invocations have a
data-independent initialization phase, for instance, the work-

123

SOCA (2015) 9:311–339 335

flowengine ofTretola andZimeo executes those initialization
phases in parallel instead of in sequence. For workflows and
services implemented on top of the framework of Tretola and
Zimeo, this process happens automatically. Although Tre-
tola and Zimeo parallelize service invocations, they neither
parallelize nor distribute the execution of the orchestration
protocol. Also, their technique seems unable to handle third-
party/black-box services. In contrast, our approach does dis-
tribute the execution of the orchestration protocol and works
with black-box services (via proxies [37]), but we currently
cannot exploit potential concurrency between service invo-
cations the way Tretola and Zimeo do. Thus, the technique
of Tretola and Zimeo seems to complement our work. (How-
ever, we do not understand yet which notion of equivalence
their technique preserves and what consequences this has
for properties that the orchestration protocol satisfies on the
modeling level. This requires further study.)

Pedraza and Estublier [56] present FOCAS. This frame-
work consumes as input an annotated APEL [19] specifi-
cation of an orchestration scenario and produces as output
a number of suborchestrations and a deployment plan (for
distributing suborchestrations over machines). The main dif-
ference between our approach and the approach of Pedraza
andEstublier seems to be thatReo allows for expressingmore
complex data-flow behavior than APEL does. This directly
influences the complexity of automatically computing sub-
orchestrations. On the other hand, our code generator cur-
rently does not compute a deployment plan, because we do
not support deployment annotations, which FOCAS does.

Finally, Muth et al. [50] use the formal semantics of
state/activity charts to develop an algorithm for transform-
ing centralized state/activity charts into equivalent parti-
tioned ones, suitable for distributed execution by a workflow
engine. Muth et al. subsequently refine their basic approach
to also reducing communication overhead and exploiting par-
allelism between parts in partitions. We had similar motiva-
tions for doing the work presented in this paper, but our for-
malism differs. Comparing the strengths and weaknesses of
state/activity charts and Reo/ca in the context of workflows,
orchestration protocols, and general coordination seems an
interesting topic for future work.

8 Discussion: applications beyond Reo

Because we formulated our results generally in terms of
constraint automata (i.e., Reo’s semantics, essentially inde-
pendent of Reo), any system expressible in terms of such
automata can benefit from these results. To illustrate this
point, in this section, we sketch two possible applications
beyond Reo. The purpose of this section is not to exhaus-
tively present new applications, but it serves as an overview
of two possible pieces of future work.

8.1 Automatic code generation for Rebeca models

Rebeca is an actor-based language for modeling and verify-
ing concurrent and distributed systems [65]. Every Rebeca
model consists of a number of rebecs (cf. actors), each of
which has its own memory and its own single thread of exe-
cution. Rebecs communicate with each other through asyn-
chronous message passing. On receiving a message, a rebec
executes the body of the method referred to in that mes-
sage. As part of executing a method, a rebec may asyn-
chronously send messages to other rebecs. Every rebec has
an unbounded message queue to buffer incoming messages.
Rebeca’s semantics states that methods execute atomically.
This means that a scheduler can schedule only one rebec for
execution at a time (i.e., rebecs execute concurrently but not
truly parallel).

Rebeca’s semantics can be expressed compositionally as
a ca product [64]. More precisely, the set of ca that consti-
tute the ca product for a Rebeca model can be split into four
sections: (i) the first section contains, for every rebec, one
ca that models its local behavior, (ii) the second section con-
tains, for every rebec, one ca that models its unboundedmes-
sage queue, (iii) the third section contains a number of ca for
scheduling rebecs, and (iv) the fourth section contains a num-
ber of ca for routingmessages between rebecs. (Tomodel an
unbounded message queue with a finite ca, we must assume
that our data domain contains an unbounded data structure.
In that way, we can construct a ca with a memory cell con-
taining that data structure to encode an unbounded queue and
use that ca’s transitions to encode operations on that queue.
Alternatively, for bounded queues, we can use a FIFO-like
ca without making assumptions about the data domain.)

Because Rebeca models can be expressed as products of
ca, even our existing centralized-approach compiler already
facilitates automatically generating code for verifiably cor-
rect Rebeca models. Although this use of Rebeca goes
beyond its original intent, such code generation enables a
usefulRebeca-based correct-by-construction designmethod-
ology. However, centralized-approach implementations of
Rebeca models have two disadvantages. First, the “big” ca
for aRebecamodel expressed as a product of cahas a number
of states exponential in the number of rebecs. Consequently,
our centralized-approach compiler can compile only rela-
tively small Rebeca models within a reasonable time limit.
Second, even if our centralized-approach compiler succeeds
in compiling a sufficiently small Rebeca model, all rebecs in
the resulting implementation must run on the same physical
machine. This makes it impossible to generate distributed
systems from Rebeca models (i.e., even if rebecs are dis-
tributed at the modeling level, the generated implementation
deficiently inhibits their actual distribution in practice).

The technique presented in this paper allows us to par-
tition the ca product for a Rebeca model into parts and

123

336 SOCA (2015) 9:311–339

generate code on a per-part basis, as follows. Every rebec
communicates only asynchronously and therefore satisfies
no-synchronization. Consequently, the ca for every rebec
has its own part in the partition. Similarly, the message
queue of every rebec has its own part in the partition. The
ca in the third section (scheduling rebecs) are all indepen-
dent of the ca in the fourth section (routing messages),
and so, these sections constitute two separate parts in the
partition. Thus, the ca product for a Rebeca model con-
sisting of k rebecs can be partitioned into 2k + 2 parts.
The subsequently generated implementation has one ca-
implementation for every rebec, one ca-implementation for
every message queue, one ca-implementation for schedul-
ing rebecs, and one ca-implementation for routing mes-
sages. This approach palliates exponential state explosion,
and it allows (ca-implementations for) rebecs to be distrib-
uted across different machines.

8.2 Recovering projectable choreographies
from unprojectable specifications

Another possible application of our results beyond Reo is
projection in choreography languages [12–14,24,25,27]. A
projection maps a global protocol specification among k
parties, called a choreography, to k local specifications of
per-party observable behavior, called contracts [12,13] (also
called peers [24,25] or end-point processes [14,27]). The
challenge is to project a choreography in such a way that the
collective behavior of the resulting contracts conforms with
the projected choreography.

For some choreographies, without adding extra communi-
cation actions to their original specifications, no projection to
contracts exists that satisfies the conformance requirement.
The theory presented in this paper constitutes a step in a
process that may alleviate this problem by algorithmically
inferring which communication actions need to be added to
otherwise unprojectable choreographies (similar to the trans-
formation by Lanese et al. [42]). Below, we present a first
sketch.

Choreographies are commonly formally modeled as some
kind of labeled transition system (lts). To compute a projec-
tion of a choreography involving k parties, we take such an
lts as our starting point. If this lts is finite, we translate it to
a choreography ca (essentially by mapping transition labels
in the lts to sets of ports).4 Afterward, we decompose the
resulting “big”ca into a number of “small”ca using an exist-
ing decomposition algorithm [3]. Essentially, by recovering
the internal structure of the big ca, this step reveals the pre-
viously “hidden” communication actions necessary to make

4 If the model assumes synchronous communication, we should also
“desynchronize” communication actions while constructing the ca
from the lts (in a semantics-preserving way, under some equivalence).

the original choreography projectable. Next, we recombine
the small ca into a number of contract ca such that for each
of those ca, its input ports represent communication actions
of only one party. To do this, we first apply the theory pre-
sented in this paper for computing a number of “medium”
ca from the small ca. Subsequently, we take the product of
every two medium ca whose ports belong to the same party,
until no such ca exist anymore. Finally, we construct a num-
ber of sets of ca, each of which contains: (i) a contract ca
resulting from the previous step and (ii) a number of Fifo ca
such that the output port of every Fifo ca is the input port of
the contract ca. Those Fifo ca essentially represent incom-
ing message buffers of parties. The previous process yields
one set of ca for every party. Every such set can then be
compiled into the implementation of its corresponding party.
Communication between ca of different sets (i.e., between
different parties) has to satisfy only the local synchronization
requirements imposed by �.

For instance, consider the following example of an unpro-
jectable choreography (from Carbone et al. [14]):

Buyer → Seller ; Shipper → Depot

This choreography describes a sequence of two interactions.
First, a party Buyer sends a message to another party Seller,
presumably to buy some product. Subsequently, a third-party
Shipper sends a message to a fourth party Depot, presum-
ably to arrange the logistics of shipping the product sold by
Seller to Buyer. Clearly, the interaction between Buyer and
Seller must precede the interaction between Shipper and
Depot for the whole protocol to make sense. However, it is
impossible to directly project this choreography on the four
parties in a way that satisfies this precedence. Basically, the
choreography misses an essential interaction between Seller
and Shipper, in which the former informs the latter about
the sale. By extending the choreography as follows, thus, it
becomes projectable [14]:

Buyer → Seller ; Seller → Shipper ; Shipper → Depot

Next, we show that we can algorithmically derive a similar
projection using the theory presented in this paper.

First, under the assumption that communication between
parties transpires asynchronously, we model infinitely many
repetitions of the initial choreography as the ca in Fig. 21.
Ports Bsnd, Sercv, Shsnd, and Drcv denote the input port used

Bsnd , Sercv , Shsnd ,

Drcv ,

Fig. 21 Constraint automaton for unprojectable choreography
Buyer → Seller ; Shipper → Depot

123

SOCA (2015) 9:311–339 337

Bsnd Sercv Shsnd Drcv

∗

Fig. 22 Set of small ca, rendered as a Reo connector, obtained after
decomposing the big ca in Fig. 21

by Buyer to send, the output port used by Seller to receive,
the input port used by Shipper to send, and the output port
used by Depot to receive, respectively. For simplicity, data
constraint � means that we do not care about particular data
in this example. Next, we decompose these ca into a number
of smaller ca. Instead of showing the decomposition as a set
of ca, we draw it as the Reo connector in Fig. 22. Now, we
can partition this set of ca into eight disjoint subsets using
the theory presented in this paper. Doing so yields one such
subset for every FIFO and one for every vertical “pole” in
Fig. 22. Subsequently, we merge the subset of every pole and
the subset of its incoming FIFO into one subset, resulting in
four subsets, represented bydotted rectangles in Fig. 22. Each
of those subsets cannowbecompiled into the implementation
of its corresponding party.

At run time, whenever Buyer sends a message (by per-
forming awriteon its input portBsnd), theca compiled into
Buyer’s implementation also transfers a token from Buyer’s
incoming FIFO into the incoming FIFO of Seller. Observe
that this interaction already occurred explicitly in the ini-
tial choreography. Subsequently, whenever Seller asynchro-
nously receives that token (by performing a take on its
output port Sercv), the ca compiled into Seller’s implemen-
tation also transfers a copy of that token into the FIFO of
Shipper. As such, it explicitly signals toShipper that Ship-
per can start its interaction with Depot. The transfer of the
token from Seller to Shipper corresponds to the third, addi-
tional interaction necessary to make the initial choreography
projectable.

The sketched approach needs to be extended with data to
be practically useful, but this example already illustrates the
key ideas involved.

9 Conclusion

We presented a hybrid approach for the implementation of
Reo connectors by partitioning them into several (a)syn-
chronous regions at build time. Every such region can be
executed on a different machine at run time. We use the
term “hybrid” because our approach is neither purely cen-
tralized (regions run in parallel at run time), nor purely
distributed (the elements inside a region are compiled to

a sequential program at build time and require no distrib-
uted algorithms or communication at run time). In this way,
we have the benefits of both pure approaches: the high
run-time latency of a centralized scheme combined with
the high parallelism and fast compilation of a distributed
scheme.

Asmentioned in Sect. 1, the value of our theoretical results
extends beyond being an essential contribution to code gener-
ation technology for Reo, in at least two ways. First, because
we formulated our results generally in terms of automata (i.e.,
Reo’s semantics, essentially independent ofReo), any system
expressible in terms of such automata can benefit from these
results. This enables automatically generating hybrid imple-
mentations of systems specified in other languages. Second,
our proof method, in which we compared distributed algo-
rithms by modeling them as different product operators on
automata and studying those operators’ properties, is not only
effective and elegant but also—as far as we know—novel.
It enables formal reasoning about distributed algorithms (in
particular, reasoning about their equivalence) at a different
level of abstraction than, for instance, the work by Lynch
[43].

In the future, we plan to design an algorithm to auto-
matically find the best partitioning of ca-implementations
according to user and system-defined constraints. These con-
straints may need to be satisfied either “crisply” or “softly”
(in relation to their indispensability) and may concern dif-
ferent criteria, including hardware requirements of software,
QoS/QoE/performance desiderata, and issues correlatedwith
security (e.g., preventing attacks based on Business Process
Discovery), privacy (of both data and workflow), and fault
handling.

References

1. Arbab F (2004) Reo: a channel-based coordination model for
component composition. Math Struct Comput Sci 14(3):329–366.
doi:10.1017/S0960129504004153

2. Arbab F (2011) Puff, the magic protocol. In: Agha G, Danvy O,
Meseguer J (eds) Talcott Festschrift, LNCS, vol 7000. Springer,
Berlin, pp 169–206. doi:10.1007/978-3-642-24933-4_9

3. Arbab F, Baier C, de Boer F, Rutten J, Sirjani M (2005) Synthe-
sis of Reo circuits for implementation of component-connector
automata specifications. In: Jacquet JM, Picco GP (eds) Proceed-
ings of COORDINATION2005, LNCS, vol 3454. Springer, Berlin,
pp 236–251. doi:10.1007/11417019_16

4. Baier C, Sirjani M, Arbab F, Rutten J (2006) Modeling component
connectors in Reo by constraint automata. Sci Comput Program
61(2):75–113. doi:10.1016/j.scico.2005.10.008

5. Banâtre JP, Fradet P, Métayer DL (2001) Gamma and the chemical
reaction model: fifteen years after. In: Proceedings of the work-
shop on multiset processing: multiset processing, mathematical,
computer science, and molecular computing points of view, WMP
’00, pp 17–44. Springer, London, UK. http://dl.acm.org/citation.
cfm?id=647269.721851

123

http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1007/978-3-642-24933-4_9
http://dx.doi.org/10.1007/11417019_16
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dl.acm.org/citation.cfm?id=647269.721851
http://dl.acm.org/citation.cfm?id=647269.721851

338 SOCA (2015) 9:311–339

6. Barker A, Weissman J, van Hemert J (2008) Orchestrating data-
centric workflows. In: Priol T, Jin H, Laforenza D, Matsuoka S,
Parashar M, Roe P (eds) Proceedings of CCGRID 2008. IEEE,
Los Alamitos, pp 210–217. doi:10.1109/CCGRID.2008.50

7. Basu A, Bozga M, Sifakis J (2006) Modeling heterogeneous real-
time components in BIP. In: Hung DV, Pandya P (eds) Proceedings
of SEFM 2006. IEEE, Los Alamitos, pp 3–12. doi:10.1109/SEFM.
2006.27

8. ter Beek M, Bucchiarone A, Gnesi S (2004) Web service composi-
tion approaches: from industrial standards to formal methods. In:
Galizia S, Emig C, Martens A, Roman D,Wombacher A (eds) Pro-
ceedings of ICIW 2007. IEEE, Los Alamitos, pp 224–233. doi:10.
1109/ICIW.2007.71

9. Bernstein P, Hadzilacos V, Goodman N (1987) Two phase lock-
ing. In: Concurrency control and recovery in database systems.
Addison-Wesley, Boston, pp 47–111

10. Binder W, Constantinescu I, Faltings B (2006) Decentralized
orchestration of composite web services. In: Feig E, Zhang AKJ
(eds) Proceedings of ICWS 2006. IEEE, Los Alamitos, pp 869–
876. doi:10.1109/ICWS.2006.48

11. Bonakdarpour B, Bozga M, Jaber M, Quilbeuf J, Sifakis J
(2012) A framework for automated distributed implementation of
component-based models. Distrib Comput 25(5):383–409. doi:10.
1007/s00446-012-0168-6

12. Bravetti M, Zavattaro G (2007) Towards a unifying theory
for choreography conformance and contract compliance. In:
Lumpe M, Vanderperren W (eds) Proceedings of SC 2007,
LNCS, vol 4829. Springer, Berlin, pp 34–50. doi:10.1007/
978-3-540-77351-1_4

13. Bravetti M, Zavattaro G (2009) Contract compliance and choreog-
raphy conformance in the presence of message queues. In: Bruni
R, Wolf K (eds) Proceedings of WS-FM 2008, LNCS, vol 5387.
Springer, Berlin, pp 37–45. doi:10.1007/978-3-642-01364-5_3

14. Carbone M, Honda K, Yoshida N (2012) Structured
communication-centered programming for web services. ACM
Trans Program Lang Syst 34(2):8:1–8:78. doi:10.1145/2220365.
2220367

15. Cardelli L, Gordon A (1998) Mobile ambients. In: Nivat M (ed)
Foundations of software science and computation structures, Lec-
ture notes in computer science, vol 1378. Springer, Berlin, pp 140–
155. doi:10.1007/BFb0053547

16. Chafle G, Chandra S, Mann V, Nanda MG (2004) Decentralized
orchestration of composite web services. In: Najork M, Wills C
(eds) Proceedings of WWW Alt. 2004. ACM, New York, pp 134–
143. doi:10.1145/1013367.1013390

17. Changizi B (2015) Model based analysis of business process mod-
els. Ph.D. thesis, Leiden University (in preparation)

18. Clarke D, Proença J (2012) Partial connector colouring. In: Sirjani
M (ed) Proceedings of COORDINATION 2012, LNCS, vol 7274.
Springer, Berlin, pp 59–73. doi:10.1007/978-3-642-30829-1_5

19. Dami S, Estublier J, Amiour M (1998) APEL: a graphical yet exe-
cutable formalism for process modeling. Autom Softw Eng 5:61–
91. doi:10.1007/978-1-4615-5441-7_4

20. De Nicola R, Ferrari GL, Loreti M, Pugliese R (2011) A language-
based approach to autonomic computing. In: Beckert B, Damiani
F, de Boer FS, Bonsangue MM (eds) FMCO, vol 7542., Lecture
notes in computer scienceSpringer, Berlin, pp 25–48

21. Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and
stigmergy. Future Gen Comput Syst 16(9):851–871. http://dl.acm.
org/citation.cfm?id=348599.348601

22. Fernández H, Priol T, Tedeschi C (2010) Decentralized approach
for execution of composite web services using the chemical par-
adigm. In: Pu C, Singhal S, Zhang J (eds) Proceedings of ICWS
2010. IEEE, Los Alamitos, pp 139–146. doi:10.1109/ICWS.2010.
46

23. Fournet C, Gonthier G, Lévy JJ, Maranget L, Rémy D (1996) A
calculus of mobile agents. In: Montanari U, Sassone V (eds) CON-
CUR, vol 1119., Lecture notes in computer scienceSpringer,Berlin,
pp 406–421

24. FuX,BultanT, Su J (2004)Conversation protocols: a formalism for
specification and verification of reactive electronic services. Theor
Comput Sci 328(1–2):19–37. doi:10.1016/j.tcs.2004.07.004

25. Fu X, Bultan T, Su J (2005) Realizability of conversation protocols
with message contents. Int J Web Serv Res 2(4):68–93. doi:10.
4018/jwsr.2005100104

26. Gilbert D, Palamidessi C (2000) Concurrent constraint program-
ming with process mobility. In: Proceedings of the first interna-
tional conference on computational logic, CL ’00. Springer, Lon-
don, UK, pp 463–477. http://dl.acm.org/citation.cfm?id=647482.
728260

27. Honda K, Yoshida N, Carbone M (2008) Multiparty asynchro-
nous session types. In: Necula G, Wadler P (eds) Proceedings of
POPL 2008. ACM, New York, pp 273–284. doi:10.1145/1328438.
1328472

28. Jongmans SS, Arbab F (2012) Overview of thirty semantic for-
malisms for Reo. Sci Ann Comput Sci 22(1):201–251. doi:10.
7561/SACS.2012.1.201

29. Jongmans SS, Arbab F (2013) Global consensus through local
synchronization. In: Canal C, Villari M (eds) Proceedings of
FOCLASA 2013, no. 393 in CCIS. Springer, Berlin, pp 174–188.
doi:10.1007/978-3-642-45364-9_15

30. Jongmans SS, Arbab F (2013) Global consensus through local syn-
chronization (Technical Report). Tech. Rep. FM-1303, CWI

31. Jongmans SS, Arbab F (2013) Modularizing and specifying pro-
tocols among threads. In: Gay S, Kelly P (eds) Proceedings of
PLACES 2012, EPTCS, vol 109. CoRR, pp 34–45. doi:10.4204/
EPTCS.109.6

32. Jongmans SS, Arbab F (2014) Toward sequentializing overparal-
lelized protocol code. In: Lanese I, Lluch-Lafuente A, Sokolova A,
Torres-Vieira H (eds) Proceedings of ICE 2014, EPTCS, vol 166.
CoRR, pp 38–44. doi:10.4204/EPTCS.166.5

33. Jongmans SS, Arbab F (2015) Can high throughput atone for high
latency in compiler-generated protocol code? In:DastaniM, Sirjani
M (eds) Proceedings of FSEN 2015, LNCS. Springer, Berlin (in
press)

34. Jongmans SS, Clarke D, Proença J (2012) A procedure for splitting
processes and its application to coordination. In: Kokash N, Ravara
A (eds) Proceedings of FOCLASA 2012, EPTCS, vol 91. CoRR,
pp 79–96. doi:10.4204/EPTCS.91.6

35. Jongmans SS, Santini F, Arbab F (2013) Partially-distributed coor-
dination with Reo (Technical Report). Tech. Rep. FM-1304, CWI

36. Jongmans SS, Santini F, Arbab F (2014) Partially-distributed coor-
dination with Reo. In: Aldinucci M, D’Agostino D, Kilpatrick P
(eds) Proceedings of PDP 2014. IEEE, Los Alamitos, pp 697–706.
doi:10.1109/PDP.2014.19

37. Jongmans SS, Santini F, Sargolzaei M, Arbab F, Afsarmanesh H
(2012) Automatic code generation for the orchestration of web
services with Reo. In: de Paoli F, Pimentel E, Zavattaro G (eds)
Proceedings of ESOCC 2012, LNCS, vol 7592. Springer, Berlin,
pp 1–16. doi:10.1007/978-3-642-33427-6_1

38. Jongmans SS, Santini F, Sargolzaei M, Arbab F, Afsarmanesh H
(2014) Orchestrating web services using Reo: from circuits and
behaviors to automatically generated code. Serv Oriented Comput
Appl 8(4):277–297. doi:10.1007/s11761-013-0147-1

39. Jordan D, Evdemon J (2007) Web services business process exe-
cution language version 2.0. Standard ws-bpel-v2.0-OS, OASIS

40. Kokash N, Changizi B, Arbab F (2010) A semantic model for ser-
vice composition with coordination time delays. In: Dong JS, Zhu
H (eds) Proceedings of ICFEM, LNCS, vol 6447. Springer, Berlin,
pp 106–121. doi:10.1007/978-3-642-16901-4_9

123

http://dx.doi.org/10.1109/CCGRID.2008.50
http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1109/ICIW.2007.71
http://dx.doi.org/10.1109/ICIW.2007.71
http://dx.doi.org/10.1109/ICWS.2006.48
http://dx.doi.org/10.1007/s00446-012-0168-6
http://dx.doi.org/10.1007/s00446-012-0168-6
http://dx.doi.org/10.1007/978-3-540-77351-1_4
http://dx.doi.org/10.1007/978-3-540-77351-1_4
http://dx.doi.org/10.1007/978-3-642-01364-5_3
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1007/BFb0053547
http://dx.doi.org/10.1145/1013367.1013390
http://dx.doi.org/10.1007/978-3-642-30829-1_5
http://dx.doi.org/10.1007/978-1-4615-5441-7_4
http://dl.acm.org/citation.cfm?id=348599.348601
http://dl.acm.org/citation.cfm?id=348599.348601
http://dx.doi.org/10.1109/ICWS.2010.46
http://dx.doi.org/10.1109/ICWS.2010.46
http://dx.doi.org/10.1016/j.tcs.2004.07.004
http://dx.doi.org/10.4018/jwsr.2005100104
http://dx.doi.org/10.4018/jwsr.2005100104
http://dl.acm.org/citation.cfm?id=647482.728260
http://dl.acm.org/citation.cfm?id=647482.728260
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.7561/SACS.2012.1.201
http://dx.doi.org/10.7561/SACS.2012.1.201
http://dx.doi.org/10.1007/978-3-642-45364-9_15
http://dx.doi.org/10.4204/EPTCS.109.6
http://dx.doi.org/10.4204/EPTCS.109.6
http://dx.doi.org/10.4204/EPTCS.166.5
http://dx.doi.org/10.4204/EPTCS.91.6
http://dx.doi.org/10.1109/PDP.2014.19
http://dx.doi.org/10.1007/978-3-642-33427-6_1
http://dx.doi.org/10.1007/s11761-013-0147-1
http://dx.doi.org/10.1007/978-3-642-16901-4_9

SOCA (2015) 9:311–339 339

41. Kokash N, Krause C, de Vink E (2012) Reo+mCRL2: a framework
for model-checking dataflow in service compositions. Form Asp
Comput 24(2):187–216. doi:10.1007/s00165-011-0191-6

42. Lanese I, Montesi F, Zavattaro G (2013) Amending choreogra-
phies. In: Ravara A, Silva J (eds) Proceedings of WWV 2013,
EPTCS, vol 123. CoRR, pp 34–48. doi:10.4204/EPTCS.123.5

43. Lynch N (1996) Distributed algorithms. Elsevier, Amsterdam
44. Mamei M, Zambonelli F (2004) Programming pervasive and

mobile computing applications with the tota middleware. In: Pro-
ceedings of the second IEEE international conference on pervasive
computing and communications (PerCom’04), PERCOM ’04, p
263. IEEE Computer Society, Washington, DC, USA. http://dl.
acm.org/citation.cfm?id=977406.978680

45. Mamei M, Zambonelli F (2005) Field-based coordination for per-
vasive multiagent systems (Springer series on agent technology).
Springer, Secaucus

46. MhlG,FiegeL, PietzuchP (2010)Distributed event-based systems,
1st edn. Springer, Berlin

47. Milner R (1989) Communication and concurrency. Prentice Hall,
Upper Saddle River

48. MostardaL,Marinovic S,DulayN (2010)Distributed orchestration
of pervasive services. In: Rahayu W, Xhafa F, Denko M (eds) Pro-
ceedings of AINA 2010. IEEE, Los Alamitos, pp 166–173. doi:10.
1109/AINA.2010.100

49. Murphy AL, Picco GP, Roman GC (2006) Lime: a coordination
model and middleware supporting mobility of hosts and agents.
ACM Trans Softw Eng Methodol 15(3):279–328. doi:10.1145/
1151695.1151698

50. Muth P, Wodtke D, Weissenfels J, Dittrich AK, Weikum G (1998)
From centralized workflow specification to distributed work-
flow execution. J Intell Inf Syst 10(2):159–184. doi:10.1023/A:
1008608810770

51. Nanda MG, Chandra S, Sarkar V (2004) Decentralizing execu-
tion of composite web services. In: Schmidt D (ed) Proceedings
of OOPSLA 2004. ACM, New York, pp 170–187. doi:10.1145/
1028976.1028991

52. de Nicola R, Ferrari GL, Pugliese R (1998) KLAIM: a kernel lan-
guage for agents interaction and mobility. IEEE Trans Softw Eng
24(5):315–330. doi:10.1109/32.685256

53. Web services business process execution language (2007). http://
docs.oasis-open.org/wsbpel/2.0/

54. Parr T (2007) Generating structured text with templates and gram-
mars. In: The definitive ANTLR reference: building domain-
specific languages. The Pragmatic Bookshelf, pp 208–242

55. Pautasso C (2009) RESTful Web service composition with BPEL
for REST. Data Knowl Eng 68(9):851–866. doi:10.1016/j.datak.
2009.02.016

56. Pedraza G, Estublier J (2009) Distributed orchestration ver-
sus choreography: the FOCAS approach. In: Wang Q, Garousi
V, Madachy R, Pfahl D (eds) Proceedings of ICSP 2009,
no. 5543 in LNCS. Springer, Berlin, pp 75–86. doi:10.1007/
978-3-642-01680-6_9

57. Peltz C (2003)Web services orchestration and choreography. Com-
puter 36(10):46–52. doi:10.1109/MC.2003.1236471

58. Proença J, Clarke D, de Vink E, Arbab F (2011) Decoupled execu-
tion of synchronous coordinationmodels via behavioural automata.
In: Mousavi MR, Ravara A (eds) Proceedings of FOCLASA 2011,
EPTCS, vol 58. CoRR, pp 65–79. doi:10.4204/EPTCS.58.5

59. Proença J, Clarke D, de Vink E, Arbab F (2012) Dreams: a
framework for distributed synchronous coordination. In: Viroli M,
Castelli G, Marquez JLF (eds) Proceedings of SAC 2012. ACM,
New York, pp 1510–1515. doi:10.1145/2245276.2232017

60. Proença J (2011) Synchronous coordination of distributed compo-
nents. Ph.D. thesis, Leiden University

61. Ren S, Yu Y, Chen N, Marth K, Poirot PE, Shen L (2006)
Actors, roles and coordinators – a coordination model for open
distributed and embedded systems. In: Proceedings of the 8th
international conference on coordination models and languages,
COORDINATION’06. Springer, Berlin, pp 247–265. doi:10.1007/
11767954_16

62. Ricci A, Omicini A, Viroli M, Gardelli L, Oliva E (2007) Cognitive
stigmergy: towards a framework based on agents and artifacts. In:
Proceedings of the 3rd international conference on environments
for multi-agent systems III, E4MAS’06. Springer, Berlin, pp 124–
140. http://dl.acm.org/citation.cfm?id=1759343.1759352

63. Rowstron A, Wood A (1997) BONITA: a set of tuple space primi-
tives for distributed coordination. In: El-RewiniH (ed) Proceedings
of HICSS 1997. IEEE, Los Alamitos, pp 379–388. doi:10.1109/
HICSS.1997.667285

64. Sirjani M, Jaghoori MM, Baier C, Arbab F (2006) Compo-
sitional semantics of an actor-based language using constraint
automata. Proceedings of COORDINATION 2006, LNCS, vol
4038. Springer, Berlin, pp 281–297. doi:10.1007/11767954_18

65. Sirjani M, Movaghar A, Shali A, de Boer F (2004) Modeling
and verification of reactive systems using Rebeca. Fundam Inform
63:385–410

66. Tretola G, Zimeo E (2006) Workflow fine-grained concurrency
with automatic continuation. In: Rosenberg A, Atallah M, Bader
D, Gottlieb A, Kale L (eds) Proceedings of IPDPS 2006. IEEE,
Los Alamitos, pp 253–260. doi:10.1109/IPDPS.2006.1639510

123

http://dx.doi.org/10.1007/s00165-011-0191-6
http://dx.doi.org/10.4204/EPTCS.123.5
http://dl.acm.org/citation.cfm?id=977406.978680
http://dl.acm.org/citation.cfm?id=977406.978680
http://dx.doi.org/10.1109/AINA.2010.100
http://dx.doi.org/10.1109/AINA.2010.100
http://dx.doi.org/10.1145/1151695.1151698
http://dx.doi.org/10.1145/1151695.1151698
http://dx.doi.org/10.1023/A:1008608810770
http://dx.doi.org/10.1023/A:1008608810770
http://dx.doi.org/10.1145/1028976.1028991
http://dx.doi.org/10.1145/1028976.1028991
http://dx.doi.org/10.1109/32.685256
http://docs.oasis-open.org/wsbpel/2.0/
http://docs.oasis-open.org/wsbpel/2.0/
http://dx.doi.org/10.1016/j.datak.2009.02.016
http://dx.doi.org/10.1016/j.datak.2009.02.016
http://dx.doi.org/10.1007/978-3-642-01680-6_9
http://dx.doi.org/10.1007/978-3-642-01680-6_9
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.4204/EPTCS.58.5
http://dx.doi.org/10.1145/2245276.2232017
http://dx.doi.org/10.1007/11767954_16
http://dx.doi.org/10.1007/11767954_16
http://dl.acm.org/citation.cfm?id=1759343.1759352
http://dx.doi.org/10.1109/HICSS.1997.667285
http://dx.doi.org/10.1109/HICSS.1997.667285
http://dx.doi.org/10.1007/11767954_18
http://dx.doi.org/10.1109/IPDPS.2006.1639510

	Partially distributed coordination with Reo and constraint automata
	Abstract
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Contribution

	2 Reo and constraint automata
	2.1 Reo
	2.2 Constraint automata

	3 Design: theoretical justification
	3.1 Hybrid connector implementations
	3.2 Hybrid-code generator

	4 Implementation: practical realization
	4.1 Hybrid connectors
	4.2 Hybrid-code generator

	5 Case study
	6 Performance comparison
	6.1 Setup
	6.2 Connectors
	6.3 Results
	6.4 Discussion

	7 Related work
	7.1 Reo
	7.2 Distributed coordination
	7.3 Distributed orchestration/workflow

	8 Discussion: applications beyond Reo
	8.1 Automatic code generation for Rebeca models
	8.2 Recovering projectable choreographies from unprojectable specifications

	9 Conclusion
	References

